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RESEARCH ARTICLE

Sting, Carry and Stock: How Corpse
Availability Can Regulate De-Centralized
Task Allocation in a Ponerine Ant Colony
Thomas Schmickl1, Istvan Karsai2*

1. Department of Zoology, Karl-Franzens-University, Graz, Austria, 2. Department of Biological Sciences, East
Tennessee State University, Johnson City, Tennessee, United States of America

*karsai@etsu.edu

Abstract

We develop a model to produce plausible patterns of task partitioning in the

ponerine ant Ectatomma ruidum based on the availability of living prey and prey

corpses. The model is based on the organizational capabilities of a ‘‘common

stomach’’ through which the colony utilizes the availability of a natural (food)

substance as a major communication channel to regulate the income and

expenditure of the very same substance. This communication channel has also a

central role in regulating task partitioning of collective hunting behavior in a

supply&demand-driven manner. Our model shows that task partitioning of the

collective hunting behavior in E. ruidum can be explained by regulation due to a

common stomach system. The saturation of the common stomach provides

accessible information to individual ants so that they can adjust their hunting

behavior accordingly by engaging in or by abandoning from stinging or transporting

tasks. The common stomach is able to establish and to keep stabilized an effective

mix of workforce to exploit the prey population and to transport food into the nest.

This system is also able to react to external perturbations in a de-centralized

homeostatic way, such as to changes in the prey density or to accumulation of food

in the nest. In case of stable conditions the system develops towards an equilibrium

concerning colony size and prey density. Our model shows that organization of

work through a common stomach system can allow Ectatomma ruidum to

collectively forage for food in a robust, reactive and reliable way. The model is

compared to previously published models that followed a different modeling

approach. Based on our model analysis we also suggest a series of experiments for

which our model gives plausible predictions. These predictions are used to

formulate a set of testable hypotheses that should be investigated empirically in

future experimentation.
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Introduction

A social insect colony operates without a unit of central control, in consequence,

individuals cannot assess pieces of global information at one specific place or from

one specific nestmate. However, global colony-level information such as the

current needs of the colony or the current availability and location of food [1, 2, 3]

are crucial variables that social insect colonies can self-regulate as a collective

[4, 5, 6]. In most cases, each worker uses only locally available information and

simple rules to operate and the workers cannot compare their own knowledge to

that of other nestmates. These limitations of individual workers strongly contrast

with the diversity of colony level reaction to environmental changes which allow

them to efficiently track environmental opportunities and challenges [7, 8, 9].

Studies on insect societies are commonly concerned with the integration of

individual worker behavior into colony-level task organization and with the

question of how regulation of division of labor may contribute to colony

efficiency [10, 11, 12]. These societies typically develop parallel processing systems

where an insect colony performs most of its operations concurrently instead of

sequentially [10, 13, 14], thus frequent adjustment of the worker force engaging in

different tasks is required [10, 15, 1, 16].

In the course of their evolution, ants have developed a wide range of foraging

strategies [17, 3] including some very flexible and complex ones. Some of these

foraging strategies can adapt to environmental changes or to the availability of the

prey [18, 19, 20], what sometimes results in a flexible pattern of switching between

alternative foraging strategies. For a generalist predator switching between

different foraging strategies could represent an ecological advantage since it allows

the exploitation of the most easily available food source from a wide range of

potential preys [21, 22, 20].

Ectatomma ruidum is a common predator in Central and Northern South

America’s open forests, rainforests and plantations. It preys on a wide variety of

arthropods and it also collects honey [23, 24]. In general, the foragers of this ant

species hunt solitarily [25, 26], but there are two remarkable behavioral

adaptations that have been observed when solitary hunting is replaced with a

more complex collective strategy (Fig. 1). Schatz et al. [20] described a

sophisticated graded recruitment strategy where hunting activity depends upon

prey weight and size. Another strategy of adaptation in Ectatomma ruidum – and

this is the central point of our approach – relates to the available quantity of food

or prey. Schatz et al. [27] showed that in case of high density of available prey the

foraging task is partitioned into 2 serialized tasks: Some ants act as ‘‘stingers’’,

which are specialized in killing prey and other ants act as ‘‘transporters’’, which

are specialized to transport corpses to the nest. A similar pattern was also found

and described in Pachychondyla caffraria (African ponerine ant) by Agbogba and

Howse [28]. Task partitioning seems to be an important form of work

organization and seems to be a wide spread phenomenon in insect societies

[16, 13, 29, 30, 31, 32, ].
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The task partitioning of Ectatomma ruidum shows that increased quantities of

prey triggers increased recruitment of stingers in the colony. However, at certain

(high) prey availability the number of stingers was found to saturate to a

maximum level [27]. We reason this saturation effect as follows: If recruitment

and abandonment is happening with fixed (constant) per-capita rates, then

recruiting of additional workers from one task to another is a process that works

slower and slower because with time many workers have already switched to the

target task and less and less workers are still available in the source task. This leads

to a gradual slowdown of the process that finally ends in stagnation. Comparable

‘‘saturation effects’’ are common in chemical reactions and in physical processes

like solution of solids in fluids or vapors in gases.

Fig. 1. Artistic representation of the collective foraging system established by a colony of Ectatomma ruidum.

doi:10.1371/journal.pone.0114611.g001
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The number of intermediate-inactive ants in the colony increases faster with

colony size more steeply than the number of those ants engaged in hunting

[33, 34]. Schatz [27] also reported that there is a significant positive correlation

between the colony size and the minimal and maximal number of stingers. In

addition to that, these ant colonies react more to the spatial density of prey at the

hunting site than the absolute number of prey. Schatz et al. [34] also confirmed

the findings of Lachaud [35] and Breed et al. [36] about the saturation of corpse

delivery to the nest and conspecific thievery. In general, the stinger task group can

be very effective and this could result into corpses lying around the field, waiting

to be transported to the nest or to be stolen by other animals.

The specific behavior of the task groups in Ectatomma ruidum are described in

detail by Lachaud [35]: The stinger grabs a prey animal with their mandibles and

sting it until it is motionless, then the stinger drops the corpse to the ground and

seeks for another prey. In some instances the transporters can solicit a corpse from

a stinger if this stinger still holds its victim. However, it is more common that

transporters pick up corpses from the ground and transfer these corpses to the

nest. Usually, the transporter immediately returns to the hunting site for picking

up another corpse after a successful delivery of a copse to the nest [34].

Schatz et al. [37] and Theraulaz et al. [38] constructed two mathematical

models to describe the task partitioning of Ectatomma ruidum and they compared

the predictions of these models to experimental data. Their models are based on

the idea of simple response-threshold models [39, 15, 11, 40]. The cores of these

models are nonlinear response curves. If the intensity of a stimulus, which is

associated with a specific task, exceeds the response threshold of a worker, then

the worker will engage in that task. In such models task partitioning emerges by

the dynamic interactions of the interacting subtasks: For example performing

subtask A can decrease the stimulus intensity of subtask A, but it can also increase

the stimulus intensity of subtask B in parallel. This way, through well-designed

threshold-curves and task interactions, self-organizing patterns of division of

labor can emerge in such models.

Theraulaz et al. [38] provided experimental evidence in Ectatomma ruidum that

the stinging and transporting behaviors are modulated by global-level stimuli such

as the number of available prey and corpses respectively. Both, simulations and

experiments were carried out to investigate the effect of different combinations of

colony size and initial prey numbers, as these factors affect the dynamics of groups

of ants which perform different tasks and the dynamics of prey and corpse

quantities. These colony-level responses were followed in a two hours time scale.

In the published model, the dynamics of the two worker groups (stinging and

transporting), as well as the number of available prey and corpses are described by

a system of four differential equations incorporating a saturation-type stimulus-

response function. Schatz et al. [37] published a somewhat similar model with a

sigmoid-type of stimulus-response curve resulting in strikingly similar predic-

tions. The parameters of the model were estimated by evaluating experimental

data statistically. Several predictions of the model were compared qualitatively to

the data gained from the same experimental colonies. The authors concluded that

Corpse Availability Regulates Task Allocation in Ants
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their model successfully imitates what they observed in experimental colonies,

after they parameterized the model from these sets of data.

In this paper we provide an alternative model of the phenomena modeled by

Schatz et al. [37] and Theraulaz et al. [38]. Instead of using non-linear stimulus-

response threshold functions, our main assumptions rely on regulation of

different food materials by which the colony’s individual workers interact. These

materials are providing information to the collective like a ‘‘common stomach’’,

which is an information source that is accessible for all individuals in parallel. The

common stomach in our approach can be considered as a social crop, such as

Karsai and Wenzel [29] described for Metapolybia wasps, where water is

temporarily stored in the stomach of wasps. However, the term ‘‘common

stomach’’ has a more general meaning which we adopt in this paper: A material

(substance) is accumulating in a more or less well defined area and the spatial

density (or ‘‘fullness of the social crop’’) of this material is estimated locally

through simple cues by individual workers. This local estimate then affects the

workers’ behaviors, which, in turn, change the accumulation level of the material

in the common stomach. This way, feedback loops emerge which provide robust

regulation of material flows and task partitioning. For example, increasing the

density of corpses could increase the recruitment of transporters and decrease the

recruitment of stingers, in turn decreasing the density of corpses again.

Model Design Principles

We followed and extended the approach on model design of Gilpin and Ayala

[41], who formulated four principles that should be considered in model building:

Simplicity, Reality, Generality and Accuracy. These principles were elaborated to

establish our model design objectives, which we formulate also along four

principles:

1. Objective 1 (‘‘The principle of robust processes’’): This principle sets the goal

to develop a model that depicts the underlying processes of task partitioning

in E. ruidum at a level of detail that no computational or other artefacts

emerge when the value of a single basic parameter is changed to a different

but still plausible value. For example, increasing the rate of recruitment to one

task or changing the running speed of an ant should not lead to negative or

inplausible values of focal system variables. We highlight the significance of

this principle by an example: All previously published mathematical models

on the collective foraging of Ectatomma ruidum work well in the studied

range of parameters, which is also the range of parameters the observed

natural processes have. However, these models will not predict plausible

results anymore for a similar process that operates with different speeds (like

larger or faster ants) as we will demonstrate in our study. This is especially

significant when modeling self-organization and collective self-regulation of

social insects is implemented as bio-inspiration of technical appliances. While

the domain of bio-inspired and bio-mimicking engineering likes to retrieve

Corpse Availability Regulates Task Allocation in Ants
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inspiration form biological and mathematical models, these models have to

be very general and robust. For example, the properties of a robot and those

of an ant differ significantly. However, research on swarms of robots could

benefit from the self-regulation mechanisms found in the ants, if a general

and robust model is available. In addition to that, comparative studies (e.g.,

self-regulation of ants versus wasps) that aim to find common properties of

collective behaviors require general and robust models in spite of the fact that

biological species often differ significantly concerning individual parameters

and life histories (e.g., worker size, speed, running versus flying). We also

stress and test that the model’s predictions should also be stable against

external disturbances of food income or worker loss, as these phenomena

frequently happen in natural systems.

2. Objective 2 (‘‘The principle of shared substances’’): This principle sets the

goal to develop a model that allows the global system being driven by shared

substances accumulating in common stomachs. Such a common stomach is a

shared compartment that is accessible for all workers and that is used to

deposit foraged substances and to retrieve these substances from there

whenever needed. The common stomach will saturate in times when the sum

of all influxes is higher than the sum of all outfluxes. Analogously, it will get

empty when the sum of all outfluxes is higher than the sum of all influxes.

The current state of of the common stomach affects important components of

the system, such as the recruitment rates for specific tasks. Modulation of

behavior based on the common stomach is reported from many social insect

species, e.g., wasps that share water by trophallaxis [29, 42], honeybees that

share nectar and brood food via trophallaxis [43, 44, 45]. In ants, Cassil and

Tschinkel [46] reported food sharing by trophallaxis. One important property

of ‘‘common stomach’’-driven regulation of work is that these systems ensure

the conservation laws (e.g., conversation of mass) and therefore it is easy to

implement empirical measurements into modeling of such systems. Modeling

of such systems should suggest empirical quantitative experiments that will

allow to observe saturation and depletion effects in the real system and in

their corresponding models. The ‘‘common stomach hypothesis’’ is an

alternative approach to explain task partitioning in insect societies without

requiring non-linear (often sigmoid) threshold curves as they are suggested in

many other modeling approaches [47, 48].

3. Objective 3 (‘‘The principle of localized interaction’’): This principle sets the

goal to develop a model that stresses the importance of local interactions of

workers with each other and with the environment. We intend to construct

the model to be consistent with existing knowledge of proximate mechanisms

in predator-prey systems in general and with the ant foraging system of E.

ruidum in particular. Schatz [27] showed that the number of stingers

positively correlates with the prey density, in contrast to that the model of

Theraulaz et al. [38] uses the numbers of prey to modulate the recruitment of

stingers. This solution worked for the model of Theraulaz et al. [38], because

the authors kept the area of the hunting site in their simulation studies

Corpse Availability Regulates Task Allocation in Ants
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constant. However, Schatz [27] gave empirical results of different prey

numbers and various sizes of the hunting area, thus this study investigated

different levels of prey density. In consequence, we deliberate, that

implementing prey density as a key model variable will lead to a significant

improvement compared to the previously published models. This is also

consistent with the classical understanding of predator-prey interactions [49].

If an agent can interact with another object only in a limited local

neighborhood then this agent has to meet this object to allow for interaction.

In a top-down modeling approach this is best described by a density-

dependent probability function.

4. Objective 4 (‘‘The principle of natural assumptions’’): This principle sets the

goal to develop a model that depicts a set of more natural situations and is

not bound to a special experimental setup. For example, we assume a steady

influx of prey into the foraging area, in contrast to a fixed number of prey as

it is implemented in the experiments of Theraulaz et al. [38]. Natural

environment is commonly fragmented and it has an important role in

predator-prey dynamics [50] and immigration. Schatz [27] has shown that, in

the case of Ectatomma ruidum, the maximum number of hunters that are

recuited depends on the colony’s size: This relationship is also important to

be implemented in order to extend the scope of the model and to keep the

model as close as possible to a real system.

The Model

1. Implementation and construction of the model

Based on the principles mentioned before, we constructed our model on two

different software platforms. We first chose a ‘‘Stock & Flow’’ representation of

the system by implementing the model in Vensim [51], following the school of

‘‘system dynamics’’ [52, 53, 54, 55]. This modeling technique allows to depict

material flows and accumulation of this material in stocks in a very visual way.

System dynamics models ensure the conservation of mass, which is a very

important aspect in our model (Objective 2). The model consists of 6 stocks, 10

flows and 19 variables/parameters (Fig. 2, Table 1). The thick blue arrows indicate

the most important interactions between system components, as these interac-

tions establish feedback loops that control the system’s global behavior by

considering the current saturation value of the common stomach. Boxes (stocks)

indicate compartments that hold quantities of ant workers or prey/corpse items.

These compartments indicate the status of the agents they represent: stinger ants

(S), undecided ants (U), transporter ants (T), live prey (P), dead corpses still

outside the nest (C), dead corpses already transported to the nest (N). The

numbers of ants in these states are the major system variables of our model. The

doubled arrows (flows) indicate ‘‘rates of change’’ by which quantities of the

agents can change from one stock to another stock per time period. All state

Corpse Availability Regulates Task Allocation in Ants
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transitions are modeled this way. All other (single-lined) arrows indicate

interactions, meaning that a change in the numerical value of one component can

induce a change of the value of another system component, whereby ‘‘+’’ symbols

and ‘‘2’’ symbols at the arrowheads indicate whether this correlation is negative

or positive. Finally, the circular symbols indicate sources and sinks through which

quantities can enter or leave the system in a controlled way, thus these symbols

indicate our system boundaries. From the position of the sinks and sources it is

clear that the subsystem of prey dynamics is modeled as an open system, but the

population of ants is modeled as a closed system.

In the next step we implemented the model in an ODE-based modeling

platform called SAGE [56]. We lost the visual connections of the variables by

using this implementation form, but some of the calculations and simulations

were faster and easier in SAGE, allowing thus an exhaustive model analysis. The

re-implementation of the model includes describing the dynamics of each stock as

a separate ODE, having the inflows as positive and the outflows as negative terms

Fig. 2. Stock & flow representation of the model of task partitioning of E. ruidum. For further details, please see text in section called Implementation
and construction of the model.

doi:10.1371/journal.pone.0114611.g002
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in the RHSs of the equations. As the flows link the stocks in the stock&flow model

(see Fig. 2), the resulting ODEs in SAGE form a system of first-order ODEs which

was solved numerically by 4th-order Runge-Kutta-Method.

2. Modeling task partitioning of hunting behavior

As a first step to our model, we describe the dynamics of the three task groups of

ants that participate in the task partition of hunting behavior. Each individual ant

can be in one of the possible 3 behavioral states. The initial state of all ants is the

state ‘undecided’ U(t), what means that they are neither specialized to sting nor to

transport. If such an undecided ant meets a living prey animal in its local

environment, it stings (thus kills) this prey and thus becomes a stinger ant (S(t))

for some time (tstinging). After this time period it stops stinging and becomes an

undecided ant U(t) again. As a conservative assumption we assumed randomized

movement of the undecided ants and also a random distribution of prey items

(P(t)), thus we followed the expressions of classical Lotka-Volterra-type predator-

prey models, which also use mass-action law to model the interactions between

predators and prey. We assumed that the higher the spatial density of prey is –

what is expressed by our first ‘‘common stomach’’ variable Y(t) – the faster an

undecided ant encounters a living prey item and the faster (and thus more likely)

it is recruited to the stinging task. This process of recruitment for stinging is

therefore modeled as aStingers ?Y(t)?U(t) whereby aStingers is the recruitment rate of

Table 1. Parameter values and their literature sources.

variable/parameter value Unit Description source

aStingers 0.06 Ants Recruitment rate for stinging 1

bStingers 1=tStingers 1/min Abandonment rate for stinging 1

tStingers 33 Min Mean time period of stinging 1

aTransporters 0.04 Ants Recruitment rate for transporting 1

bTransporters 1=tTransporters 1/min Abandonment rate for transporting 1

tTransporters 48 Min Mean time period of transporting 1

nColony 500 Ants The total colony size 3

KPrey 7 prey/cm2 Saturation capacity for prey 2

KCorpses 7 prey/cm2 Saturation capacity for corpses in the environment 2

KNest 0.1 prey/ant Saturation capacity for corpses in the nest 4

jPrey 0.25 prey/min Influx (immigration) of prey 3

jCorpses 0 prey/min (Experimental) influx of corpses 3

jNest 0 prey/min (Experimental) influx of corpses into the nest 3

lKill 0.33 prey/ant/min The rate at which prey is killed in case of P(t)5KPrey 1

lTransport 0.22 prey/ant/min The rate at which corpses are transported to the nest in case of C(t)5KNest and N(t)50 1

lConsume 0.01 1/min The fraction of food in the nest that is consumed per minute 4

AArena 52.8 cm2 The default size of the hunting area. 1, 2

Sources: 1: Theraulaz et al., [38]; 2: Schatz et al., [27]; 3: parameter values used for experiment with our model; 4: our assumption.

doi:10.1371/journal.pone.0114611.t001
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undecided workers to stingers. The abandoning from the stinging task is expressed

by bStingers(t), whereby bStingers~1=tStingers is the abandonment rate of stinging ants.

These considerations finally lead to equation 1, which describes the dynamics of

the stinger ant task group:

dS
dt

~aStingers:Y(t):U(t){bStingers
:S(t) ð1Þ

The dynamics of the third hunting task, which are the transporter ants (T(t)),

are modeled in a similar way, with the only exception that we assumed that the

recruitment of undecided ants to the transporting task is positively correlated with

the density of prey corpses (C(t)) in the environment. This relationship is

represented by the saturation variable of the corpse-associated common stomach

(V(t)) and a given recruitment rate to the transportation task (aTransporters), leading

to a Transporters ?V(t)?U(t) for describing the dynamics of the recruitment process

of transporters. The abandonment of ants from the transportation task is assumed

to be correlated positively with the density of corpses in the nest as it is expressed

by our nest saturation common-stomach variable (W(t)) as well as with a fixed

abandonment rate bTransporters~1=tTransporters leading to bTransporters ?W(t)?T(t) as a

final model of the abandonment process of transporters.

In short, we assumed that corpses are distributed randomly in space and that

transporter ants move randomly while they search for corpses to pick up and

while they search for delivery places of their carried corpses in the nest. The phase

of directed motion towards the nest was neglected in our model, except in the

timing setting of tTransporters. Thus, we assumed that higher corpse density in the

environment leads to more frequent encounters of already stung corpses by

undecided ants. Thus, more ants are recruited per time unit to the transporting

task in times of higher corpse densities. In addition we assumed that the more

corpses are already gathered in the nest the longer will take a transporting ant to

find a receiver worker or larva in the nest. Therefore the longer such an ant has to

search for a receiver, the more likely it will abandon the transportation task. In

equation 2, these considerations are summarized to describe the dynamics of the

transporter task group.

dT
dt

~aTransporters:V(t):U(t){bTransporters
:W(t):T(t) ð2Þ

In our ‘‘common stomach’’ model approach it is essential that the modeling

does respect the conservation laws for quantities, masses of substances and the

conservation of energy (Objective 2). Thus, as we consider our ant worker

population as being a closed system we can model the dynamics of the undecided

workers by the following equation 3, whereby nHunters expresses the total number

of hunting ants and U(t) expresses the number of undecided ants:
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U(t)~nHunters{S(t){T(t) ð3Þ

As it is pointed out in Schatz et al., [27], the fraction of ants that engage in the

hunting task in the full colony population (nColony) depends on the colony size. He

found that smaller colonies have a higher fraction of workers engaging in hunting

than larger colonies. By using optimal fitting technique we found the best fit for

Schatz et al., [27], Fig. 1B in their paper) data described by the curve y~a:(xbzc)

to the field data (Fig. 3 and equation 4).

nHunters~nColony:
0:0795

nColony
0:1309{1:22

: ð4Þ

In our model, the dependence of the number of hunters on the colony size is

defined between 10 and 1000 workers only. This is the range in which Schatz

et al., [27] presented field data and also the range of colony size in which our

model provides predictions. Colonies with fewer than 10 individuals would have

implausible fractions of hunters in the colony predicted by our equation 4. This

limitation is due to that fact that no empirical data on smaller colonies exist to be

used in the model fitting of this curve. This, in turn, can be reasoned by the

assumption that in natural conditions such colonies might not use task

partitioning for their hunting (see Objective 4) at all.

3. Modeling the common stomachs

In our modeling approach we assumed that the living prey, the corpses in the

environment and the corpses in the nest change their spatial densities over time,

as the ants convert and transport these items (Objective 2). It is reported by Schatz

et al., [27] that the density of prey affects the recruitment of stingers. They also

observed the highest number of stingers with a density of 8 prey/cm2. Lower

densities of prey (7 or less prey items per cm2) on the hunting area resulted in

lower numbers of recruited stingers. Based on these data we assumed a value of

KPrey57 prey/cm2 which is able to trigger the maximum recruitment of stingers. In

a similar way, we assumed KCorpses57 prey/cm2 to be the density of corpses in the

environment that is able to trigger the full recruitment of transporters. While KPrey

and KCorpses are based on a maximal spatial density of prey items, we assumed that

the saturation of the nest with corpses is bound to the colony size. We assumed

that a fully saturated nest is represented by a KNest50.1 prey/ant, meaning that one

prey item can saturate/occupy 10 nest worker ants. To model the common

stomach saturation, we first modeled the density of the system variables for prey

(P(t)), corpses in the environment (C(t)) and corpses in the nest (N(t)) in the

following equations 5, 6 and 7:

sPrey(t)~
P(t)

AArena
,sCorpses(t)~

C(t)
AArena

,sNest(t)~
N(t)

nNestworkers
, ð5; 6; 7Þ
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where AArena is the size of the hunting arena and nNestworkers5nColony – nHunters is

the number of the workers that don’t engage in the hunting process but do engage

in other tasks, including: taking care of the brood or the queen, nest building or

colony defense. We would like to point out that our model follows the classical

ecological models that incorporate density-dependent growth and saturation

processes, as it was described and modeled for example by J. P. Verhulst [57] and

which were later incorporated by the classical models of interspecific competition

by Volterra [58]. The values of KPrey, KCorpses and KNest can be seen as limited

capacities of the system for prey and corpses, thus as soon as these populations

reach these maximum capacities the corresponding rates of change reach their

extreme values (0 or 1). Prey or corpse densities between 0 and K are predicted to

produce only linear changes of these rates of change. The observed non-linear

system behaviors stem from the interactions among components which form

feedback loops but do not exploit already built-in non-linearities, as it is the case

in threshold-based models and also in most agent-based models (Objective 3 and

4).

Based on these densities we could model the current saturation of the 3

common stomachs by the following equations 8, 9, and 10:

Y(t)~
sPrey(t)

KPrey
,V(t)~

sCorpses(t)

KCorpses
,W(t)~

sNest(t)
KNest

, ð8; 9; 10Þ

4. Modeling material flows

The detailed modeling of the associated material flows is a fundamental issue

concerning our hypothesis, whether or not task partitioning can be regulated by a

shared material-based common-stomach. The first important process to model is

the rate with which the stingers kill prey and convert them into corpses which are

then deposited in the very same area. In accordance to classical predator-prey

models and to empirical experiments reported by Schatz et al., [27] on E. ruidum,

we assumed that the stinging productivity scales (positively) with the density of

prey. Thus it also correlates with the saturation of the common stomach of prey,

as it is expressed by Y(t). The rate of the stinging process is also assumed to

increase with increasing numbers of stingers (S(t)) and with a constant factor of

lKill~0:33 prey/ant/min, which is reached only when the common stomach of

prey is fully saturated, that is whenever P(t)=AArena~KPrey and thus Y(t)~1. In

conclusion, the amount of killed prey per minute is given by lKill ?Y(t)?S(t).

We also assume that prey does not reproduce within the timescale of our model

(from a few hours up to one day). Thus, we only have to consider an immigration

influx of prey (jPrey~0:25 prey/min) as well as a starting population of prey

(P(0)50 prey in most experiments). These formulations lead us to equation 11,

which describes the dynamics of prey items:
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dP
dt

~jPrey{lKill:Y(t):S(t) ð11Þ

The second common stomach is conceived as the number of corpses that are

located in the environment and which are waiting for transporters to be taken to

the nest. In our system this second common stomach is the most important one,

because it is regulated on both sides, i.e., its infux and its outflux are precisely

controlled by the working ants. The number of corpses increases with the influx of

killed prey (see last term of equation 11). In parallel, it decreases with the flux of

corpses that are transported from the hunting site to the nest by transporter ants.

We consider corpses to be in the nest only after the transporter successfully

handed the corpse over to nestmates or by dropping the corpses at a suitable place

at the deposition site of the nest. We assume that this rate depends on the number

of transporters, on the saturation of the environment with corpses (V(t)) and on

the saturation of the nest with corpses (W(t)). On one hand, higher density of the

Fig. 3. The model of predicting the fraction of actively hunting ants as a function of the total population
of the ant colony (black line). The circular data points indicate empirical observations of Schatz ([27], Fig. 1B
in their paper). The presented curve fitting yields a summarized squared error of e2 ,0.0007.

doi:10.1371/journal.pone.0114611.g003
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corpses in the environment result in quicker encounters of corpses by transporter

ants, thus the transportation rate will increase with increasing density of corpses.

On the other hand, if corpse density is high, the nest can in consequence saturate

with corpses and this, in turn, will increase the time it takes the loaded

transporters to finally deposit their corpses. Thus transport rates will go down as

the nest saturates with corpses or the environment gets emptied of corpses. In

analogy to the model of maximum killing rates, we assumed that the highest

transportation rate of lTransport~0:22 prey/ant/min to be reached if

C(t)=AArena~KCorpses and thus V(t)~1 and N(t)=nNestworkers~0 and thus W(t)~0.

Therefore, the rate at which corpses are transported from the environment to the

nest can be described aslTransport:V(t):1{W(t):T(t) and the full dynamics of

corpses can be modeled by the following equation 12:

dC
dt

~jCorpses(t)zlKill:Y(t):S(t){lTransport:V(t):1{W(t):T(t) ð12Þ

To describe the dynamics of the corpses inside the nest (N(t)) we had to

consider several flows of material. First, we considered the influx of corpses

carried to the nest by transporters described by the second term of (12). We

assumed that the corpses are consumed over time in the nest (outflow) with a

constant rate, which we set to lConsume~0:01 per min, this means that we assumed

that the average time they spent in the nest before they are consumed is 100 min.

This gives the final equation of the dynamics of the corpses stored in the nest:

dN
dt

~jNest(t)zlTransport:V(t):(1{W(t)):T(t){lConsume:N(t) ð13Þ

We also implemented external or experimental additional influxes into the

common stomachs formed by prey jPrey(t), (simple addition to the immigration),

by corpses in the environment jCorpses(t) and by corpses in the nest jNest(t) as

constant rate fluxes, similar to our model of the immigration of prey. These rates

allow to model experimental scenarios (for example experimental addition of prey

or corpses to the environment or nest). Generally we set these experimental

influxes to zero, exceptions are noted otherwise.

5. Measuring the predicted efficiency of the colony

The whole foraging process has the purpose of bringing nutrients (corpses) into

the nest to feed the workers, the queen and the brood. Therefore, it is important

to measure the efficiency of the collective foraging. We argue that the

transportation rate of the corpses into the nest is a good metric for this efficiency,

significant for the ecological and evolutionary interpretation of this natural system

of task partitioning and decentralized coordination. However, such a measure has

to consider the colony size, as well. Larger colonies have more hunters and

transporters to collect food. It is also important to describe such collective systems
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by their per capita efficiency, as often synergetic effects and beneficial or

detrimental effects relate to colony size are mentioned as ultimate reasons for the

emergence of such collective behaviors [13, 31, 3, 59]. Thus, we define the

efficiency of the process g(t) for every time step t of the process by our model

equation 14:

g(t)~
lTransport:V(t):(1{W(t)):T(t)

nColony
ð14Þ

To express the total efficiency over time and with various colony sizes, we also

used an accumulated fitness measure H(t), which summarizes the values of g(t)
over all time steps.

H(t)~
Xt

i~0
g(i), (15).whereby H(tmax) expresses the final cumulative

efficiency per worker for a full simulation run.

Results and Discussion

1. General patterns of collective behavior predicted by our model

Before we analyze our model in detail we want to compare the predicted results of

our model with empirical data reported in literature. Schatz el al. [37] and

Theraulaz et al. [38] presented a series of experiments in which the authors

measured the number of transporters and stingers as well as the number of prey

animals and prey corpses. These variables were measured as a function of colony

size and as a function of prey population size at the hunting site. They showed

that when a vast amount of prey was provided the colony was unable to process all

prey items and an equilibrium group size emerged for for stingers and

transporters. Such an ‘ad libitum’ condition can be investigated with our model

by assuming biologically more plausible circumstances, in which living prey

animals appear at a steady rate (influx through immigration) at the foraging site.

To imitate such a setup we used the following setting: P(0)50, C(0)50, N(0)50,

S(0)50, T(0)50, U(0)5nColony5500, jPrey~0:25, jCorpses~jNest~0, for other

parameter values we used the standard setting (see Table 1).

Similar to the experimental results of Schatz et al. [37] and Theraulaz et al.

[38], the system converges to stable equilibria of task group sizes (Fig. 4 left), food

stocks (Fig. 4 middle) and saturation levels of the common stomachs (Fig. 4

right).

In a different setting, Theraulaz et al. [38] showed that when the authors

supplied only a small number of prey to a colony without any steady influx/

immigration of prey, the colony reacted with a quick peak of foraging activity.

Soon after that the environment was depleted from prey and this in turn led to a

cessation of foraging activities. Our model predicts similar collective behaviors

(Fig. 5) when parameterized with P(0)580, C(0)50, N(0)50, S(0)50, T(0)50,

U(0)5nColony5130 ants, jPrey~jCorpses~jNest~0 prey/min, other parameters were

set as it is shown in Table 1. In case of such a small colony size and artificial prey
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influx it is unclear how the nest saturation can affect the foraging at short

timescales. Thus, we practically eliminated these nest-saturation effects from our

runs by setting KNest52 and lConsume~0.

Our modeled colony reacts qualitatively similar to the experimental data of

Theraulaz et al., [38], but in a slower pace. This is due to the fact that we used the

values reported by Theraulaz et al. [38] for the parameters a, b, and l-parameters

although we multiply these rates additionally with the saturation levels of one or

several common stomachs (0ƒY(t),V(t),W(t)ƒ1), thus our model in fact uses

lower recruitment, abandonment and food processing rates what slows down the

overall system. The predicted responses could easily be made faster by setting the

values of a, b, and to higher values, but for these experiments shown here we

wanted to retain the parameter values that are estimated in Theraulaz et al. [38].

In a different study Schatz et al. [27], a colony of 240 ants was confronted with

two different experimental series to investigate whether the ant colony considers

the total prey number or the prey density in its hunting recruitment strategy. In

the first experimental series, the initial number of prey items (P(0)5400 prey) was

distributed in hunting areas of different sizes. This way hunting areas with 5

different prey densities were generated in a range from 1.5 prey/cm2 to 7.9 prey/

cm2. The authors reported that the colony responded to this pattern by recruiting

different numbers of stingers: The higher the prey density was, the more stingers

were recruited. In the same study, Schatz et al. [27] performed also a second

experimental series in which they varied the number of introduced prey items

from 80 ants to 400 ants and also adjusted the size of the hunting area in parallel

in order to keep the spatial prey density constant at 1.51 prey/cm2. As a result of

these experiments the authors reported that the number of recruited stingers did

not change with the increasing number of prey, but with increasing prey density.

One of the important objectives of our model (objective 2) was to test if a

‘‘common stomach’’-based model would provide comparable prediction to data

reported by Schatz et al. [27]. Thus we ran our model with the same densities and

numbers of prey as it is described by Schatz et al. [27]. We report the maximum

peak of stingers in each setting, because such experimental settings can produce a

pulsed response of the colony (Fig. 5). Our model predicted a very similar picture

compared to the findings of Schatz et al. [27]: The number of ants engaged in

stinging and transporting is significantly modulated by prey density, but it did not

change significantly with varying number of initial prey number (Fig. 6.).

In order to further validate the parameters of our model, we compared our

model predictions to another set of empirical data [60]. To perform this analysis,

we initialized our model without initial stingers and transporters (S(0)5T(0)50

ants), no prey and corpse influx (jPrey~jCorpses~0 prey items/min), no initial prey

items P(0)50 prey items) and with 100 corpses in the environment (C(0)5100

prey items). The colony size was set to nColony5120 ants and all other parameters

were set to their basic value (Table 1). The model, similar to the findings of Pratt

[60], predicts an increase of transporters in the system approaching 10 transporter

ants after 30 minutes of runtime (Fig. 7). It noteworthy that this set of empirical
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data was neither used for building our model, nor was it used for comparison/

validation of the previously published model by Theraulaz et al. [38].

2. Analysis and discussion of the model

In our parameter sweeps (S1 Text) we identified two parameters, nColony and

AArena, that were most significantly affecting the model’s predicted dynamics of

our key system variables S, T, U, P, C, and N (Table 2). To analyze how

significantly these two key parameters affect the efficiency of our modeled ant

colony, we varied these two parameters at 3 different levels of prey influx (jPrey in

{0.25, 1.00, 2.00} prey/min). The model predicts an optimal colony size for

different levels of prey influx. This sweet-spot shifts towards larger sized colonies

as the prey influx to the hunting site increases (Fig. 8). After some transient

period and without disturbance and with steady prey influx, the value of g(t) is

converging to an equilibrium value, which we read at tmax as g(tmax). Colony size is

affecting this efficiency measure at three points in our modeled systems: (1) Larger

colonies can have more stingers and transporters, thus they can kill and collect

more prey item per time unit. (2) Larger colonies have more nest workers, thus

the nest can handle more corpses per time unit and saturates only with higher

numbers of corpses in the nest. (3) These two positive effects of larger colony sizes

can be cancelled out by the fact that we calculate the efficiency per worker, as

every worker represents also costs for the colony. Thus, the efficiency of the

colony as it is expressed by g(tmax) will only increase if prey density increases also

proportionally, so that workers always will be able to find enough prey to sting

and enough corpses to transport. In conclusion, the observable peak values of

g(tmax) at a specific value of nColony (Fig. 8) represent the payoff points of these

above-mentioned antagonistic factors at a given level of prey influx.

On the other hand, an increase of AArena shows a negative correlation with the

colony-level efficiency g(tmax), see Fig. 9). A stronger influx of prey allows the

colony to increase its predicted colony-level efficiency, indicating that rich

environmental prey supply can be efficiently exploited by the colony.

3. Perturbation experiments

Performing perturbation experiments with our modeled system makes it possible

to test the robustness of the system and to generate novel testable hypotheses that

can be tested in future field or lab experiments. To construct such testable

hypotheses with our model, we increased or decreased the influx of materials that

flow into different common stomachs in the form of a sudden perturbation that

lasts for a given period of time. Such perturbations can be performed in empirical

experiments by simply adding or removing prey animals or corpses to/from

different locations (hunting site or nest). In each case the model was run until its

system variables stabilized and then one system component after the other was

perturbed suddenly. In a natural system the adaptation to such sudden changes

requires some time to process, therefore perturbation were not applied as one
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short instant only. Instead, the perturbed parameter was kept on its perturbed

value throughout 500 min. For example, after the system stabilized at time step

tmax5500 min we increased the prey influx from its standard value (jPrey(t)50.25

prey/min) with a constant additional influx by increasing jPrey(t) to 0.45 prey/min

for 500 min, then the perturbed parameter was set back to its standard value. After

this, the system stabilized again and a similar experiment was carried out. This

time the prey influx was decreased at time step 2500 min with a constant value for

a period of 500 min and then this perturbed parameter was again set back to its

standard value.

These perturbation experiments show that our proposed model reacts in a very

stable and robust way to such perturbations. This demonstrates that our first

Fig. 4. Equilibria of worker group sizes (left), food stocks (middle) and common stomach saturation levels (right) that emerge when the model is
parameterized with a steady prey influx. For more details, see text. Left figure: Solid line: S, dashed line: U; dotted line: T. Middle figure: Solid line: P,
dashed line: C; dotted line: N. Right figure: Solid line: Y, dashed line: V; dotted line: W.

doi:10.1371/journal.pone.0114611.g004

Fig. 5. The predicted colony reactions to a small number of prey (P(0)580) provided at the start of the experiment without further prey influx leads
to a pulsed response of the colony. Our model predictions show a striking similarity to empirical data of a comparable experiment described in Theraulaz
et al. [38] and Schatz et al. [37]. Left figure: Solid line: S, dashed line: U; dotted line: T. Middle figure: Solid line: P, dashed line: C; dotted line: N. Right figure:
Solid line: Y, dashed line: V; dotted line: W.

doi:10.1371/journal.pone.0114611.g005
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objective, the principle of robust processes, is met by our model. The collective

system is reactive, because changing these variables results in a new equilibrium

and our key system variables change at a lower extent than the changes we did

induce before on the perturbation parameter. The system is also resilient, as we

found that the system variables converge back to their original equilibria after the

end of the perturbation periods. The modeled system shows a reasonable degree of

change, it neither jumps to high values nor does it obtain negative or inplausible

values. The model does not scale linearly to the increase of a given parameter,

because strong shifts in the perturbation parameters result in under-proportional

reactions of system variables compared to weak shifts. These results also indicate

that the model is robust and that the system is strongly governed by negative

feedback mechanisms.

Increasing the prey influx results in strong increases in prey and corpses at the

hunting site and in the nest. Decreasing the prey influx mirror these effects

(Fig. 10). A perturbation which is induced by changing the influx of corpses

shows a weak effect on the stingers and on the saturation of prey densities.

Furthermore it has a prominent effect on the number of transporters and on the

number of corpses in the field and in the nest. However, such perturbations affect

the efficiency of the colony in a significant way. Perturbing the colony by changing

Fig. 6. Predicted response of the ant colony to a varying density of prey items with constant total prey number (left figure) and to a varying
number of prey items at a constant prey density (right figure). In both cases we measured the maximum number of stingers (solid line) and of
transporters (broken lines). In both cases we used the default parameters listed in Table 1, except nColony5240, tmax5120. The varied parameter is indicated
on the x-axis of both figures. Left figure: P(0)5400; right figure: P(0) is varied between 80 and 380 prey items across the runs.

doi:10.1371/journal.pone.0114611.g006
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the influx of corpses into the nest has the weakest effect on system variables in

general, except on the saturation of the nest with corpses.

Manipulating the saturation of the nest with corpses (last two perturbations) is

predicted to trigger a more complex reaction by the colony (Fig. 10). As a first

response to a sudden increase in the nest’s saturation with corpses, the commons

stomach of corpses in the nest (W(t)) fills up and in consequence the number of

transporters decreases, because the corpse-saturated nest makes it harder for

transporters to deliver their load. Thus recruitment of new transporters decreases

and abandonment of transporters increases (see equation 2). The lowered number

of transporters causes the corpses to accumulate at the hunting site, therefore

V(t)increases. In turn, the number of stingers decreases, because they are recruited

less effectively to this task and abandon more often from this task (see equation

1). As a final result of these cascading effects, the efficiency of the perturbed

colony (g(t)) decreases, because this metric considers only those corpses that are

actively delivered to the nest by the ants and neglects physical manipulation of the

nest stocks.

Fig. 7. Predicted increase of the number of transporter ants of our model (solid line) to the data given
by an empirical study (dots: data redrawn from Pratt [60]. Our model and the empirical study show an
increase from 0 to approx. 10–12 ants over 30 minutes of the experimental run.

doi:10.1371/journal.pone.0114611.g007

Corpse Availability Regulates Task Allocation in Ants

PLOS ONE | DOI:10.1371/journal.pone.0114611 December 10, 2014 20 / 33



After several hundreds of minutes the colony consumed the excess corpses that

were stocked in the nest as a consequence of the perturbation. At this point of

time, the numbers of transporters and stingers are lower than normal and many

corpses and prey have accumulated at the hunting site. Thus, as soon as the nest is

not saturated with copses anymore, the recruitment for hunting and stinging tasks

increased in the second half of the perturbation pulses and several system variables

changed drastically: The recruitment of stingers and transporters dropped in the

first phase of the perturbations. In contrast to that, the colony recruits more

stingers and more transporters than normal (Fig. 10) during the second phase of

the perturbation phase. Decreasing the corpse saturation of the nest provokes a

similar reaction compared to the one we described above, but with a contrasting

trend: At first an increase of the number of stingers and transporters can be

observed and then, after a saturation of the nest is achieved, the system swings

back in the opposite direction. The complexity of these responses is produced by

the fact that linked common-stomach subsystems act together in a causal network,

and various time delays, e.g., accumulation of corpses at various places, affect the

system’s responses in parallel.

Table 2. Parameter sweeps of model parameters.

Parameter System variable

S T U P C N
Impact of
parameter

aStingers + + 5 2 2 2 2 2 + + 5 9

bStingers 2 2 2 + + + + 2 2 2 2 11

aTransporters 2 +++ 2 2 2 + + 2 2 2 5 12

bTransporters + 2 2 + + 2 + + 2 9

nColony + + + +++ 2 2 , , + + 16

KPrey , , + + +++ 2 2 2 2 15

KCorpses + 2 2 + + 2 +++ 2 2 11

KNest 2 + + 2 2 + 2 2 + + 10

jPr ey + + + + 2 2 2 + + +++ + 13

jCorpses 2 + 2 5 + + 5

jNest 5 2 + 5 + + + + 6

lKill 2 2 2 + + , 2 2 2 + + + + 15

lTransport + 2 2 2 +++ 2 2 2 2 + + 13

lConsume 5 + + 2 2 + 2 2 2 2 - 10

AArena 2 , , +++ , , 2 2 18

Sensitivity of variable 20 29 34 25 41 24

Summary of the reaction of the core system variables to changes of selected model parameters. Symbols: ‘‘,’’: complex reaction without change of the type
of correlation, ‘‘, ,’’: complex reaction exhibiting multiple types of correlations (positive and negative), ‘‘+’’: increase, ‘‘+ +’’: significant increase (up to 50%
of maximum variable range), ‘‘+++’’: very strong increase (50% to 100% variable range), ‘‘2‘‘: decrease, ‘‘2 2‘‘: significant decrease (up to 50% of maximum
variable range), 2 2 2: very strong decrease (50% to 100% variable range), ‘‘5’’: no considerable change. The column ‘‘impact’’ indicates how sensitive the
model reacts to changes of each parameter and the row ‘‘sensitivity of variable’’ indicates how strongly each given state variable was affected in total by
these parameter changes. Values for these measures are calculated as sum of signs (except ‘‘5’’ that counts as zero and ‘‘,’’ to be equivalent to 3
indicating a complex reaction).

doi:10.1371/journal.pone.0114611.t002
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In short, the system reacts in a very adaptive manner to the tested

perturbations. System variables that are directly affected by the performed

perturbations change rather strongly while other system variables, which are only

indirectly affected by the perturbation of influxes, are effected in a weaker and in a

more delayed manner. In conclusion, our model predicts that the experimental

perturbations of influxes are propagating through the whole system and can be

detected by worker ants at many places and in various interactions. The model

further predicts that these disturbances also significantly affect the efficiency of the

overall system.

Using an extensive sensitivity analysis of the model (S2 Text) we also concluded

that the combination of different values of the paremeters will not create non

plausible results and the model remains robust.

4. Optimization runs

In order to identify an optimal colony size for a given prey influx we performed

the following analysis: We kept all parameters at their default values (Table 1)

except jPrey(t), which was varied within jPrey(t) in {0.25, 0.5, 1.0, 2.0} prey/min.

This parameter represents the influx of living prey into the hunting area, thus it is

an external parameter of the ant system. We used an optimization algorithm

(Powell algorithm) built into Vensim [51] to maximize the cumulative efficiency

metric H(t) by changing the colony size (nColony) of the ant colony. This way the

optimization algorithm finds the optimal colony size for the given prey influx by

searching a colony size that yields the maximum colony efficiency (Table 3). In

this analysis we used H(tmax) as cost function. This was considered to be the better

choice for an efficiency metric for this analysis here, because we carried out no

perturbations in the optimization runs, given that such treatments would have

biased the dynamics of H(tmax) due to its cumulative nature and the perturbations

would also have masked the investigated focal effects. In addition to that, the

cumulative nutrient income is more important than just the final one at t5tmax

for predicting survival chances of colonies. The results of this optimization

analysis show that doubling the influx rate of prey shifts the sweet spot of colony

size in a linear manner: Every doubling of the influx rate yields an optimal

efficiency at an approximately doubled colony size.

Another free parameter of the model is the consumption rate of corpses in the

nest (lConsume), which reflects the ‘‘hunger status’’ of the colony. In nature this

parameter is mainly influenced by several internal and external factors (season,

weather, brood status, queen activity, colony size) which are mostly not part of

our model. However, our model considers the colony size, which is a significant

contribution to the food consumption in the colony. Thus we performed another

optimization experiment by keeping the prey influx constant at a high rate of

jPrey(t)51.0 prey/min and by varying the consumption rate of corpses in the nest

lConsume(t) in {0.01, 0.02, 0.04, 0.08} min21. Similar to the previous experiment

(Table 3), the model predicts the shifts of the sweet spot concerning the optimal

colony size in an almost linear manner (Table 4). Doubling of the nest
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consumption rate (per worker) results in a shift of optimal colony size by

approximately 250% of its previous value. This indicates that higher consump-

tion rates predict smaller colonies to work more efficiently (per worker) than

larger colonies.

5. Further discussion and conclusions

The collective foraging of Ectatomma ruidum is a clear example of a system that

shows a distributed form of self-regulation. It is the availability (density) of prey

and corpses that regulates the foraging activities for these very same items. The

fluxes of prey and corpses also regulate the task partitioning associated with

hunting behavior of these ants [60, 27]. This is very different from other

mechanisms of self-regulation of collective foraging in social insects, such as the

pheromone trails used in food site selection in many ant species [61, 62] or the

waggle dances used for nectar source selection in honeybees [4, 6]. The dynamics,

diversity, efficiency and robustness of such collective foraging decisions have been

studied by mathematical modeling for ants [63, 64] and honeybees

[45, 65, 66, 67, 68, 69, 70]. In some studies, also the importance of the underlying

social structure, age-structure and size of the colony was studied [69, 71]. In all of

these natural systems of collective decision making and self-regulation, a separate

communication channel (pheromones, dances) is used to regulate the behavior of

Fig. 8. Relationship between colony size nColony and colony-level efficiency g(tmax) in three different

prey influx jPrey (t). These results indicate the existence of an optimal colony size for a given prey influx rate,
showing that richer prey influx allows larger colonies to operate at their optimal level.

doi:10.1371/journal.pone.0114611.g008
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foragers, what can make the system vulnerable to wrong or out-dated

information. To prevent this, workers frequently re-evaluate the communicated

information by costly and repeated re-visits of the food source.

Ectatomma ruidum is using a simpler, but still flexible, reliable and very robust

way to regulate hunting behavior. The inflow of nutrients is regulating itself

through task partitioning performed by workers which are involved in the

collective hunting. No additional communication channel is required, thus also

no synchronization between multiple communication channels and no re-

evaluations are necessary. We call such systems, in which a material is regulating

its own foraging to be a ‘‘common stomach’’ [29, 42, 31, 32, 72]. Sometimes such

systems are also called ‘‘social crop’’, for example in the context of trophallactic

food exchange in honeybees [44, 43]. Such substance-driven self-regulation of

division of labor and task-partitioning was studied in several mathematical

models in honeybees [73, 74, 75] and in wasps [29, 42, 31, 32, 72, 76], leading also

to bio-inspired applications of comparable self-regulation mechanisms [77, 78]. In

honeybees, the model of Johnson [79, 80] investigated how random walks and

task abandonment can regulate task allocation in a demand-driven way for

honeybees, while the models of Tofts [81] and of Franks and Tofts [82] explore

the interplay of (random) worker locomotion and task recruitment in ants.

Fig. 9. Relationship between the size of the hunting site AArena and the colony-level efficiency g(t max) in
three different prey influx jPrey (t) conditions. The results indicate that larger hunting sites have a lower
prey density at a given prey influx level, what makes hunting and transportation less efficient, what in turn
negatively affects the colony-level efficiency metric.

doi:10.1371/journal.pone.0114611.g009
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Task allocation is not only studied in mathematical models, but also in bio-

inspired robotic models. For example, a swarm of autonomous robots that

randomly pick up non-moving items in the environment and that communicate

indirectly through the resulting changes in the environmental availability of these

‘‘prey items’’ was demonstrated and analyzed by Labella et al. [83]. To our

knowledge, this was the first demonstration of an engineered system that is self-

regulating its own task-allocation and activity of workers (robots) through a

common-stomach like system, similar to the system we analyzed here in

Ectatomma ruidum collective foraging and transportation.

When we designed the model, we identified four principles as guidelines to

design the model’s structure along. The first principle is about robust processes.

Any flow of material, any process of conversion of material as well as any

recruitment and abandonment process will run with a specific rate. This rate

depends on the availability of material or workers at the source, on the transport

or conversion speed and also on the already achieved saturation at the target. No

matter to which values these rates are set, some boundaries in the predicted

model’s behavior should be met: (1) It shall never happen that more material is

converted or transported than is available at the source. (2) It shall never happen

that more target material is produced than fits the target site or compartment. (3),

Finally, material and workers shall never get lost throughout the process or enter

it, except in a well defined (modeled) way through a sink or through a source. In

short, this means that whatever the value of a rate is, the model shall never achieve

negative stocks or other impossible states. For all rates and parameters this holds

for our model specifically between the natural boundaries of the values 0 and 1,

which mean ‘‘nothing is converted’’ and ‘‘everything is converted’’. As long as our

model is parameterized within these natural boundaries, all predicted dynamics

obey the principle of robust processes, as was shown in extensive parameter

analyses (Figs. 3–10, S1 Text, S2 Text), while it does not hold for the previously

published model [38] of the foraging of Ectatomma ruidum (S2 Text).

The second principle emphasized the role of shared substances as a

communication channel for the homeostatic regulation of the system. The local

availability of the shared substances are expressed by the saturation level of three

common stomachs Y(t), V(t), W(t), which in fact regulate all important

conversion processes: prey to corpses, undecided ants to stingers and vice versa,

undecided ants to transporters and vice versa. Transportation of corpses to the

nest is also regulated in a similar way. All of these regulation processes are

modeled on the assumption that either randomly moving ants meet prey or

corpse items or they are based on defined time delays concerning the time how

long workers stay in the task they are currently engaged in. Both principles can be

easily described and modeled as localized individual events, without requiring any

global communication and overview of the overall system, thus the principle of

localized interactions is met throughout our model design. Finally, we required

that the model’s design as well as its prediction respect the principle of natural

assumptions. To adhere to this principle we checked all parameter values for their

biological plausibility and reflected all known parameters (like dimensions of the
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Fig. 10. Time plots of our model’s system variables (S, T, W, V, Y, g) in simulations were the colony was exposed to a specific regime of
perturbations in the supply of prey and corpses. Perturbations: P+: Prey influx increased (500 min 21000 min); P-: prey influx decreased (2500 min
23000 min); C+: influx of corpses increased (4500 min 25000 min); C-: corpse influx decreased (6500 min 27000 min); N+: influx of corpses in the nest
increased (8500 min 29000 min) and N-: influx of corpses in the nest decreased (10500 min 211000 min). The baseline (horizontal line) shows a
simulation run made with our standard parameters (see Table 1). Lines above this baseline represent runs with increased values (adding +0.02, +0.04, …,
+0.2 to the standard fluxes). Lines below the standard line represent similar simulation runs, except that the influxes were decreased at the same extent as
they were increased previously.

doi:10.1371/journal.pone.0114611.g010
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foraging site or transportation rates) that we found in literature. Not a single

parameter of our model was introduced just to fit or normalize a curve, all

parameters are biologically plausible and well measurable in the real system.

Besides our 4 model design objectives, which we stated in detail in section called

Model design principles, our model approach followed also the design principles

suggested by Gilpin and Ayala [41]: (1) Simplicity: From all different possible

model configuration, we have chosen a straight-forward model structure based on

minimalistic mechanistic assumptions on the ants and the environment. We

assumed no memory or any other form of higher cognitive functionality of the

modeled ants as well as simple random-walk motion and mass action laws (2)

Reality: We laid strong emphasize on assuming natural parameter values in the

parametrization of our model. (3) Generality: Our extensive parameters sweeps

and sensitivity analysis show that our model works with a wide range of parameter

value combinations without predicting inplausible results. (4) Accuracy: Our

predicted system behavior was extensively compared to empirical studies

including some that were not used to construct or parametrize our model.

When we compared our model’s stability to the model of Theraulaz et al. [38],

we found our model to be more robust. The authors of this previous model had a

very specific goal in mind, namely to mimic the empirical experiments which they

performed on colonies of Ectatomma ruidum and their model fulfilled this goal

very well. Their model was not made to handle any sort of external perturbations,

therefore we did not implement such perturbations in the sensitivity runs which

we performed with the Theraulaz et al. [38]. The results show that even small

deviations of their model’s parameters often cause unrealistic predictions. For

example, many runs predict negative numbers for prey and corpse items (S2

Text). Our analyses indicate that more than 50% of all tested parameter

combinations lead to unplausible negative values for important system variables

(S2 Text). In this anaysis all sampled parameters were in the same plausible value

range which we used in our model before (S2 Text). Our model did not show a

single run exhibiting such an unplausible system behavior fulfilling our objective 1

(‘‘principle of robust processes’’) and objective 4 (‘‘principle of natural

assumptions’’). This indicates that the structure of the Theraulaz et al. [38] model

is simple enough to mimic their empirical results, but it seems to be too

oversimplified for performing extensive (or exhaustive) evaluation of the hunting

system of Ectatomma ruidum. Thus, in its published form, it does not look

suitable for providing new predictions that are beyond the scope of their specific

goal.

The way how our model is formulated offers several possible extensions of the

model, which would allow to investigate the impact of the common stomach

regulation on ecological relevant time scales and on intra-colonial population

dynamics:

1) Brood production: In times when more corpses are delivered into the colony

more brood can be produced by the workers and by the queen. In

consequence, this higher number of brood consumes the collected corpses
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faster, what in turn potentially will lead to a self-regulation of brood and

corpses in the nest.

2) Colony growth: Successfully raised brood will hatch into new workers and

these workers will in turn affect brood production and collective hunting

capabilities. However, colony growth is also affected by the average prey influx

to the hunting zone, therefore an interesting interplay between new positive

and the negative feedback loops can be expected for such a model extension.

3) Reproduction of prey: In our current model the influx of prey assumes only

(linear) immigration of prey from other habitats, because there is no positive

feedback loop of growth modeled for the prey population. Such an

implementation of prey reproduction would also decrease the models

sensitivity to nColony and AArena, as prey would ‘‘automatically’’ converge

towards an equilibrium density of prey that is regulated by the ant colony as

their major predator.

We have to point out however, that all of these extensions would require the

model to operate on a different time scales, having Dt~1 day and runing

simulations for several weeks or months.

Our model is an example of a natural decentralized system that is able to self-

regulate in a robust and flexible way. Despite these significant aspects, the

mechanisms to establish such a system are rather simple, thus, they are assumed to

be easily implementable also in distributed engineered systems, like swarm

robotics (see for example [83, 77, 78]. Thus, understanding the functioning of

such biological model systems does not only enhance biological knowledge by

Table 3. Predicted optimal colony size as the function of the prey influx rate.

Optimization run: 1 2 3 4

Influx of prey: jPrey(t)50.25 prey/min jPrey(t)50.5 prey/min jPrey(t)51.0 prey/min jPrey(t)52.0 prey/min

Max. payoff found at: nColony
*593 ants nColony

*5182 ants nColony
*5360 ants nColony

*5702 ants

The final payoff predicted: H(tmax)52453.5 transported
corpse per worker ant

H(tmax)53037.6 transported
corpse per worker ant

H(tmax)53495.9 transported
corpse per worker ant

H(tmax)53834.8 transported
corpse per worker ant

The variable nColony
* indicates the optimal value of nColony for a given value of jPrey, which was identified by a Powell optimization algorithm [51] for yielding

the highest predicted value of H(tmax).

doi:10.1371/journal.pone.0114611.t003

Table 4. Predicted optimal colony size as the function of the consumption rate.

Optimization run: 5 6 7 8

Consumption rate: lConsume50.01?min21 lConsume50.02?min21 lConsume50.04?min21 lConsume50.08?min21

Max. payoff found at: nColony
*5360 ants nColony

*5191 ants nColony
*599 ants nColony

*551 ants

The final payoff predicted: H(tmax)53495.9 transported
corpses per worker.

H(tmax)56254.1 transported
corpses per worker.

H(tmax)511013.1 transported
corpses per worker.

H(tmax)518892.9 transported
corpses per worker.

The variable nColony
* indicates the optimal value of nColony for a given value of lConsume, which was identified by a Powell optimization algorithm [51] for

yielding the highest predicted value of H(tmax).

doi:10.1371/journal.pone.0114611.t004
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allowing novel interpretations in ecology and evolution of social insects, it may

also enhance the development of bio-inspired engineered systems, like it was

shown for optimization algorithms [84, 85], communication networks [86] and

collective robotics [87, 88].

Supporting Information

S1 Figure. Results of parameter sweeps of all model parameters. The graphs

display the final equilibrium values at tmax5500 min for the three task groups (T,

U, S). In each graph, only the indicated parameter was varied, all other parameter

values are kept on their default values (Table 1). Solid line: S(tmax), dashed line:

U(tmax); dotted line: T(tmax).

doi:10.1371/journal.pone.0114611.s001 (EPS)

S2 Figure. Results of parameter sweeps of all constant model parameters. This

graph displays the final equilibrium values at tmax5500 min for the three food-

associated system variables (P, C, N). In each graph, only the indicated parameter

was varied, all other parameter values are kept on their default values (Table 1).

Solid line: P(tmax), dashed line: C(tmax); dotted line: N(tmax).

doi:10.1371/journal.pone.0114611.s002 (EPS)

S3 Figure. Sensitivity analysis of our model of the collective foraging of

Ectatomma ruidum. The same perturbations were performed as they shown in

Fig. 10. In addition to that we varied our model’s key parameters (all K, a, b± and

l values) in a random uniform manner within the range of ¡50% around their

default values (Table 1) using a Latin Hypercube sampling method. The black

region contains the predictions of 33% of all 1000 simulation runs. The dark gray

region contains 66%, the medium gray region contains 95% and the light gray

regions contains all predictions.

doi:10.1371/journal.pone.0114611.s003 (TIF)

S4 Figure. Sensitivity analysis of the original model of Theraulaz et al. [38] on

the collective foraging of Ectatomma ruidum. We varied the model’s key

parameters (recruitment rates, abandonment rates, stinging success rate and

transportation rates) in a random uniform manner within the range of ¡50%

around their default values using a Latin Hypercube sampling method. The black

region contains the predictions of 33% of all 1000 simulation runs. The dark gray

region contains 66%, the medium gray region contains 95% and the light gray

regions contains all predictions.

doi:10.1371/journal.pone.0114611.s004 (TIF)

S1 Text. Single parameter sweeps.

doi:10.1371/journal.pone.0114611.s005 (DOCX)

S2 Text. Sensitivity analysis.

doi:10.1371/journal.pone.0114611.s006 (DOCX)
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