29 research outputs found

    The quantitative verification benchmark set

    Get PDF
    We present an extensive collection of quantitative models to facilitate the development, comparison, and benchmarking of new verification algorithms and tools. All models have a formal semantics in terms of extensions of Markov chains, are provided in the Jani format, and are documented by a comprehensive set of metadata. The collection is highly diverse: it includes established probabilistic verification and planning benchmarks, industrial case studies, models of biological systems, dynamic fault trees, and Petri net examples, all originally specified in a variety of modelling languages. It archives detailed tool performance data for each model, enabling immediate comparisons between tools and among tool versions over time. The collection is easy to access via a client-side web application at qcomp.org with powerful search and visualisation features. It can be extended via a Git-based submission process, and is openly accessible according to the terms of the CC-BY license

    Accurately Computing Expected Visiting Times and Stationary Distributions in Markov Chains

    Full text link
    We study the accurate and efficient computation of the expected number of times each state is visited in discrete- and continuous-time Markov chains. To obtain sound accuracy guarantees efficiently, we lift interval iteration and topological approaches known from the computation of reachability probabilities and expected rewards. We further study applications of expected visiting times, including the sound computation of the stationary distribution and expected rewards conditioned on reaching multiple goal states. The implementation of our methods in the probabilistic model checker Storm scales to large systems with millions of states. Our experiments on the quantitative verification benchmark set show that the computation of stationary distributions via expected visiting times consistently outperforms existing approaches - sometimes by several orders of magnitude

    Optimistic Value Iteration

    Get PDF
    Markov decision processes are widely used for planning and verification in settings that combine controllable or adversarial choices with probabilistic behaviour. The standard analysis algorithm, value iteration, only provides a lower bound on unbounded probabilities or reward values. Two "sound" variations, which also deliver an upper bound, have recently appeared. In this paper, we present optimistic value iteration, a new sound approach that leverages value iteration's ability to usually deliver tight lower bounds: we obtain a lower bound via standard value iteration, use the result to "guess" an upper bound, and prove the latter's correctness. Optimistic value iteration is easy to implement, does not require extra precomputations or a priori state space transformations, and works for computing reachability probabilities as well as expected rewards. It is also fast, as we show via an extensive experimental evaluation using our publicly available implementation within the Modest Toolset

    On the connection of probabilistic model checking, planning, and learning for system verification

    Get PDF
    This thesis presents approaches using techniques from the model checking, planning, and learning community to make systems more reliable and perspicuous. First, two heuristic search and dynamic programming algorithms are adapted to be able to check extremal reachability probabilities, expected accumulated rewards, and their bounded versions, on general Markov decision processes (MDPs). Thereby, the problem space originally solvable by these algorithms is enlarged considerably. Correctness and optimality proofs for the adapted algorithms are given, and in a comprehensive case study on established benchmarks it is shown that the implementation, called Modysh, is competitive with state-of-the-art model checkers and even outperforms them on very large state spaces. Second, Deep Statistical Model Checking (DSMC) is introduced, usable for quality assessment and learning pipeline analysis of systems incorporating trained decision-making agents, like neural networks (NNs). The idea of DSMC is to use statistical model checking to assess NNs resolving nondeterminism in systems modeled as MDPs. The versatility of DSMC is exemplified in a number of case studies on Racetrack, an MDP benchmark designed for this purpose, flexibly modeling the autonomous driving challenge. In a comprehensive scalability study it is demonstrated that DSMC is a lightweight technique tackling the complexity of NN analysis in combination with the state space explosion problem.Diese Arbeit präsentiert Ansätze, die Techniken aus dem Model Checking, Planning und Learning Bereich verwenden, um Systeme verlässlicher und klarer verständlich zu machen. Zuerst werden zwei Algorithmen für heuristische Suche und dynamisches Programmieren angepasst, um Extremwerte für Erreichbarkeitswahrscheinlichkeiten, Erwartungswerte für Kosten und beschränkte Varianten davon, auf generellen Markov Entscheidungsprozessen (MDPs) zu untersuchen. Damit wird der Problemraum, der ursprünglich mit diesen Algorithmen gelöst wurde, deutlich erweitert. Korrektheits- und Optimalitätsbeweise für die angepassten Algorithmen werden gegeben und in einer umfassenden Fallstudie wird gezeigt, dass die Implementierung, namens Modysh, konkurrenzfähig mit den modernsten Model Checkern ist und deren Leistung auf sehr großen Zustandsräumen sogar übertrifft. Als Zweites wird Deep Statistical Model Checking (DSMC) für die Qualitätsbewertung und Lernanalyse von Systemen mit integrierten trainierten Entscheidungsgenten, wie z.B. neuronalen Netzen (NN), eingeführt. Die Idee von DSMC ist es, statistisches Model Checking zur Bewertung von NNs zu nutzen, die Nichtdeterminismus in Systemen, die als MDPs modelliert sind, auflösen. Die Vielseitigkeit des Ansatzes wird in mehreren Fallbeispielen auf Racetrack gezeigt, einer MDP Benchmark, die zu diesem Zweck entwickelt wurde und die Herausforderung des autonomen Fahrens flexibel modelliert. In einer umfassenden Skalierbarkeitsstudie wird demonstriert, dass DSMC eine leichtgewichtige Technik ist, die die Komplexität der NN-Analyse in Kombination mit dem State Space Explosion Problem bewältigt

    An Overview of Modest Models and Tools for Real Stochastic Timed Systems

    Get PDF
    We depend on the safe, reliable, and timely operation of cyber-physical systems ranging from smart grids to avionics components. Many of them involve time-dependent behaviours and are subject to randomness. Modelling languages and verification tools thus need to support these quantitative aspects. In my invited presentation at MARS 2022, I gave an introduction to quantitative verification using the Modest modelling language and the Modest Toolset, and highlighted three recent case studies with increasing demands on model expressiveness and tool capabilities: A case of power supply noise in a network-on-chip modelled as a Markov chain; a case of message routing in satellite constellations that uses Markov decision processes with distributed information; and a case of optimising an attack on Bitcoin via Markov automata model checking. This paper summarises the presentation.Comment: In Proceedings MARS 2022, arXiv:2203.0929
    corecore