14 research outputs found

    Graph isomorphism completeness for trapezoid graphs

    Full text link
    The complexity of the graph isomorphism problem for trapezoid graphs has been open over a decade. This paper shows that the problem is GI-complete. More precisely, we show that the graph isomorphism problem is GI-complete for comparability graphs of partially ordered sets with interval dimension 2 and height 3. In contrast, the problem is known to be solvable in polynomial time for comparability graphs of partially ordered sets with interval dimension at most 2 and height at most 2.Comment: 4 pages, 3 Postscript figure

    On the intersection of tolerance and cocomparability graphs.

    Get PDF
    Tolerance graphs have been extensively studied since their introduction, due to their interesting structure and their numerous applications, as they generalize both interval and permutation graphs in a natural way. It has been conjectured by Golumbic, Monma, and Trotter in 1984 that the intersection of tolerance and cocomparability graphs coincides with bounded tolerance graphs. Since cocomparability graphs can be efficiently recognized, a positive answer to this conjecture in the general case would enable us to efficiently distinguish between tolerance and bounded tolerance graphs, although it is NP-complete to recognize each of these classes of graphs separately. This longstanding conjecture has been proved under some – rather strong – structural assumptions on the input graph; in particular, it has been proved for complements of trees, and later extended to complements of bipartite graphs, and these are the only known results so far. Furthermore, it is known that the intersection of tolerance and cocomparability graphs is contained in the class of trapezoid graphs. Our main result in this article is that the above conjecture is true for every graph G that admits a tolerance representation with exactly one unbounded vertex; note that this assumption concerns only the given tolerance representation R of G, rather than any structural property of G. Moreover, our results imply as a corollary that the conjecture of Golumbic, Monma, and Trotter is true for every graph G = (V,E) that has no three independent vertices a, b, c ∈ V such that N(a) ⊂ N(b) ⊂ N(c), where N(v) denotes the set of neighbors of a vertex v ∈ V ; this is satisfied in particular when G is the complement of a triangle-free graph (which also implies the above-mentioned correctness for complements of bipartite graphs). Our proofs are constructive, in the sense that, given a tolerance representation R of a graph G, we transform R into a bounded tolerance representation R of G. Furthermore, we conjecture that any minimal tolerance graph G that is not a bounded tolerance graph, has a tolerance representation with exactly one unbounded vertex. Our results imply the non-trivial result that, in order to prove the conjecture of Golumbic, Monma, and Trotter, it suffices to prove our conjecture

    An Intersection Model for Multitolerance Graphs: Efficient Algorithms and Hierarchy

    Get PDF
    Tolerance graphs model interval relations in such a way that intervals can tolerate a certain degree of overlap without being in conflict. This class of graphs has attracted many research efforts, mainly due to its interesting structure and its numerous applications, especially in DNA sequence analysis and resource allocation, among others. In one of the most natural generalizations of tolerance graphs, namely multitolerance graphs, two tolerances are allowed for each interval—one from the left and one from the right side of the interval. Then, in its interior part, every interval tolerates the intersection with others by an amount that is a convex combination of its two border-tolerances. In the comparison of DNA sequences between different organisms, the natural interpretation of this model lies on the fact that, in some applications, we may want to treat several parts of the genomic sequences differently. That is, we may want to be more tolerant at some parts of the sequences than at others. These two tolerances for every interval—together with their convex hull—define an infinite number of the so called tolerance-intervals, which make the multitolerance model inconvenient to cope with. In this article we introduce the first non-trivial intersection model for multitolerance graphs, given by objects in the 3-dimensional space called trapezoepipeds. Apart from being important on its own, this new intersection model proves to be a powerful tool for designing efficient algorithms. Given a multitolerance graph with n vertices and m edges along with a multitolerance representation, we present algorithms that compute a minimum coloring and a maximum clique in optimal O(nlogn) time, and a maximum weight independent set in O(m+nlogn) time. Moreover, our results imply an optimal O(nlogn) time algorithm for the maximum weight independent set problem on tolerance graphs, thus closing the complexity gap for this problem. Additionally, by exploiting more the new 3D-intersection model, we completely classify multitolerance graphs in the hierarchy of perfect graphs. The resulting hierarchy of classes of perfect graphs is complete, i.e. all inclusions are strict

    An Intersection Model for Multitolerance Graphs: Efficient Algorithms and Hierarchy

    Get PDF
    Tolerance graphs model interval relations in such a way that intervals can tolerate a certain degree of overlap without being in conflict. This class of graphs has attracted many research efforts, mainly due to its interesting structure and its numerous applications, especially in DNA sequence analysis and resource allocation, among others. In one of the most natural generalizations of tolerance graphs, namely multitolerance graphs, two tolerances are allowed for each interval—one from the left and one from the right side of the interval. Then, in its interior part, every interval tolerates the intersection with others by an amount that is a convex combination of its two border-tolerances. In the comparison of DNA sequences between different organisms, the natural interpretation of this model lies on the fact that, in some applications, we may want to treat several parts of the genomic sequences differently. That is, we may want to be more tolerant at some parts of the sequences than at others. These two tolerances for every interval—together with their convex hull—define an infinite number of the so called tolerance-intervals, which make the multitolerance model inconvenient to cope with. In this article we introduce the first non-trivial intersection model for multitolerance graphs, given by objects in the 3-dimensional space called trapezoepipeds. Apart from being important on its own, this new intersection model proves to be a powerful tool for designing efficient algorithms. Given a multitolerance graph with n vertices and m edges along with a multitolerance representation, we present algorithms that compute a minimum coloring and a maximum clique in optimal O(nlogn) time, and a maximum weight independent set in O(m+nlogn) time. Moreover, our results imply an optimal O(nlogn) time algorithm for the maximum weight independent set problem on tolerance graphs, thus closing the complexity gap for this problem. Additionally, by exploiting more the new 3D-intersection model, we completely classify multitolerance graphs in the hierarchy of perfect graphs. The resulting hierarchy of classes of perfect graphs is complete, i.e. all inclusions are strict

    The recognition of tolerance and bounded tolerance graphs

    Get PDF
    Tolerance graphs model interval relations in such a way that intervals can tolerate a certain degree of overlap without being in conflict. This subclass of perfect graphs has been extensively studied, due to both its interesting structure and its numerous applications. Several efficient algorithms for optimization problems that are NP-hard on general graphs have been designed for tolerance graphs. In spite of this, the recognition of tolerance graphs --~namely, the problem of deciding whether a given graph is a tolerance graph~-- as well as the recognition of their main subclass of bounded tolerance graphs, have been the most fundamental open problems on this class of graphs (cf.~the book on tolerance graphs~\cite{GolTol04}) since their introduction in 1982~\cite{GoMo82}. In this article we prove that both recognition problems are NP-complete, even in the case where the input graph is a trapezoid graph. The presented results are surprising because, on the one hand, most subclasses of perfect graphs admit polynomial recognition algorithms and, on the other hand, bounded tolerance graphs were believed to be efficiently recognizable as they are a natural special case of trapezoid graphs (which can be recognized in polynomial time) and share a very similar structure with them. For our reduction we extend the notion of an \emph{acyclic orientation} of permutation and trapezoid graphs. Our main tool is a new algorithm that uses \emph{vertex splitting} to transform a given trapezoid graph into a permutation graph, while preserving this new acyclic orientation property. This method of vertex splitting is of independent interest; very recently, it has been proved a powerful tool also in the design of efficient recognition algorithms for other classes of graphs~\cite{MC-Trapezoid}

    The recognition of tolerance and bounded tolerance graphs

    Get PDF
    Tolerance graphs model interval relations in such a way that intervals can tolerate a certain degree of overlap without being in conflict. This subclass of perfect graphs has been extensively studied, due to both its interesting structure and its numerous applications (in bioinformatics, constraint-based temporal reasoning, resource allocation, and scheduling problems, among others). Several efficient algorithms for optimization problems that are NP-hard in general graphs have been designed for tolerance graphs. In spite of this, the recognition of tolerance graphs—namely, the problem of deciding whether a given graph is a tolerance graph—as well as the recognition of their main subclass of bounded tolerance graphs, have been the most fundamental open problems on this class of graphs (cf. the book on tolerance graphs [M. C. Golumbic and A. N. Trenk, Tolerance Graphs, Cambridge Stud. Adv. Math. 89, Cambridge University Press, Cambridge, UK, 2004]) since their introduction in 1982 [M. C. Golumbic and C. L. Monma, Proceedings of the 13th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congr. Numer., 35 (1982), pp. 321–331]. In this article we prove that both recognition problems are NP-complete, even in the case where the input graph is a trapezoid graph. The presented results are surprising because, on the one hand, most subclasses of perfect graphs admit polynomial recognition algorithms and, on the other hand, bounded tolerance graphs were believed to be efficiently recognizable as they are a natural special case of trapezoid graphs (which can be recognized in polynomial time) and share a very similar structure with them. For our reduction we extend the notion of an acyclic orientation of permutation and trapezoid graphs. Our main tool is a new algorithm that uses vertex splitting to transform a given trapezoid graph into a permutation graph, while preserving this new acyclic orientation property. This method of vertex splitting is of independent interest; very recently, it was also proved a powerful tool in the design of efficient recognition algorithms for other classes of graphs [G. B. Mertzios and D. G. Corneil, Discrete Appl. Math., 159 (2011), pp. 1131–1147]

    The recognition of tolerance and bounded tolerance graphs

    Get PDF
    Tolerance graphs model interval relations in such a way that intervals can tolerate a certain degree of overlap without being in conflict. This subclass of perfect graphs has been extensively studied, due to both its interesting structure and its numerous applications. Several efficient algorithms for optimization problems that are NP-hard on general graphs have been designed for tolerance graphs. In spite of this, the recognition of tolerance graphs --~namely, the problem of deciding whether a given graph is a tolerance graph~-- as well as the recognition of their main subclass of bounded tolerance graphs, have been the most fundamental open problems on this class of graphs (cf.~the book on tolerance graphs~\cite{GolTol04}) since their introduction in 1982~\cite{GoMo82}. In this article we prove that both recognition problems are NP-complete, even in the case where the input graph is a trapezoid graph. The presented results are surprising because, on the one hand, most subclasses of perfect graphs admit polynomial recognition algorithms and, on the other hand, bounded tolerance graphs were believed to be efficiently recognizable as they are a natural special case of trapezoid graphs (which can be recognized in polynomial time) and share a very similar structure with them. For our reduction we extend the notion of an \emph{acyclic orientation} of permutation and trapezoid graphs. Our main tool is a new algorithm that uses \emph{vertex splitting} to transform a given trapezoid graph into a permutation graph, while preserving this new acyclic orientation property. This method of vertex splitting is of independent interest; very recently, it has been proved a powerful tool also in the design of efficient recognition algorithms for other classes of graphs~\cite{MC-Trapezoid}
    corecore