2,807 research outputs found

    Interactions with combined chemical cues inform harvester ant foragers' decisions to leave the nest in search of food.

    Get PDF
    Social insect colonies operate without central control or any global assessment of what needs to be done by workers. Colony organization arises from the responses of individuals to local cues. Red harvester ants (Pogonomyrmex barbatus) regulate foraging using interactions between returning and outgoing foragers. The rate at which foragers return with seeds, a measure of food availability, sets the rate at which outgoing foragers leave the nest on foraging trips. We used mimics to test whether outgoing foragers inside the nest respond to the odor of food, oleic acid, the odor of the forager itself, cuticular hydrocarbons, or a combination of both with increased foraging activity. We compared foraging activity, the rate at which foragers passed a line on a trail, before and after the addition of mimics. The combination of both odors, those of food and of foragers, is required to stimulate foraging. The addition of blank mimics, mimics coated with food odor alone, or mimics coated with forager odor alone did not increase foraging activity. We compared the rates at which foragers inside the nest interacted with other ants, blank mimics, and mimics coated with a combination of food and forager odor. Foragers inside the nest interacted more with mimics coated with combined forager/seed odors than with blank mimics, and these interactions had the same effect as those with other foragers. Outgoing foragers inside the nest entrance are stimulated to leave the nest in search of food by interacting with foragers returning with seeds. By using the combined odors of forager cuticular hydrocarbons and of seeds, the colony captures precise information, on the timescale of seconds, about the current availability of food

    Ambient air temperature does not predict body size of foragers in bumble bees (Bombus impatiens)

    Get PDF
    Bumble bees are important pollinators of crops and other plants. However, many aspects of their basic biology remain relatively unexplored. For example, one important and unusual natural history feature in bumble bees is the massive size variation seen between workers of the same nest. This size polymorphism may be an adaptation for division of labor, colony economics, or be nonadaptive. It was also suggested that perhaps this variation allows for niche specialization in workers foraging at different temperatures: larger bees might be better suited to forage at cooler temperatures and smaller bees might be better suited to forage at warmer temperatures. This we tested here using a large, enclosed growth chamber, where we were able to regulate the ambient temperature.We found no significant effect of ambient or nest temperature on the average size of bees flying to and foraging from a suspended feeder. Instead, bees of all sizes successfully flew and foraged between 16C and 36C. Thus, large bees foraged even at very hot temperatures, which we thought might cause overheating. Size variation therefore could not be explained in terms of niche specialization for foragers at different temperature

    Mechanisms for the Evolution of Superorganismality in Ants

    Get PDF
    Ant colonies appear to behave as superorganisms; they exhibit very high levels of within-colony cooperation, and very low levels of within-colony conflict. The evolution of such superorganismality has occurred multiple times across the animal phylogeny, and indeed, origins of multicellularity represent the same evolutionary process. Understanding the origin and elaboration of superorganismality is a major focus of research in evolutionary biology. Although much is known about the ultimate factors that permit the evolution and persistence of superorganisms, we know relatively little about how they evolve. One limiting factor to the study of superorganismality is the difficulty of conducting manipulative experiments in social insect colonies. Recent work on establishing the clonal raider ant, Ooceraea biroi, as a tractable laboratory model, has helped alleviate this difficulty. In this dissertation, I study the proximate evolution of superorganismality in ants. Using focussed mechanistic experiments in O. biroi, in combination with comparative work from other ant species, I study three major aspects of ant social behaviour that provide insight into the origin, maintenance, and elaboration of superorganismality. First, I ask how ants evolved to live in colonies, and how they evolved a reproductive division of labour. A comparative transcriptomic screen across the ant phylogeny, combined with experimental manipulations in O. biroi, finds that reproductive ants have higher insulin levels than their non-reproductive nestmates, and that this likely regulates the reproductive division of labour. Using these data, as well as studies of the idiosyncrasies of O. biroi’s life history, I propose a mechanism for the evolution of the first colonies. It is possible that similar mechanisms underlie the evolution of reproductive division of labour in other superorganisms, and of germ-soma separation in nascent multicellular individuals. Second, I ask how ant workers assess colony hunger to regulate their foraging behaviour. I find that workers use larval signals, but not their own nutritional states, to decide how much to forage. In contrast, they use their nutritional states, but not larval signals, to decide how much to eat, suggesting that in at least some ant species, foraging and feeding have been decoupled. This evolution of colony-level foraging regulation has occurred convergently in hymenopteran superorganisms, and is analogous to the evolution of centralised regulation of foraging behaviour in multicellular animals. Finally, I ask how an iconic collective foraging behaviour – the mass raids of army ants – evolved. I find that O. biroi, a relative of army ants, forages collectively in group raids, that these are ancestral to the mass raids of army ants, and that the transition from group to mass raiding correlates with expansion in colony size. I propose that the scaling effects of increasing colony size explain this transition. It is possible that similar principles underlie the evolution of disparate collective behaviours in other animal groups and among cells within developing animals. Together, these studies illuminate the life history of O. biroi, and suggest mechanisms for the evolution of core aspects of cooperative behaviour in ant colonies. I draw comparisons to the evolution of superorganismality in other lineages, as well as to the evolution of multicellularity. I suggest that there may be additional similarities in the proximate evolutionary trajectories of superorganismality and multicellularity

    Honeybee rebel workers invest less in risky foraging than normal workers

    Get PDF
    AbstractIn eusocial insect colonies, workers have individual preferences for performing particular tasks. Previous research suggests that these preferences might be associated with worker reproductive potential; however, different studies have yielded inconsistent results. This study constitutes the first comparison of foraging preferences between genetically similar normal and rebel honeybee workers, which present different reproductive potential. We found that rebels, which have a higher reproductive potential than normal workers, displayed a delayed onset of foraging and a stronger tendency to collect nectar compared with normal workers. These results support the hypothesis that workers with high reproductive potential invest more in their own egg laying and avoid risky tasks such as foraging. In contrast, the results do not support the hypothesis that reproductive workers initiate foraging earlier in life than normal workers and specialize in pollen foraging.</jats:p

    Sting, Carry and Stock: How Corpse Availability Can Regulate de-Centralized Task Allocation in a Ponerine Ant Colony

    Get PDF
    We develop a model to produce plausible patterns of task partitioning in the ponerine ant Ectatomma ruidum based on the availability of living prey and prey corpses. The model is based on the organizational capabilities of a common stomach through which the colony utilizes the availability of a natural (food) substance as a major communication channel to regulate the income and expenditure of the very same substance. This communication channel has also a central role in regulating task partitioning of collective hunting behavior in a supply&demand-driven manner. Our model shows that task partitioning of the collective hunting behavior in E. ruidum can be explained by regulation due to a common stomach system. The saturation of the common stomach provides accessible information to individual ants so that they can adjust their hunting behavior accordingly by engaging in or by abandoning from stinging or transporting tasks. The common stomach is able to establish and to keep stabilized an effective mix of workforce to exploit the prey population and to transport food into the nest. This system is also able to react to external perturbations in a de-centralized homeostatic way, such as to changes in the prey density or to accumulation of food in the nest. In case of stable conditions the system develops towards an equilibrium concerning colony size and prey density. Our model shows that organization of work through a common stomach system can allow Ectatomma ruidum to collectively forage for food in a robust, reactive and reliable way. The model is compared to previously published models that followed a different modeling approach. Based on our model analysis we also suggest a series of experiments for which our model gives plausible predictions. These predictions are used to formulate a set of testable hypotheses that should be investigated empirically in future experimentation
    corecore