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Abstract. Markov automata are a compositional modelling formalism
with continuous stochastic time, discrete probabilities, and nondetermin-
istic choices. In this paper, we present extensions to the Modest language
and the mcsta model checker to describe and analyse Markov automata
models. Modest is an expressive high-level language with roots in pro-
cess algebra that allows large models to be specified in a succinct, modular
way. We explain its use for Markov automata and illustrate the advantages
over alternative languages. The verification of Markov automata models
requires dedicated algorithms for time-bounded probabilistic reachability
and long-run average rewards. We describe several recently developed such
algorithms as implemented inmcsta and evaluate them on a comprehensive
set of benchmarks. Our evaluation shows that mcsta improves the perfor-
mance and scalability of Markov automata model checking compared to
earlier and alternative tools.

1 Introduction

Studying dependability and performance aspects of critical designs or implemen-
tations [4] requires a formal mathematical model that captures the core quantita-
tive aspects of such systems. In particular, we need stochastic continuous time to
model delays of which we only know averages, e.g. the mean time to failure, dis-
crete probabilistic choices to describe instantaneous uncertain decisions, as in e.g.
randomised algorithms, and nondeterminism to be able to deal with underspecifi-
cation, abstraction, unquantified uncertainty, and concurrency. Markov automata
(MA, [18,20]) extend the classical formalisms of continuous-time Markov chains
anddiscrete-timeMarkov decision processes (MDP) to encompass all three of these
aspects. In contrast to continuous-time MDP (CTMDP), they are compositional:
there is a natural parallel composition operator for networks of MA that provides
for both interleaved and synchronising transitions without the need for ad-hoc
operations to combine transition rates.

MA are the semantic basis for generalised stochastic Petri nets [19] and
dynamic extensions of fault trees [6,31]. Several publications studied algorithmic
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problems related to the efficient analysis of MA [2,12–15,23,24,30]. In this light,
it is disappointing that tool support for MA is thus far rather brittle. The one ded-
icated tool for compositional modelling with MA, Scoop [38], is unmaintained,
as is the corresponding lower-level MA model checker Imca [22]. The one other
actively developed tool with comprehensive MA support is Storm [17], which
however lacks built-in support for high-level compositional modelling.

Using the mathematical formalism of MA directly to build complex models
is cumbersome. For their use to be practical, we need a higher-level modelling
language. Aside from a parallel composition operator, such languages typically
provide variables over finite domains that can be used in expressions to e.g.
enable or disable transitions. Their semantics is then an MA whose states are
the valuations of the variables, allowing to compactly describe very large MA. In
this paper, we present recent extensions to Modest [27], a high-level modelling
language for stochastic hybrid systems, that add support for expressing MA
models. Rooted in process algebra, Modest provides various composition oper-
ators that allow large models to be assembled from small, easy-to-understand
components. In Sect. 3, we illustrate the use of Modest for MA, and we compare
its succinctness, expressivity, and readability with alternative languages.

We build MA models to compute quantitative properties of systems such as
safety (the probability to reach an unsafe state), reliability (doing so within a
time bound), or throughput (the long-run average amount of work completed
per time unit). Probabilistic model checking techniques [3] can be applied to
MA to effectively compute or approximate such values. While the computa-
tion of unbounded reachability probabilities and expected accumulated rewards
can be reduced to checking the MA’s embedded MDP, time-bounded probabili-
ties and long-run average rewards require dedicated algorithms. We summarise
the currently available algorithms, their particular characteristics, and notable
implementation considerations, in Sect. 4. To complement our extension of the
Modest language with suitable analysis facilities, we have implemented the
most promising of these algorithms in the mcsta model checker of the Modest
Toolset [28]. We use the MA models of the Quantitative Verification Bench-
mark Set [29] to evaluate the performance of our implementation and of the
different algorithms in Sect. 5. We compare the results with Imca and Storm.

2 Markov Automata

The mathematical formalism of Markov automata provides nondeterministic
choices as in labelled transition systems (LTS, or Kripke structures or finite
automata), discrete probabilistic decisions as in discrete-time Markov chains
(DTMC), and states with exponentially distributed residence times as in continu-
ous-time Markov chains (CTMC). The relationships between these formalisms
are visualised in Fig. 1. We now define MA formally and describe their semantics.

Preliminaries. We write {x1 �→ y1, . . . } to denote the function that maps all
xi to yi, and if necessary in the respective context, implicitly maps to 0 all x
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Fig. 1. The MA family tree
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Fig. 2. Example Markov automata

for which no explicit mapping is specified. Given a set S, its powerset is 2S . A
(discrete) probability distribution over S is a function μ ∈ S → [0, 1] such that
spt(μ) def= { s ∈ S | μ(s) > 0 } is countable and

∑
s∈spt(μ) μ(s) = 1. Dist(S) is the

set of all probability distributions over S, and μ1⊗μ2 is the product distribution
of μ1 and μ2 defined by (μ1 ⊗μ2)(s) = μ1(s) ·μs(s). We refer to discrete random
choices as probabilistic and to continuous ones as stochastic.

Definition 1. A Markov automaton (MA) is a tuple

M = 〈S, s0, A, P,Q, rr , br〉
where
– S is a finite set of states, with s0 ∈ S being the initial state,
– A is a finite set of actions,
– P ∈ S → 2A×Dist(S) is the probabilistic transition function,
– Q ∈ S → 2Q×S the Markovian transition function,
– rr ∈ S → [0,∞) is the rate reward function, and
– br ∈ S × Tr(M) × S → [0,∞) is the branch reward function

with Tr(M) def=
⋃

s∈S P (s)∪⋃
s∈S Q(s). P (s) and Q(s) must be finite sets for all

s ∈ S. We define the exit rate of s ∈ S as E(s) =
∑

〈λ,s′〉∈Q(s) λ.

Example 1. Fig. 2 shows two MA M1 and M2 without rewards. We draw proba-
bilistic transitions as solid, Markovian ones as dashed lines. If a transition leads
to a single target state, we omit the intermediate probabilistic branching node.

The semantics of an MA is that, in state s, (1) the probability to take Markovian
transition 〈λ, s′〉 ∈ Q(s) and move to state s′ within t time units is

λ/E(s) · (1 − e−E(s)·t), (1)

i.e. the residence time follows the exponential distribution with rate E(s) and
the choice of transition is weighted by their rates; and (2) at any point in time,
a probabilistic edge 〈a, μ〉 ∈ P (s) can be taken with the successor state being
chosen according to μ. MA thus separate interaction from timing: the former
is represented by the action-labelled probabilistic transitions, and the latter is
governed by the rates of the Markovian transitions. This is the key difference
to CTMDP, which have one kind of transitions with both actions and rates.
It enables parallel composition operators with action synchronisation for MA
without any need to prescribe an ad-hoc operation for combining rates.
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Definition 2. Given two MA Mi = 〈Si, s0i , Ai, Pi, Qi〉, i ∈ { 1, 2 }, their parallel
composition is M1 ‖ M2

def= 〈S1×S2, 〈s01 , s02〉, A1∪A2, P,Q〉 with P the smallest
function such that

(〈a, μ〉∈P1(s1) ∧ a /∈A2 ⇒ 〈a, μ ⊗ { s2 �→ 1 }〉∈P (〈s1, s2〉))
∧ (〈a, μ〉∈P2(s2) ∧ a /∈A1 ⇒ 〈a, { s1 �→ 1 } ⊗ μ〉∈P (〈s1, s2〉))
∧ (〈a, μ1〉∈P1(s1) ∧ 〈a, μ2〉∈P2(s2) ∧ a∈A1 ∩ A2 ⇒ 〈a, μ1 ⊗ μ2〉∈P (〈s1, s2〉))

and Q is the smallest function s.t. (〈λ, s′
1〉∈Q1(s1) ⇒ 〈λ, 〈s′

1, s2〉〉∈Q(〈s1, s2〉))
and vice-versa for Q2.

The operator above uses multi-way synchronisation on the shared alphabet of
the two automata; similar operators could be defined for other synchronisation
mechanisms, e.g. to define input-output MA. Fig. 2 includes the parallel compo-
sition of the example M1 and M2, where we write nm for state 〈n,m〉. The two
automata synchronise on the shared actions a and c.

We defined MA as open systems [8]: probabilistic transitions can interact
with, wait for, and be blocked by other MA in parallel composition. For veri-
fication, we make the usual closed system and maximal progress assumptions,
i.e. we assume that probabilistic transitions face no further interference and
take place without delay. If multiple probabilistic transitions are available in
a state, however, the choice between them remains nondeterministic. Since the
probability that a Markovian transition is taken in zero time is 0, the maximal
progress assumption allows us to remove all Markovian transitions from states
that also have a probabilistic transition. In such closed MA, we can thus dis-
tinguish between Markovian states (where P (s) = ∅) and probabilistic states
(where Q(s) = ∅). The behaviour of a closed, deadlock-free MA M is defined
via its paths:

Definition 3. A path π ∈ Π(M) is an infinite sequence
π = s0 t0 tr0 s1 . . . ∈ (S × [0,∞) × Tr(M))ω

such that Q(si) = ∅ ⇒ ti = 0 and tr i ∈ P (si)∪ Q(si). We write Πf (M) for the
set of all path prefixes πf ending in a state. Let π≤i

def= s0 t0 . . . si. The duration
dur(πf ) of a path prefix is the sum of its residence times ti. A path’s reward is

rew(π) =
∑∞

i=0
ti · rr(si) + br(si, tri , si+1)

and is analogously defined for prefixes.

A path prescribes a resolution of all nondeterministic, probabilistic, and stochas-
tic choices. To define a probability measure, we resolve nondeterminism only:

Definition 4. Given an MA M as above, a scheduler in S(M) is a function σ ∈
Πf (M) → Tr(M) s.t. ∀s ∈ S : σ(s) = tr ⇒ tr ∈ P (s)∪ Q(s). A time-dependent
scheduler is in S × [0,∞) → Tr(M); a memoryless one in S → Tr(M).

We define deterministic schedulers only since randomised schedulers are in prac-
tice only needed for multi-objective problems [34]. We note that CTMDP with
early schedulers [36] can be encoded as closed MA. A scheduler induces a prob-
ability measure over sets of measurable paths in the usual way [30]. For all of
the following types of properties, we are interested in the maximum (supremum)
and minimum (infimum) values when ranging over all schedulers σ ∈ S(M):
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Reachability probabilities: Given a set of goal states G ⊆ S, compute the
probability of the set of paths that include a state in G. Memoryless schedulers
suffice to achieve optimal results (i.e. the max. and min. probabilities).

Time-bounded reachability: Additionally restrict to paths where the sum of
delays up to reaching the first state in G is below a bound b ∈ [0,∞). Here,
time-dependent schedulers with input b − dur(πf ) suffice.

Expected accumulated rewards: For G ⊆ S, compute the expected value of
the random variable1 that assigns to path π the value rew(πf ) where πf is the
shortest prefix of π with a state in G. Memoryless schedulers suffice.

Long-run average rewards: Compute the expected value of the random vari-
able that assigns to path π the value limi→∞ rew(π≤i)/dur(π≤i). Memoryless
schedulers suffice.

Example 2. Consider MA M1 ‖ M2 of Fig. 2 and the
probability to reach state 〈4, 4〉 within 1 time unit. In
state 〈0, 1〉, we have to decide whether to choose action
a or b. The optimal decision depends on the amount of
time t that has passed in state 〈0, 0〉. In the plot on the
right, we show the probability of reaching state 〈4, 4〉
(y-axis) depending on 1− t (x-axis). The blue line rep-
resents the reachability probability for the memoryless
scheduler that always chooses a and the red one is for
the scheduler that always takes action b. A time-dependent scheduler can make
better decisions than either of these two by determining the values of t for which
a results in a higher probability than b and vice-versa. The optimal scheduler
thus chooses a if and only if 1 − t ≤ 0.63 approximately.
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3 Modelling

Tools for the automated analysis of MA need a syntax in which the model and
the properties of interest are specified. As noted in Sect. 1, such a modelling
language needs to provide a parallel composition operator such that large MA
can be built from small specifications, and will typically support modelling with
variables that can be used in guards and assignments. In the context of such
symbolic formalisms, we have locations and edges that each induce (many) states
and transitions, respectively, in the formalism’s plain-MA semantics.

3.1 Modest for Markov Automata

As part of implementing the Jani [10] model exchange format, we recently intro-
duced support for MA into the syntax and semantics of the Modest mod-
elling language [27]. Modest previously supported MDP and more complex
continuous-time formalisms such as stochastic hybrid automata, but did not
1 This is well-defined if the maximum (minimum) probability to reach G is 1; other-

wise, we define the minimum (maximum) expected accumulated reward to be ∞.
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Fig. 3. Modest for MA

Fig. 4. MAPA process algebra

Fig. 5. Prism dialect supporting MA

Fig. 6. Imca state space format

have provisions for succinctly annotating edges with rates. We added the rate(e)
construct for this purpose, which behaves analogously to the existing when(e)
construct for specifying the enabling condition of an edge. Modest enforces
the separation of probabilistic and Markovian transitions by requiring edges for
which a rate is specified to have the predefined and non-synchronising τ action
label. If this restriction is not met, the model is recognised as a CTMDP.

At its core, Modest is a process algebra: it provides various operations such
as parallel composition (par), sequential composition (;), parameterised process
definitions, process calls, and guards (when) to flexibly construct complex models
out of small and reusable components. Its syntax however borrows heavily from
commonly used programming languages, and it provides high-level conveniences
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such as do loops and a full-fledged mechanism for throwing (throw) and han-
dling (try-catch) exceptions. As such, Modest tends to be more verbose than
classic process algebras, but also more readable and beginner-friendly. To spec-
ify complex behaviour in a succinct manner, Modest also provides variables of
standard basic types (e.g. bool, int, or bounded int), arrays, and user-defined
recursive datatypes akin to functional programming languages. Its syntax for
expressions again is aligned with C-like programming languages for ease of use.

In Fig. 3, we show a Modest representation of the parallel composition of
MA M1 and M2 of Fig. 2. M1 has been slightly optimised by merging states 1 and
3 into the last line of process M1; this actually came naturally when modelling due
to the ease in which behaviours can be combined and shared in Modest. The
model also includes the declaration of two properties of interest for verification,
P_Min and P_Max, which ask for the probability to reach state 〈4, 4〉—made
observable via the global variable succ—within time B akin to Example 2. B is
an open parameter for which values can be specified at verification time. There
are many features of Modest not used in this small model; the interested reader
may find more complex Modest MA models, in particular with arrays and
rewards, in the Quantitative Verification Benchmark Set [29] at qcomp.org.

Tool Support. The Modest Toolset [28] is a comprehensive suite of tools
for quantitative modelling and verification. Its primary input languages are
Modest and Jani. MA are supported in its mosta, moconv2, mcsta, and modes
tools. mosta visualises the symbolic semantics of models and is useful for model
debugging. moconv transforms models between modelling languages (it can e.g.
convert Modest to Jani) and performs syntactic rewriting and optimisations.
mcsta is an explicit-state model checker; we present and evaluate its MA-specific
algorithms in Sects. 4 and 5. modes [9] is a statistical model checker with auto-
mated rare event simulation capabilities. It implements the lightweight scheduler
sampling approach [32] for nondeterministic models, including MA [16]. The
Modest Toolset is written in C#, works cross-platform on Linux, Mac OS,
and Windows, and is freely available at modestchecker.net. All its tools share
a common infrastructure for parsing and syntactic transformations. mcsta and
modes additionally build on the same state space exploration engine that com-
piles models to bytecode at runtime for memory efficiency and performance.

3.2 Alternative Modelling Languages

Modest is not the only modelling language for MA. These are the alternatives:

State Space Files for Imca. The first MA-specific algorithms were implemented
in the Imca tool [22]. Its only input language is a text-based explicit state space
format as illustrated for our example of M1 ‖ M2 in Fig. 6. This is clearly not a
useful modelling language, but a format to be automatically generated by tools.

2 moconv can also export CTMDP to Jani, but due to their lack of a natural parallel
composition operator, the analysis of CTMDP is not supported in the other tools.

http://qcomp.org/benchmarks/
http://www.modestchecker.net/
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Guarded Commands with Storm. Of the alternative tools for MA, Storm [17] is
the only one that is actively maintained. It provides many input languages, with
MA being supported through a state space format similar to Imca’s, via Jani, as
the semantics of generalised stochastic Petri nets [19] in GreatSPN format [1],
and through an extension of the Prism guarded command language. We show
our example in the latter in Fig. 5. It is a very simple, small language that is
easy to learn, however it completely lacks higher-level constructs to structure
and compose models aside from the implicit parallel composition of its modules.

Process Algebra with Scoop. Mapa [38] is a dedicated process algebra for MA. It
is supported by Scoop [38], which can linearise, reduce, and finally export Mapa
models to Imca for verification. We show the example of M1 and M2 in Mapa in
Fig. 4. As a classic concise process algebra, Mapa tends to be very succinct, but
also difficult to read. Mapa models can be much more flexibly composed than
Prism models, yet there is less syntactic structure than in Modest—although
the languages conceptually share many operators. Mapa notably has a prede-
fined queue datatype, and users can specify custom non-recursive datatypes.

JANI Model Interchange. Jani [10] is a model interchange format designed to
ease tool development and interoperation. It is Json-based and thus human-
debuggable, but not intended as human-writable. It represents networks of
automata with variables symbolically. Since both the Modest Toolset and
Storm support Jani, it is possible to e.g. build MA models in the Modest
language, export them to Jani with moconv, and then verify them with Storm.
Likewise in the other direction, we can e.g. create a Petri net with GreatSPN,
convert to Jani with Storm, and analyse it with mcsta or modes. In this way,
the most appropriate modelling language can be combined with the best analysis
method and tool for every specific scenario.

4 Algorithms

While the values for some classes of properties can be computed by checking
the embedded MDP of an MA, most need dedicated MA-specific algorithms. We
briefly describe the algorithms implemented for MA in mcsta, Storm and Imca.

4.1 Untimed and Expected-Reward Properties

Like for CTMC, properties that do not refer to time, or that only refer to exp-
ected times, can be computed on the embedded MDP of the Markov automaton.
These properties include unbounded as well as branch reward-bounded reach-
ability probabilities and expected accumulated rewards. For simplicity, we will
refer to all of these as “unbounded properties”. The available algorithms include
all the standard exhaustive model checking algorithms for MDP [33], in partic-
ular using linear programming (LP), policy iteration, value iteration, interval
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iteration [5,25], and sound value iteration [35]. Standard “unsound” value itera-
tion and typical LP solvers do not provide any guarantees (such as ε-closeness
to the true probability or value) on their results, while interval iteration and
sound value iteration do. To combat the state space explosion problem of the
exhaustive methods, the BRTDP learning-based approach [7] can be used for
probabilities. It attempts to explore only a small part of the state space that
is sufficient to provide a lower and an upper bound on the result that are close
enough. Its efficiency both in terms of runtime and in terms of memory reduction
highly depend on the structure of the model, though.

Tool Support. mcsta implements value iteration, LP, and interval iteration for
expected rewards and unbounded reachability probabilities. It is being extended
to support sound value iteration. It also provides BRTDP as in [2] where sim-
ulations with the uniform probabilistic scheduler are used to explore a part of
the state space. After every batch of simulation runs, interval iteration is used
to compute bounds. Storm implements value and policy iteration, LP, interval
iteration, sound value iteration, and a variant of BRTDP. It also provides algo-
rithms to compute exact (rational) solutions using exact arithmetic, but they
are currently limited to small models. Imca supports value iteration only.

4.2 Time-Bounded Reachability

Time-bounded properties pose one of the most challenging problems in MA
model checking. Several algorithms with rather different characteristics are cur-
rently available for approximating time-bounded reachability probabilities: The
discretisation approach [23] discretises the time horizon into small intervals,
such that the MA will likely perform at most one Markovian transition within
each interval. Unif+ was first presented for CTMDP [13] and later extended
to MA [21] in the straightforward way. It is based on an approximation of the
optimal time-bounded reachability probability over timed schedulers with that
same value but ranging over untimed schedulers. The switch-step algorithm [12]
attempts to compute switching points: the points at which the optimal scheduler
changes the action for at least one state, as illustrated in Example 2. Finally, the
BRTDP idea for time-bounded reachability properties on CTMDP [2] can be
extended to MA straightforwardly: the simulation phase performs CTMC-style
simulation for Markovian states and MDP-style simulation over probabilistic
states. Time progresses only over Markovian states and the simulation stops
whenever the time bound expires or a target state is reached. Resolution of non-
determinism is performed via the randomised scheduler that samples the next
action uniformly at random from the enabled actions. The analysis phase can
be performed by any of the other algorithms for time-bounded analysis on MA.

Tool Support. mcsta implements Unif+ and switch-step while Storm supports
Unif+ and the discretisation approach. Both provide sound implementations of
these algorithms (i.e. they guarantee ε-correct results). Imca implements only
discretisation and uses unsound techniques for certain subproblems.
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4.3 Long-Run Average Rewards

There exist two approaches for computing long-run average rewards: one based
on a reduction to a linear program [24], and a value iteration-based algorithm [14]
that approximates the reward up to a user-specified (and guaranteed) precision.
In both cases, first the long-run average reward is determined for each maximal
end component, then the end components are collapsed, and the overall result
is computed as an expected reward value on the collapsed state space.

Tool Support. mcsta and Storm implement both of the algorithms while Imca
implements only the linear programming-based approach.

4.4 Other Verification Problems

We now briefly summarise other MA verification problems, name the correspond-
ing available algorithms, and mention where they are implemented.

Time-bounded expected rewards extend the time-bounded reachability problem
to rewards. The property represents the expected accumulated reward until a
time bound is reached. Algorithmic support for this property is limited to the
discretisation-based approach of [24], which is implemented in Imca.

Resource-bounded rewards generalise both time-bounded reachability and time-
bounded expected rewards. A resource-bounded reward property represents the
expected accumulated reward within a finite resource budget. The resource is
formally represented by a second type of (branch or rate) reward in the model.
The only algorithm available to date is presented in [30], with no tool support.

Discounted Rewards. Expected discounted reward properties ask for the expected
total reward where rewards collected at a certain time point are discounted with
a value, depending on this time point. For example, when dealing with income,
discounted rewards allow to take inflation into account. Iterative algorithms for
computing and approximating the value exist, such as policy and value itera-
tion [15]. There is however no tool support so far.

Multi-objective Tradeoffs. Multi-objective MA model checking allows finding a
scheduler that is optimal for several objectives, rather than only one. The only
algorithm available to date and implemented in Storm is presented in [34]. It
does not support the full range of properties, in particular excluding long-run
average and discounted rewards. For the underlying time-bounded analysis, it
resorts to discretisation, which tends to not scale well (see Sect. 5 below).

5 Experiments

The Quantitative Verification Benchmark Set (QVBS, [29]) currently contains 18
MA models, specified in Modest, Storm’s extension of the Prism language for
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MA (cf. Sect. 3.2), as GreatSPN Petri nets, and as fault trees in the Galileo
format [37]. For every model, there is also a Jani version. All models have
open parameters (like B in our Modest example of Fig. 3) to be scaled up from
small to huge state spaces. We use most of these models, selecting parameters
that make for challenging, but not impossible, state space sizes (up to a few
millions of states), to compare the performance and scalability of the algorithms
implemented in mcsta with Imca and Storm. The models include variations of
queueing systems, dependability models, scheduling problems, and security case
studies. We excluded those models that only have spurious non-determinism
(i.e. they are equivalent to a CTMC), and those that can be fully checked in
just a few seconds for the given parameter valuations. Due to the absence of
long-run average reward properties in most MA models of the benchmark set,
we added sensible long-run average properties to most of the Modest models
(which are easy to modify by hand, in contrast to Jani) in order to be able to do a
meaningful performance comparison. Those are mainly steady-state probabilities
(i.e. the special case of a rate reward of 1 in some states and of 0 in all others),
or properties describing long-run average costs of running the modelled system.

All experiments were conducted on two servers with Intel Core i7-4790 pro-
cessors and 16 resp. 32GB of RAM running 64-bit Ubuntu Linux 18.04. We keep
the default values for all the command line arguments of the tools, unless we
explicitly mention specific parameters being used. When we request a certain
precision for results (with sound methods), we request absolute, not relative,
precision. We show all results as scatter plots like the one below, with log-log
axes. Every benchmark instance—a model, a valuation for its parameters, and a
property to check—results in one point in these plots. A point 〈x, y〉 states that
the runtime of the tool noted on the x-axis on one instance was x seconds while
the runtime of the tool noted on the y-axis was y seconds. Thus points above
the solid diagonal line indicate instances where the x-tool was the fastest; it was
more than ten times faster (slower) on points above (below) the dotted line. We
set the timeout to 30min; a timeout is denoted by an “x” dot in the plots.

5.1 mcsta and Imca

The plot on the right compares the
runtime of mcsta and Imca on time-
bounded (“tbr”), long-run average (“lra”),
and unbounded properties (“unb”). The
input of Imca is an explicit representa-
tion of a state space (cf. Sect. 3.2). Thus,
before a model can be analysed with
Imca, the state space has to be fully
explored, transformed into this format,
and saved to disk. This takes additional
time and memory. Models of a few kB in
Modest lead to Imca files of several GB.
We use mcsta to perform this transforma-
tion, which took up to 200 s on each of the benchmarks we selected for our
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experiments. The runtime presented for Imca does not include the time to gen-
erate input models, but only the time it takes to load them into memory and
analyse them. For mcsta, we do include the time for state space exploration
(from Modest or Jani input). For all experiments, we chose the best runtime
among all algorithms provided in each tool. For time-bounded properties we
set the precision to 10−3 and 10−6. The same holds for long-run properties for
mcsta, but not for Imca since its command-line interface does not support setting
the precision for these properties. For unbounded properties we use the default
parameters of both tools, including precision, since this once again cannot be
changed for Imca.

We see that Imca performs far worse than mcsta. This is despite the fact that
the considered runtime does not include time for model generation and that its
only algorithm for time-bounded properties is unsound (with unsound methods
tending to be faster than sound ones [35]), while the one of mcsta is sound. The
performance gap is likely due to Imca only implementing the discretisation-
based approach, which is known to be inefficient [12,13], and not providing the
most recent model checking algorithms for any of the property types.

5.2 mcsta and Storm

Storm, like mcsta, implements multiple and current algorithms. We thus present
the results of this comparison in more detail. The runtimes for both tools include
the time for state space exploration and for the numeric computations.

Time-Bounded Properties. Fig. 7 summarises the comparison of time-bounded
solvers in mcsta and Storm. Once again we run experiments with precision
values 10−3 and 10−6 and configure the tools to produce sound results. In the
top-left plot we compare the best runtime for each tool among the algorithms
that it implements; in the bottom-left plot, we compare mcsta’s and Storm’s
implementations of Unif+. In both comparisons, mcsta achieves better runtimes
than Storm. In particular, mcsta has no timeouts in the best-algorithm com-
parison. In the Unif+ comparison, mcsta and Storm both time out in some
cases, yet whenever mcsta times out on a model, Storm does so, too (the “x”
dot on the 45◦ line is actually a superposition of several such dots here). The
two plots on the right compare the runtime of the switch-step implementation
in mcsta with Unif+ in both tools. We do not compare to the discretisation algo-
rithm for time-bounded properties implemented in Storm due to the consistent
reports [12,13] of its inefficiency (which we confirmed in Sect. 5.1 with Imca).
We observe that neither Unif+ nor switch-step dominates the other, no matter
which tool is used. This is because none of the two algorithms is strictly better
than the other. Consider the top-right plot: it compares switch-step and Unif+ in
mcsta and confirms the results presented in [12] that the algorithms are good in
complementary scenarios. There are cases where one of them times out while the
other finishes quite fast, and vice-versa. In particular, Unif+ performs somewhat
better when a lower precision is required. Overall, the individual algorithms for
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Fig. 7. Runtime of mcsta and Storm on time-bounded properties

time-bounded reachability in mcsta perform competitively, and especially when
combined in a portfolio approach (i.e. using the best for each model, which could
practically be done by running both concurrently on a multi-core system), offer
noticeably better performance and scalability than Storm overall.

Long-Run Average Properties. Fig. 8 summarises the comparison of algorithms
for model checking long-run average properties in mcsta and Storm. For value
iteration-based algorithms (“VI”), we run experiments on precision values 10−3

and 10−6, and use only its sound variations. For the linear programming-based
approaches (“LP”), we set mcsta and Storm to use linear programming at all
steps of the algorithm. The LP-based algorithms run with default parameters
in both tools. For the top-left plot, we again chose the best runtime over the
two algorithms for each tool. The LP-based approaches are not competitive: this
can be seen from the three other plots. Here, the bottom-right plot shows that
the LP-based algorithms in both mcsta and Storm run out of time on most
of the benchmarks. In contrast, the VI-based solutions in both tools finish the
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Fig. 8. Runtime of mcsta and Storm on long-run average reward properties

computations on the same benchmarks within the given time bound, as can
be seen from the bottom-left and top-right plots. The exact reason for this is
hard to extract. It may be possible that, when dealing with long-run properties,
the LP-based approach itself is not as efficient as the one using VI, at least on
existing benchmarks. Alternatively, it may be that the underlying LP algorithms
or their implementations are not efficient. Overall, mcsta and Storm are roughly
on par, albeit with mcsta having a few instances where it is significantly faster.
The overall similarity is likely due to the set of implemented algorithms being
exactly the same. We do notice, though, that specifically Storm’s LP method
appears to work better than mcsta’s.

BRTDP. We compared exhaustive algorithms, i.e. those that perform compu-
tations on the full state space, with their BRTDP extensions in mcsta on a few
benchmarks for time-bounded and unbounded properties. Table 1 summarises
the results. BRTDP is useful in cases where the property under consideration
does not require the full state space to be explored in order to achieve results
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Table 1. Runtime of BRTDP vs. exhaustive algorithms on time-bounded properties

vgs (5, 10000) stream (20000) ftwc (512, 10) hecs (false, 4, 3)

BRTDP 6.07 s 1.91 s 6.69 s 5.78 s
exhaustive >30 min >30 min 1077 s >30 min

with specified precision. In fact, the explored state space might be only a few
percent of the full state space. Table 1 confirms that, in certain cases, these
approaches can perform substantially better than their exhaustive counterparts.
Precision is set to 10−3 here.

Unbounded Properties. We finally add a small
evaluation for model checking unbounded prop-
erties. These properties can be checked via
standard MDP algorithms and are thus not
the focus of this paper. An extensive evaluation
of such properties for both mcsta and Storm
was done for the QComp 2019 tool competi-
tion [26]. The plot on the right confirms the
QComp results of the two tools being compet-
itive with no absolute winner.

6 Conclusion

We have presented a fully integrated toolchain to create and model check Markov
automata models based on the high-level compositional modelling language
Modest and the mcsta model checker of the Modest Toolset. Other tools
of the Modest Toolset complement the approach, such as the modes simu-
lator that helps deal with models too large for traditional model checking, or
the moconv tool that can export Modest models to Jani. We have compared
the performance of the dedicated MA model checking algorithms in mcsta with
Imca and Storm. We found mcsta to significantly outperform Imca, and to
be faster than Storm in many cases. The Jani support in both the Modest
Toolset and Storm allows the user to choose the most appropriate tool in
every instance, thus mcsta and Storm ought to be seen as complementary tools
for a common goal. Overall, Markov automata now have user-friendly modelling
and efficient verification support in tools that are actively maintained.

Data Availability. The data generated in our experimental evaluation as well
as instructions to replicate the experiments are archived and available at DOI
10.4121/uuid:98d571be-cdd4-4e5a-a589-7c5b1320e569 [11].

https://doi.org/10.4121/uuid:98d571be-cdd4-4e5a-a589-7c5b1320e569
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