93 research outputs found

    From buildings to cities: techniques for the multi-scale analysis of urban form and function

    Get PDF
    The built environment is a significant factor in many urban processes, yet direct measures of built form are seldom used in geographical studies. Representation and analysis of urban form and function could provide new insights and improve the evidence base for research. So far progress has been slow due to limited data availability, computational demands, and a lack of methods to integrate built environment data with aggregate geographical analysis. Spatial data and computational improvements are overcoming some of these problems, but there remains a need for techniques to process and aggregate urban form data. Here we develop a Built Environment Model of urban function and dwelling type classifications for Greater London, based on detailed topographic and address-based data (sourced from Ordnance Survey MasterMap). The multi-scale approach allows the Built Environment Model to be viewed at fine-scales for local planning contexts, and at city-wide scales for aggregate geographical analysis, allowing an improved understanding of urban processes. This flexibility is illustrated in the two examples, that of urban function and residential type analysis, where both local-scale urban clustering and city-wide trends in density and agglomeration are shown. While we demonstrate the multi-scale Built Environment Model to be a viable approach, a number of accuracy issues are identified, including the limitations of 2D data, inaccuracies in commercial function data and problems with temporal attribution. These limitations currently restrict the more advanced applications of the Built Environment Model

    Integrated modelling for 3D GIS

    Get PDF
    A three dimensional (3D) model facilitates the study of the real world objects it represents. A geoinformation system (GIS) should exploit the 3D model in a digital form as a basis for answering questions pertaining to aspects of the real world. With respect to the earth sciences, different kinds of objects of reality can be realized. These objects are components of the reality under study. At the present state-of-the-art different realizations are usually situated in separate systems or subsystems. This separation results in redundancy and uncertainty when different components sharing some common aspects are combined. Relationships between different kinds of objects, or between components of an object, cannot be represented adequately. This thesis aims at the integration of those components sharing some common aspects in one 3D model. This integration brings related components together, minimizes redundancy and uncertainty. Since the model should permit not only the representation of known aspects of reality, but also the derivation of information from the existing representation, the design of the model is constrained so as to afford these capabilities. The tessellation of space by the network of simplest geometry, the simplicial network, is proposed as a solution. The known aspects of the reality can be embedded in the simplicial network without degrading their quality. The model provides finite spatial units useful for the representation of objects. Relationships between objects can also be expressed through components of these spatial units which at the same time facilitate various computations and the derivation of information implicitly available in the model. Since the simplicial network is based on concepts in geoinformation science and in mathematics, its design can be generalized for n-dimensions. The networks of different dimension are said to be compatible, which enables the incorporation of a simplicial network of a lower dimension into another simplicial network of a higher dimension.The complexity of the 3D model fulfilling the requirements listed calls for a suitable construction method. The thesis presents a simple way to construct the model. The raster technique is used for the formation of the simplicial network embedding the representation of the known aspects of reality as constraints. The prototype implementation in a software package, ISNAP, demonstrates the simplicial network's construction and use. The simplicial network can facilitate spatial and non spatial queries, computations, and 2D and 3D visualizations. The experimental tests using different kinds of data sets show that the simplicial network can be used to represent real world objects in different dimensionalities. Operations traditionally requiring different systems and spatial models can be carried out in one system using one model as a basis. This possibility makes the GIS more powerful and easy to use

    Space Subdivision For Indoor Navigation: A Systematic Literature Review

    Get PDF
    Along with the increasing demand for indoor navigation, many attempts were made to improve indoor navigation performance. Information about the room becomes important, because one of the characteristics of indoor navigation is the dynamic indoor conditions. Space subdivision is an effort made to make indoor navigation even more accurate. The purpose of this study is to create a systematic literature review (SLR) regarding the topic of space subdivision for indoor navigation which is based on a SLR method, previously defined research question. This study examines several previous works specifically in the field of space subdivision for indoor navigation with the SLR. This research is expected to be the basis for further research to improve the quality of indoor navigation based on space subdivision

    Snakes for adapting GIS road and river objects to airborne laser scanning data

    Get PDF
    [no abstract

    Building extraction from airborne laser scanning data : an analysis of the state of the art

    Get PDF
    This article provides an overview of building extraction approaches applied to Airborne Laser Scanning (ALS) data by examining elements used in original publications, such as data set area, accuracy measures, reference data for accuracy assessment, and the use of auxiliary data. We succinctly analyzed the most cited publication for each year between 1998 and 2014, resulting in 54 ISI-indexed articles and 14 non-ISI indexed publications. Based on this, we position some built-in features of ALS to create a comprehensive picture of the state of the art and the progress through the years. Our analyses revealed trends and remaining challenges that impact the community. The results show remaining deficiencies, such as inconsistent accuracy assessment measures, limitations of independent reference data sources for accuracy assessment, relatively few documented applications of the methods to wide area data sets, and the lack of transferability studies and measures. Finally, we predict some future trends and identify some gaps which existing approaches may not exhaustively cover. Despite these deficiencies, this comprehensive literature analysis demonstrates that ALS data is certainly a valuable source of spatial information for building extraction. When taking into account the short civilian history of ALS one can conclude that ALS has become well established in the scientific community and seems to become indispensable in many application fields.(VLID)174964

    Digital photogrammetry for visualisation in architecture and archaeology

    Get PDF
    Bibliography: leaves 117-125.The task of recording our physical heritage is of significant importance: our past cannot be divorced from the present and it plays an integral part in the shaping of our future. This applies not only to structures that are hundreds of years old, but relatively more recent architectural structures also require adequate documentation if they are to be preserved for future generations. In recording such structures, the traditional 2D methods are proving inadequate. It will be beneficial to conservationists, archaeologists, researchers, historians and students alike if accurate and extensive digital 3D models of archaeological structures can be generated. This thesis investigates a method of creating such models, using digital photogrammetry. Three different types of model were generated: 1. the simple CAD (Computer Aided Design) model; 2. an amalgamation of 3D line drawings; and 3. an accurate surface model of the building using DSMs (Digital Surface Models) and orthophotos

    Methodology and Algorithms for Pedestrian Network Construction

    Get PDF
    With the advanced capabilities of mobile devices and the success of car navigation systems, interest in pedestrian navigation systems is on the rise. A critical component of any navigation system is a map database which represents a network (e.g., road networks in car navigation systems) and supports key functionality such as map display, geocoding, and routing. Road networks, mainly due to the popularity of car navigation systems, are well defined and publicly available. However, in pedestrian navigation systems, as well as other applications including urban planning and physical activities studies, road networks do not adequately represent the paths that pedestrians usually travel. Currently, there are no techniques to automatically construct pedestrian networks, impeding research and development of applications requiring pedestrian data. This coupled with the increased demand for pedestrian networks is the prime motivation for this dissertation which is focused on development of a methodology and algorithms that can construct pedestrian networks automatically. A methodology, which involves three independent approaches, network buffering (using existing road networks), collaborative mapping (using GPS traces collected by volunteers), and image processing (using high-resolution satellite and laser imageries) was developed. Experiments were conducted to evaluate the pedestrian networks constructed by these approaches with a pedestrian network baseline as a ground truth. The results of the experiments indicate that these three approaches, while differing in complexity and outcome, are viable for automatically constructing pedestrian networks

    3d Network Analysis Untuk Pemodelan Jalur Evakuasi Gedung Pascasarjana Fakultas Kedokteran, Kesehatan Masyarakat, Dan Keperwatan (Fk-Kmk) Universitas Gadjah Mada

    Get PDF
    Sistem Informasi Geografis (SIG) banyak digunakan untuk berbagai macam analisis spasial, mulai dari manajemen data spasial hingga visualisasinya. Salah satu pengaplikasian SIG yang menjadi state of the art saat ini yaitu pemodelan 3 Dimensi (3D) berbasis dalam ruangan (Indoor). Pemodelan yang dilakukan juga dikombinasikan dengan sistem navigasi spasial untuk memberikan  informasi koordinat dan menunjukkan arah untuk navigasi dalam ruangan. Dalam hal ini, SIG dapat diterapkan untuk menemukan jalur evakuasi yang paling efektif. Penelitian ini menerapkan analisis SIG dengan tujuan membangun 3D Network Dataset dan menghasilkan model 3D yang representatif untuk memberikan informasi jalur evakuasi terbaik. Pembuatan model dan jalur evakuasi dilakukan dengan menggunakan software AutoCAD dan ArcGIS Pro. Data dasar yang digunakan adalah desain rencana arsitektur gedung. Hasil yang diperoleh yaitu 3D Network Dataset dan model 3D Gedung FK-KMK UGM dengan tampilan yang cukup representatif, di mana bentuk dan ukuran gedung sesuai dengan yang sebenarnya

    Constructing a GIS-based 3D urban model using LiDAR and aerial photographs

    Get PDF
    Due to the increasing availability of high-resolution remotely sensed imagery and detailed terrain surface elevation models, urban planners and municipal managers can now model and visualize the urban space in three dimensions. The traditional approach to the representation of urban space is 2D planimetric maps with building footprints, facilities and road networks. Recently, a number of methods have been developed to represent true 3D urban models. Those include panoramic imaging, Virtual Reality Modeling Language (VRML), and Computer-aided Design (CAD). These methods focus on aesthetic representation, but they do not have sufficient spatial query and analytical capabilities. This research evaluates the conventional approaches to 3D urban models, and identifies their advantages and limitations; GIS functionalities have been combined with 3D urban visualization techniques to develop a GIS-based urban modeling method; The algorithms and techniques have been explored to derive urban objects and their attributes from airborne LiDAR and high-resolution imagery for constructing and visualizing 3D urban models; and 3D urban models for the Texas A&M University (TAMU) campus and downtown Houston have been implemented using the algorithms and techniques developed in this research. By adding close-range camera images and highresolution aerial photographs as the texture of urban objects, effect of photorealism visualization has been achieved for walk-through and fly-through animations. The Texas A&M University campus model and the downtown Houston model have been implemented to offer proof-of-concept, namely, to demonstrate the advantages of the GIS-based approach. These two prototype applications show that the GIS-based 3D urban modeling method, by coupling ArcGIS and MultiGen-Paradigm Site Builder 3D software, can realize the desired functionalities in georeferencing, geographical measurements, spatial query, spatial analysis, and numerical modeling in 3D visual environment
    • …
    corecore