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Abstract. Optimal decision-making under stochastic uncertainty is a
core problem tackled in artificial intelligence/machine learning (AI),
planning, and verification. Planning and AI methods aim to find good
or optimal strategies to maximise rewards or the probability of reaching
a goal. Verification approaches focus on calculating the probability or
reward, obtaining the strategy as a side effect. In this paper, we con-
nect three strands of work on obtaining strategies implemented in the
context of the Modest Toolset: statistical model checking with either
lightweight scheduler sampling or deep learning, and probabilistic model
checking. We compare their different goals and abilities, and show newly
extended experiments on Racetrack benchmarks that highlight the trade-
offs between the methods. We conclude with an outlook on improving
the existing approaches and on generalisations to continuous models, and
emphasise the need for further tool development to integrate methods
that find, evaluate, compare, and explain strategies.

1 Introduction

In many everyday interactions, but also in almost every system where software
interfaces with and controls physical processes, decisions must be made in the
presence of uncertainty about the possible actions’ outcomes and the environ-
ment they interact with. In most cases, the uncertainty can be captured by
randomisation: In casino card games, human players would like to maximise
their chances of winning, or the expected return, against a randomly shuffled
deck of cards. In travel planning, we have to choose between transport options
that are often unreliable, and would like to maximise the probability of arriving
on time. Our travel plans often include fallback options: the choices to make to
recover when one step has gone wrong. Software controlling industrial processes
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must keep the process safe while optimising for, e.g., product completion time or
throughput. Network routing over unreliable links must find routes that achieve
a reasonable compromise between message delivery probability and expected
delivery time. In autonomous driving, the car must react safely to unpredictable
outside actors, imprecise measurements, and imperfect actuators without exces-
sively inflating travel time. To appropriately deal with these kinds of situations,
we need to find optimal, safe, or sufficiently performant strategies1 describing
the action to choose for every possible state of the system and/or environment.

The fundamental mathematical model for such scenarios are Markov decision
processes (MDP). In MDP, the system jumps in discrete time steps from one dis-
crete state to another. In every state, a nondeterministic choice (controllable or
adversarial) over the available actions is followed by a probabilistic (i.e., random)
choice of the next state. Various extensions cover continuous-time [16,36,79] and
continuous-state [40,42,99] scenarios. The core problem, however, is always the
same: Find a strategy satisfying the stated objectives. We focus on maximising
the probability to eventually reach a set of goal states: probabilistic reachability.

Over the past decades, two broad types of solutions have been developed
and implemented in tools. The verification approaches build on probabilis-
tic and statistical model checking (PMC and SMC, respectively). PMC [8,77]
runs an iterative numeric algorithm on a representation of the full MDP to
ε-approximate the maximal reachability probability. While the corresponding
strategy can be extracted from the algorithm’s data structures upon termina-
tion, doing so has traditionally not been the focus of PMC. The strategy itself is
typically represented as a list mapping (all reachable) states to chosen actions.
SMC [1,66,80,105] applies Monte Carlo simulation to a concise executable speci-
fication of an MDP—typically given in a higher-level modelling language such as
Modest [16,54] or JANI [22]—to estimate the probability under a given strategy.
While highly effective in evaluating (the quality of) a strategy, it needs to be
combined with a method to find an (optimal or good-enough) strategy in the
first place. In contrast to PMC, SMC does not suffer from state space explosion:
its memory usage is constant in the size of the MDP, as it only needs to store
the current and next states obtained via the executable specification. It is thus a
good partner for strategy-finding methods with similarly constant or moderate
memory usage.

The first such method that we use in this paper is lightweight scheduler sam-
pling (LSS) [81]: It randomly picks m strategies, applies an SMC-based heuristic
to find the best one, and returns an SMC estimate under this strategy as an
underapproximation of the maximum reachability probability. The key idea and
advantage of LSS is its use of a constant-memory representation of a strategy as
a fixed-size integer. It thus finds and evaluates a strategy in constant memory.

Finding good strategies is the focus of methods developed in (probabilistic)
planning [26,72,104] and artificial intelligence/machine learning. A prominent
success is reinforcement learning (RL) [100], in particular Q-learning [84,85].
Here, again a concise specification of the MDP is executed in an initially random

1 Depending on context, strategies are also called adversaries, policies, or schedulers.
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manner, storing and over time improving a measure of the quality of every state-
action pair that is executed. Similar to PMC, the strategy obtained by RL is a
list mapping each visited state to the (best-quality) chosen action.

Deep neural networks (NNs) are responsible for astounding advances across
applications as diverse as image classification [76], natural language process-
ing [67], and playing games [98]. Deep reinforcement learning (deep RL) algo-
rithms that use deep NNs to store the quality measure have exhibited unprece-
dented performance in various tasks [85]. At the cost of losing the eventual
convergence to the optimum, deep RL reduces the memory usage of RL, possi-
bly to constant (if we use a fixed-size NN independent of the size of the MDP or
its executable specification). The combination of deep RL for finding strategies
with SMC for their evaluation is deep statistical model checking (DSMC) [44].

So far, these methods have been presented, implemented, and benchmarked
mostly in isolation. A wide range of PMC variants is available to users in tools
such as Prism [78], Storm [64], and the Modest Toolset [57]. The lat-
ter, which is the focus of this paper, also includes the statistical model checker
modes [21] with support for LSS. The quantitative verification benchmark set
(QVBS) [60] provides the standard set of models for benchmarking and compar-
isons of PMC and SMC tools. RL and in particular deep RL approaches, on the
other hand, are often evaluated on training environments specified implicitly in
the form of simulation code. In the academic context, the Arcade Learning Envi-
ronment is widely used, which provides game simulators for different ATARI 2006
benchmarks [12]. For reinforcement learning, these training environments are
then often interfaced with the learning algorithm via the OpenAI Gym API [19].
It is used by algorithms interacting with the interface [35,47,68,89,97], as well as
benchmarks that implement (and sometimes extend) it [10,27,37,102,103,106].
We use the OpenAI Gym API via MoGym [45] to train NN and then evaluate
their quality with DSMC.

This paper contributes a uniform presentation of PMC, SMC with LSS, and
deep RL with DSMC, spanning the range from verification approaches deliver-
ing optimal strategies at the cost of state space explosion to AI-based methods
using deep NN approximations for limiting memory usage at the cost of losing
optimality guarantees. We spell out the consequences that the differing goals of
these methods have for obtaining and ultimately explaining strategies. Our new
experimental comparison in Sect. 4 confirms the expected differences, but also
highlights the particularities and similarities of the approaches. For example, the
effectiveness of LSS appears to be an indicator for the (startup) difficulty of RL
on our models. We use different variants of Racetrack benchmarks embodying
a simplistic autonomous driving scenario. They are easy to visualise and under-
stand, yet can flexibly be configured to provide various kinds of difficulties for
the methods we study. Their action space is also very regular, which is currently
a prerequisite for deep RL to be effective.
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2 Preliminaries

For any nonempty set S we let D(S) denote the set of discrete probability
distributions over S, i.e., of functions μ : S → [0, 1] such that the support
spt(μ) = { s ∈ S | μ(s) > 0 } is countable and

∑
s∈spt(μ) μ(s) = 1.

Definition 1. A finite Markov decision process (MDP) [13,69,92] is a tuple

M = 〈S,A, T ,R, s0,S∗〉

consisting of a finite set of states S, a finite set of actions A, the partial transi-
tion probability function T : S ×A ⇀ D(S), a reward function R : S ×A×S →
R≥0 assigning a reward to each triple of state, action, and target state, an initial
state s0 ∈ S, and a set of goal states S∗ ⊆ S. For every state s ∈ S, there is at
least one action a ∈ A such that T (s, a) is defined.

An action a ∈ A is applicable in a state s ∈ S if T (s, a) is defined. In this case,
we also write T (s, a, t) for the probability μ(t) of going to state t according to
T (s, a) = μ. A(s) ⊆ A is the set of all actions that are applicable in state s.
An infinite sequence of states connected via transitions with applicable actions,
ζ = (si)i∈N, is a path.

The reward function assigns to every transition from one state to another
a reward depending on the start and destination state as well as the action.
This enables us, e.g., to reason about the sum of the rewards obtained when
taking multiple transitions in a row. Rewards, while not influencing reachability
probabilities, are an important concept in RL that we come back to in Sect. 3.3.

Definition 2. Given an MDP M as above, a function

σ : S → A

satisfying σ(s) ∈ A(s) for all states s is a (deterministic) memoryless strategy.

A strategy determines the action to take for every state. Restricting MDP M to
the choices made by strategy σ results in an induced discrete-time Markov chain
(DTMC) M |σ: an MDP where ∀s ∈ S : |A(s)| = 1. Intuitively, the probability
that a certain path (or prefix of it) is taken in a DTMC can be calculated as
the product over the transition probabilities of the path (prefix). Formally, since
the set of paths is uncountable, the cylinder set construction [77] can be used to
obtain a probability measure P over paths such that in particular the set ΠS∗ of
paths that contain a state in S∗ is measurable. Then P (ΠS∗) is the reachability
probability pS∗ in the DTMC. In an MDP, each strategy σ induces a DTMC
M |σ and consequently a reachability probability pσ

S∗ . Then pmax
def= supσ pσ

S∗ is
the maximum reachability probability that we are looking for; and an optimal
strategy σmax such that pmax = pσmax

S∗ in fact exists [14].
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3 Finding Strategies

To find strategies that satisfy stated criteria, e.g., (near-)optimality or suitability
for a certain purpose, various approaches have been developed in the fields of
probabilistic verification and artificial intelligence (AI). In this section, we con-
trast (i) the traditional verification approach of probabilistic model checking,
(ii) the more recent lightweight scheduler sampling method that lifts statistical
model checking from DTMC to MDP, (iii) the core AI technique of reinforce-
ment learning, and (iv) its variant using deep neural networks to approximate
the Q-function combined with statistical model checking.

All approaches start with a succinct executable specification of an MDP.
This is either a model specified in a (textual or graphical) modelling language,
for which execution support is provided by some tool’s state space exploration
engine, or a computer program directly implementing the model. For simplicity,
we only assume that we have an interface with the following functions:

– initial() to obtain s0,
– actions(s) to obtain A(s),
– sample(s, a) to (pseudo-)randomly select a next state s′ according to T (s, a),
– distr(s, a) to obtain the distribution μ = T (s, a), e.g., as a list of pairs of

probabilities p and next states s′ such that p = μ(s′), and
– goal(s) that returns true if s ∈ S∗ and false otherwise.

Not all functions will be needed by all approaches; e.g., probabilistic model check-
ing uses distr but not sample whereas reinforcement learning does the opposite.

3.1 Probabilistic Model Checking

Traditional exhaustive probabilistic model checking (PMC) starts by construct-
ing a complete in-memory representation of the MDP: from a call to initial,
it performs a graph search by iteratively following all transitions via calls to
actions and distr until no new states are discovered. The resulting MDP as in
Definition 1 can be stored as an explicit-state graph-like data structure or sparse
matrix, or symbolically using multi-terminal binary decision diagrams [88].

The next step in PMC is to calculate pmax . One approach is to convert the
MDP into a linear program, with one variable per state, which in turn is solved
using any linear programming solver. The value of the variable corresponding to
the initial state will then be pmax . Although this approach can in principle deliver
exact results (though usually up to some floating-point precision), it needs to
store the MDP in memory twice (as in Definition 1 and in suitably-encoded form
for the LP solver), and most LP solvers so far do not scale well to large MDP.
Therefore, most PMC tools default to using iterative numeric algorithms based
on value iteration. Value iteration computes a sequence of values vi(s) for every
state s ∈ S that converges to the maximum reachability probability from each
state (i.e. as if that state was the initial state). It does so by, starting from the
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trivial underapproximation where ∀ i : vi(s) = 1 if s ∈ S∗ and v0(s) = 0 if s /∈ S∗,
applying the Bellman equation

vi+1(s) = maxa∈A(s)

∑
s′∈spt(T (s,a)) T (s, a, s′) · vi(s)

for all states s /∈ S∗. Then limi→∞ vi(s0) = pmax . Value iteration lacks a stopping
criterion to determine the i where vi(s0) is close enough to the true value (e.g.,
within a user-specified relative error ε) [48]. Thus sound PMC tools today use
variants of value iteration that provide such a stopping criterion, e.g., interval
iteration [18,49], sound value iteration [93], or optimistic value iteration [59].

Strategy Representation. Once iterations stop at some i, a (near-)optimal strat-
egy has implicitly been obtained, too: it is, assuming no end components here,

σmax = { s �→ arg maxa∈A(s)

∑
s′∈spt(T (s,a)) T (s, a, s′) · vi(s) }.

The PMC tools Prism, Storm, and mcsta of the Modest Toolset all offer
an option to not only report pmax , but also write σmax to file as a list of state-
action pairs, with as many entries as there are states in the MDP. With typical
ε-correct relative-error implementations of sound value iteration variants, PMC
tools guarantee that, when stopped,

|vi(s0) − pmax |/pmax ≤ ε

(assuming non-zero pmax ; probability-zero states can be determined by graph-
based precomputations [38]). The value of ε is specified by the user, and typically
10−3 or 10−6 by default.

Modest Tools. In the Modest Toolset, the mcsta tool implements PMC.
It is an explicit-state model checker that can use secondary storage (i.e., hard
disks and SSDs) to mitigate state space explosion to some degree at the cost of
runtime [58]. Its focus is on providing correct results; for this purpose, it imple-
ments interval iteration, sound value iteration, and optimistic value iteration,
and recently gained the ability to obtain results that are guaranteed to be free
of errors due to imprecisions and rounding in floating-point calculations [56]. It
was the first tool to implement practically efficient methods for reward-bounded
properties [50], includes a novel symblicit engine to handle very large structured
models [51], and provides methods that work with only a partial exploration of
the state space [4,18]. Beyond MDP, it has state-of-the-art support for Markov
automata [24] and stochastic timed automata [53]. The QComp 2020 and 2021
competitions [23,52] showed that mcsta performs well.

Related Methods. Other alternatives to linear programming and value iteration
are policy iteration [70] and variants such as topological value iteration [28] that
may deliver significant speedups for MDPs with appropriately-sized strongly
connected components. To mitigate state space explosion, we can attempt to
only explore a part of the state space that is likely to be reached [18]; then we



412 A. Hartmanns and M. Klauck

obtain an upper bound on the reachability probability by assuming all unex-
plored “border states” to be goal states, and a lower bound by assuming them
to be non-goal states. Often referred to as (being based on) BRTDP [83], an app-
roach from probabilistic planning, implementations nowadays—such as the one
in mcsta—are rather different from the original BRTDP technique and better
described as partial exploration-based PMC [4]. A similar approach also known
from probabilistic planning called LRTDP [17] in combination with FRET [75]
has recently been extended to be applicable to all established property types,
except long-run averages and nested properties, on MDP structures with posi-
tive and zero-valued rewards [73]. With this technique, often only a fraction of
the state space—the part sufficient to calculate the property at hand—has to be
visited. The technique is implemented in modysh in the Modest Toolset.

3.2 Statistical Model Checking with Scheduler Sampling

Given our interface to an MDP and a function schedule(s) implementing a
strategy σ to return σ(s), statistical model checking (SMC) estimates the reach-
ability probability on the DTMC induced by σ up to a statistical error. It does
so by sampling the indicator function on paths

1ΠS∗
def= {π �→ 1 if π contains a state in S∗ else 0 }

n times as follows:

1. Initialise s := init().
2. If goal(s), return 1; if the probability to reach a goal state from s is 0,

return 0.
3. Select an action a := schedule(s) and sample the next state: s := sample

(s, a).
4. Go to step 2.

That is, SMC generates n simulation runs. Let k be the number of runs where
1 is returned; then the sample mean p̂S∗

def= k/n is an unbiased estimator for
pσ

S∗ . This basic approach can be modified in various ways to incorporate different
statistical methods that quantify the error to be expected from an SMC analysis.
Popular methods are to compute confidence intervals given n and either a desired
interval width or confidence level; to perform sequential testing using Wald’s
sequential probability ratio test [101], thereby dynamically determining n as the
samples come in; or to use the Okamoto bound [87] that provides a formula
relating n, the confidence level δ, and the error ε a priori such that

P(|p̂S∗ − pS∗ | > ε) < 1 − δ

with typical default values of δ being 0.95 or 0.99. For a more extensive overview
of statistical methods for SMC, we refer the interested reader to the survey by
Reijsbergen et al. on hypothesis testing and its references [94]. The development
of efficient methods to determine whether a state has probability 0 of reaching
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a goal state in step 2 is a topic of ongoing research [5]. When pS∗ is small, ε
must also be small for the result to be useful. Then the n required to achieve
the same confidence grows quickly, leading to a runtime explosion. This is the
rare events problem faced by SMC, for which various rare event simulation [95]
methods exist as mitigation.

As specified above, SMC requires a strategy to be given in order to be appli-
cable to MDP. Many SMC tools do not provide support for user-specified strate-
gies, but instead implicitly use the uniform random strategy that, every time
schedule(s) is called, uniformly at (pseudo-)random samples a new action from
A(s). The result consequently is some probability somewhere between maxi-
mum and minimum. UPPAAL SMC [34] notably defines a “stochastic seman-
tics” for probabilistic timed automata that makes continuously uniformly- or
exponentially-distributed choices over time delays followed by discretely uniform
choices over actions. The resulting non-nondeterministic model is sometimes
referred to as stochastic timed automata, not to be confused with the earlier
formalism of the same name of [16] that is a proper extension of probabilistic
timed automata preserving their nondeterminism.

Lightweight scheduler sampling identifies a strategy by a fixed-size (typically
32-bit) integer value. It

1. (pseudo-)randomly selects m such strategy identifiers, then
2. applies a heuristic involving SMC runs as described above under the sampled

strategy to try to find the one that induces the highest probability, and finally
3. performs another SMC analysis for the selected strategy (statistically inde-

pendent from step 2) to obtain an estimate of the probability it induces.

The result is an underapproximation of pmax , up to statistical errors. LSS may
or may not find a strategy better than the uniform random one, but often does
so. Its ability to find a near-optimal strategy depends only on the probability
mass of near-optimal strategies in the space of strategies sampled from.

The key idea that makes LSS work, in constant memory in the size of the
MDP, lies in its implementation of schedule. It uses a hash function H that
takes an arbitrary-length bitstring and returns a 32-bit integer such that, ideally,
(i) small changes in the input result in unpredictable and significant changes in
the output, and (ii) for uniformly random inputs (e.g., of a fixed length), the
outputs appear uniformly distributed over the output space. Then it implements
schedule(s) for strategy identifier s ∈ Z32 by selecting the (H(s.s)mod|A(s)|)-th
element of a fixed ordering of A(s), where s.s is the concatenation of the bitstring
representations of s and s. In this way, schedule implements a memoryless
strategy as required and sufficient for unbounded probabilistic reachability, but
also other types of strategies—such as history-dependent or partial-information
strategies [29]—are easy to implement by appropriately changing the input of H.

We use LSS with a simplified variant of the smart sampling [32] heuristics
for step 2. In addition to m, it is parametrised by nr ≥ m, the simulation budget
per round. In the first round, we perform �nr/m� runs for each of the m strategy
identifiers. Usually, nr is not much larger than m, so this first round produces a
very coarse estimation of the quality of each sampled strategy. We then drop the
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worst-performing half of the strategies before proceeding with the second round,
where �nr/2m� runs are performed per strategy, providing a somewhat better
estimation. This process, dropping the worst half of the remaining strategies
in every round, continues until only one strategy remains. In this way, we can
evaluate a large number of strategies with moderate simulation effort.

Strategy Representation. SMC with LSS returns the estimate of the reachability
probability under the best strategy, and the 32-bit integer identifying that strat-
egy. By itself, this integer is useless: it does not describe the strategy’s decisions
directly. However, given a state of the MDP and the known implementation of
schedule used during the LSS process, we can recompute the strategy’s decision
at any time. We thus get a memory-efficient strategy representation that is not
explanatory in any way.

Modest Tools. In theModestToolset, themodes statistical model checker [21]
implements SMC with LSS as described above. It has dedicated simulation algo-
rithms for MDP, Markov automata, singular stochastic hybrid automata, and gen-
eral stochastic hybrid automata: as the modelling formalism becomes more expres-
sive, simulation becomes computationally more involved, with more and more
complex computations needed for every transition (up to numeric integration to
approximate the non-linear dynamics in general stochastic hybrid automata). To
mitigate the rare events problem, modes implements rare event simulation by
means of importance splitting in a highly automated fashion [20].

Related Methods. Prior to implementing LSS, modes used partial order [15]
and confluence reduction [61] checks to identify whether the nondeterministic
choices in an MDP it simulates are non-spurious, i.e., whether they influence the
probability being estimated. If not, these choices would be resolved randomly;
otherwise, simulation would abort with an error indicating the presence of pos-
sibly non-spurious nondeterminism. Where UPPAAL SMC implicitly applies a
specific strategy—its stochastic semantics—the more recent UPPAAL Stratego
tool [33] combines SMC with the computation of (most permissive) strategies.

3.3 Reinforcement Learning

Reinforcement learning is an AI approach to train agents to take actions max-
imising a reward in uncertain environments. Mathematically, the agent in its
environment can be described as an MDP: the agent chooses actions; the envi-
ronment determines the states and is responsible for the probabilistic outcomes
of the actions. In this paper, we follow the Q-learning approach: We maintain
a Q-function Q : S × A → [0, 1] initialised arbitrarily, or to 0 everywhere. Using
a learning rate parameter α, a discounting factor γ ∈ (0, 1], and a probability ε
that is initially 1, n learning episodes are performed as follows:

1. Set s := init().
2. Perform option a) with probability ε and b) with probability 1 − ε:

a) Select a from actions(s) uniformly at random (exploration).
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b) Select a := arg maxa′∈actions(s) Q(s, a′) (exploitation).
3. Sample s′ := sample(s, a) and set r := 1 if goal(s′) and 0 otherwise.
4. Update Q(s, a) := Q(s, a) + α · (r + γ · maxa′∈actions(s′) Q(s′, a′) − Q(s, a)).
5. Set s := s′; if goal(s) or s has probability 0 of reaching a goal state, end the

episode; else go to step 2.

An episode is very similar to a simulation run, except that we update the Q-
function to estimate the “quality” of taking action a from state s as Q(s, a) and
follow an “ε-greedy” strategy: initially, when ε = 1, we explore randomly; over
time, we make it more and more likely to follow what looks like the best action
to improve our estimate of its quality. RL traditionally optimises for expected
discounted rewards, thus the discounting factor γ; for unbounded reachability
probabilities, we set γ to 1 and only obtain a reward upon reaching a goal state
(as above). As long as we are guaranteed to visit every state infinitely often,
maxa∈A(s0) Q(s0, a) converges towards pmax . Like in value iteration, there is no
stopping criterion that would ensure a specified error.

Strategy Representation. The (near-)optimal strategy obtained when we end the
learning process is directly given by the Q-function: It is

σmax = { s �→ arg maxa∈A(s) Q(s, a) }.

Like in PMC, if we have an explicit in-memory representation of the Q-function,
we can write this strategy to file as a list of state-action pairs.

Modest Tools. RL with an explicit representation of the Q-function is imple-
mented in the Modest Toolset’s modes tool to find strategies in non-linear
stochastic hybrid automata, where classic PMC techniques cannot be applied
due to the continuous nature of the state space [86].

Related Methods. The first use of RL for formal models known to us is in the
work of Henriques et al. [63], which however neglects the statistical error incurred
by performing repeated tests. The first sound formal use of RL is in [18]. For
probabilistic reachability, the rewards are very sparse: only when we hit a goal
state we do receive a reward. This tends to make RL inefficient; for linear-time
properties, denser reward structures can automatically be created, see, e.g., [55].

3.4 Deep Statistical Model Checking

Deep Reinforcement Learning. In RL as described above, we need to store the
Q-function in memory; as we visit more states in large MDP, this will lead to
state space explosion as in PMC. To avoid this scalability limitation, the use
of function approximators to store an inexact representation of the Q-function
has become popular in recent years. In particular, when we use deep neural
networks as a function approximator with RL, we perform deep reinforcement
learning resp. deep Q-learning [39,85]. This use of artificial neural networks
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(NN) to learn strategies in large systems has seen dramatic successes, exhibited
by the abilities of today’s AI systems to play, win, and solve games such as Atari
games [85], Go and Chess [98], and Rubic’s cubes [2].

NN consist of neurons: atomic computational units that apply a (non-linear)
activation function to a weighted sum of their inputs [96]. We consider feed-
forward NN, where neurons are arranged in a sequence of layers. Inputs are
provided to the first (input) layer, and the computation results are propagated
through the layers in sequence until reaching the final (output) layer. In every
layer, every neuron receives as inputs the outputs of all neurons in the previous
layer. For a given set of possible inputs I and (final layer) outputs O, a neural
network can be considered as an efficient-to-query total function π : I → O.
For the problems discussed in this paper, one can assume that this function
constitutes the strategy σ: the inputs are the states S and the outputs are
actions from A. Deep neural networks consist of many layers.

Strategy Representation. A NN represents a Q-function, and thus a strategy.
The NN used in deep RL are typically initialised with random weights, repre-
senting a random initial Q-function. As we learn more and more episodes, the
decisions determined as optimal by the NN tend to converge towards a good,
often optimal, strategy. However, in contrast to the exact Q-learning of Sect. 3.3,
deep RL does not need to converge in this way, and in practice rarely behaves
monotonically. That is, more episodes can (temporarily) make the NN repre-
sent a worse strategy. To preserve the memory advantage of NN over explicit
representations, at the end of the learning process, we store the NN itself (i.e.,
its structure and weights) as the strategy instead of turning it into a list of
state-action pairs (which would require a full state space exploration). The dis-
advantage of this representation is that, similar to the scheduler identifiers of
LSS, the NN definition itself neither makes the strategy’s decisions explicit nor
explains them.

Deep Statistical Model Checking. In contrast to Q-learning with an exact rep-
resentation of the Q-function, we cannot rely on the value returned by the NN
for the initial state being in any formal way related to pmax [44]. One approach
to assess the quality of strategies given by NN is deep statistical model checking
(DSMC) [44], which bridges machine learning and verification: first, deep RL
delivers a strategy σ in the form of an NN trained to act and achieve a certain
goal in an environment described by a formal model. Second, SMC, as a verifi-
cation technique, assesses the quality of the strategy defined by the NN. This is
done by implementing the schedule function in SMC as described in Sect. 3.2
by querying the NN as a black-box oracle: The NN receives the state descriptor
s as input, and it returns as output a decision σ(s) determining the next step.
Hence, at the core of DSMC is a straightforward variation of SMC, applied to an
MDP, together with an NN that has to take the decisions. The DSMC approach
furthermore allows assessing the progress of the NN during learning. As shown
in works on DSMC [44,46], the quality assessment of an agent during training
is not trivial and cannot always be derived from the observed training returns.
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Modest Tools. The DSMC functionality of using a previously trained NN
to resolve the nondeterminism during SMC is implemented in a branch of
modes [44] that will be integrated into the official version of the Mod-

est Toolset soon. In addition, this DSMC extension of modes is used in
MoGym [45]. MoGym is a toolbox that bridges the gap between formal meth-
ods and RL by enabling (a) formally specified training environments to be used
with machine-learned decision-making agents, and (b) the rigorous assessment
of the quality of learned agents. For (a), it implements and extends the OpenAI
Gym API [19]. MoGym is based on Momba [74], a Python toolbox for dealing
with quantitative models from construction to analysis centred around JANI.
MoGym can process JANI models for the description of a training environment
and, based on the induced formal MDP semantics, makes it possible to train
agents using popular RL algorithms. For (b), the environment format itself is
accessible to state-of-the-art model checkers. This enables to perform DSMC by
using modes directly in MoGym. The DSMC extension of modes is also inte-
grated in DSMC evaluation stages [46], where DSMC is applied during deep RL
to determine state space regions with weak performance to concentrate on dur-
ing the learning process. To visualise the SMC results of modes when executing
DSMC on Racetrack benchmarks, the tool TraceVis has been implemented [43].
It takes the traces generated by modes as input, visualises and clusters them,
and provides information on the goal probability when starting on a predefined
position.

Related Methods. Other works combining formal methods with NN, for example,
study strategy synthesis for partially observable MDPs (POMDPs) using recur-
rent neural networks (RNN). The RNN is then used to construct a Markov chain
for which the temporal property can be checked using PMC [25]. Furthermore,
an iterative learning procedure consisting of SMT-solving and learning phases
has been used to construct controllers for stochastic and partially unknown envi-
ronments [71]. In addition, a reinforcement learning algorithm has been invented
to synthesize policies which fulfil a given linear-time property on an MDP [62].
By expressing the property as a limit deterministic Büchi Automaton, a reward
function over the state-action pairs of the MDP can be defined such that the
policy is only constructed by considering the part of the MDP which fulfils the
property. This is of special interest when working on sparse reward models. To
be able to add features to NN acting as a controller without retraining and losing
too much performance, quantitative run-time shields have been devised [7]. This
method can easily be implemented as an extension of DSMC. The shields may
alter the command given by the controller before passing it to the system under
control. To generate these shields, reactive synthesis is used.

3.5 Summary

The four approaches we presented provide distinct characteristics and advan-
tages as well as drawbacks: PMC delivers precise results up to a user-specified
error ε, and RL eventually converges to the true result as well with statistical
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guarantees [18], whereas SMC with LSS and deep RL in DSMC cannot be guar-
anteed to eventually obtain a near-optimal strategy. In all but PMC (using sound
algorithms such as interval iteration), there is no unconditional stopping crite-
rion to determine when ε is reached. PMC is thus the only technique that can
guarantee optimality. This comes at the cost of memory usage: the state space
explosion problem. RL faces the same issue, where it however can be avoided by
using NN trained with deep RL in DSMC—at the cost of the eventual conver-
gence guarantee. Where PMC needs the distr method of our MDP interface,
sample suffices for the others. That is, PMC requires a white-box model, whereas
the other methods only need sampling access—a much simpler requirement for
practical applications. Rare events are no issue for PMC, but lead to a run-
time explosion in SMC, and similarly hinder RL and DSMC, where the learning
process will be very unlikely to ever explore a path leading to one of the rare
goal states. Finally, in terms of the representation of the strategy, PMC and RL
deliver explicit and complete strategies, which however may be unmanageably
large, whereas LSS and DSMC provide compact yet opaque representations.

4 Experiments

We compare the approaches presented above on a set of six Racetrack bench-
marks differing in the track shape. Originally Racetrack is a pen and paper
game [41]: A track is drawn with a start line and a goal line on a sheet of
squared paper. A vehicle starts with velocity 0 from some position on the start
line, with the objective to reach the goal as fast as possible without crashing into
a wall. Nine possible actions modify the current velocity vector by one unit (up,
down, left, right, four diagonals, keep current velocity). This simple game lends
itself naturally as a benchmark for sequential decision making. Like Barto et al.
[11], we consider a noisy version of Racetrack that emulates slippery road con-
ditions: actions may fail with a given probability, in which case the action does
not change the velocity and the vehicle instead continues driving with unchanged
velocity vector. In particular, when extending the problem with noise, we obtain
MDP that do not necessarily allow the vehicle to reach the goal with certainty.
In a variety of such noisy forms, Racetrack was adopted as a benchmark for
MDP algorithms in the AI community [11,17,82,90,91]. Because of its analogy
to autonomous driving, Racetrack has recently also been used in multiple veri-
fication and model checking contexts [9]. Due to the velocity vector only taking
integer values, Racetrack benchmarks are discrete-state models; by definition,
they are discrete-time.

Experimental Setup. We performed our experiments on Racetrack benchmarks
with a noise probability of 10%. For each Racetrack instance, given as a JANI
model, we use PMC, SMC with LSS, and deep RL with DSMC to find a good
or optimal strategy for reaching the goal line from a certain start position and
compute its induced probability. For PMC, we used mcsta on an Intel Core
i7-6600U system (2 cores, 4 threads) with 16 GB of RAM running 64-bit Win-
dows 10. For SMC with LSS, we used modes on an Intel Core i7-4790 system
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(4 cores, 8 threads) with 8 GB of RAM running 64-bit Ubuntu Linux 18.04. For
deep RL and DSMC, we used MoGym, internally calling the DSMC function-
ality of modes, on an AMD Ryzen 9 5950X system (16 cores, 32 threads) with
124 GB of RAM running 64-bit Ubuntu Linux 22.04. All runtimes we report in
our tables are in seconds.

SMC-LSS Specifics. Since modes does not implement sophisticated methods
for detecting probability-zero states, we used step-bounded properties for SMC
with LSS: we asked for the probability to reach the goal line via at most 100,
200, 400, and 800 transitions. We also computed the true probabilities for these
modified properties via PMC with mcsta for comparison, and used SMC without
LSS but with the uniform random strategy (“SMC/unif.” in our tables). To
obtain reproducible results, we fixed the seeds for the pseudo-random number
generators in LSS and SMC, and disabled multi-threading. That is, we used one
simulation thread only. SMC and LSS are easy to speed up by parallelisation,
so this puts them at an unnatural disadvantage. We compare three different
“families” of strategies (indicated by “fam.” in our tables): one sampled with seed
1, one with seed 2, and one with seed 3. For each family, we run LSS sampling
m = 10,000, 100,000, and 1,000,000 strategies. Due to the fixed seeds, the first
10,000 strategies sampled when m = 100,000 are the same as for m = 10,000 in
the same family, etc. The same applies over the different step bounds.

Deep RL with DSMC Specifics. Usually, learning NN is done on GPUs [43–
46], but for a reasonable runtime comparison, we used a CPU infrastructure
here. In addition, the random start setup [44]—during learning, the agent starts
randomly from one of the free road cells instead of always from the same start
cell—leads to significantly better learning performance. This is because the agent
then has the chance to start closer to the goal and learn earlier where the goal
is and how to reach it. But since the other methods we compare to can only
start from a fixed cell, we used the normal start setup during learning for this
paper, where the agent also starts its exploration runs from a single start position
always. The NN we trained have an input layer of 15 neurons, two hidden layers
of 64 neurons each and an output layer of 9 neurons encoding the nine possible
acceleration values, as done in other case studies on Racetrack [43,44,46].

4.1 The barto-small Track

Fig. 1. The barto-small track.

We start with the barto-small track shown in
Fig. 1. The start position is on the far left,
highlighted in green; the goal line is shown in
red on the top right. On this track, the vehicle
must make a 90-degree left turn at the right
point. We show our experimental results in
Tables 1 and 3. First, in Table 1, we show the
results for PMC and DSMC, which use the
original unbounded probabilistic reachability
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Table 1. barto-small results,
unbounded.

Method p Time Episodes

PMC 1.000 362 –

DSMC 0.000 600 4,000

0.981 5,280 44,000

Table 2. Results for maze.

Method p Time Episodes

PMC 0.968 1,305 –

DSMC 0.000 600 14,000

0.000 55,800 981,000

SMC-LSS 0.000 684 –

property. This model has only 44,231,073 states, which mcsta easily handles in
16 GB of memory, and thus finds the optimal result (and strategy) with a prob-
ability close to 1 in 6 min. In deep RL with DSMC, on the other hand, the NN
has not learnt any useful strategy at this point, after 4,000 learning episodes.
After 88 min, however, it has found action choices that result in a near-optimal
probability of 0.981. In Table 3, we see how the uninformed sampling employed
by LSS performs in comparison. We underline the best results found for each
value of m. Using a population of m = 100,000 strategies, LSS already finds
some that lead the vehicle to the goal, albeit with a probability of at most 0.281.
Once we extend the population to 1,000,000 strategies, the success probability
increases to about 0.35. We observe limited returns in sampling larger numbers
of strategies: with m = 10,000,000 for family 3, we get a probability of approx.
0.426 after 192 min—another increase of around 0.07 for a tenfold increase of m
(and 20× of runtime). So in runtime comparable to PMC, LSS finds non-trivial
strategies, but unlike for deep RL with DSMC, additional time does not lead
to significant further improvements. Our use of different step bounds highlights
a peculiar effect here: although strategies exist that reach the goal with a high
probability in 100 steps (as found by PMC), LSS fails to find these; the reason-
able strategies it finds need at least 200 steps, but do not improve when given
more steps to reach the goal. As a baseline, the uniform random strategy is
clearly useless, essentially never allowing the vehicle to reach the goal.

Table 3. Results for barto-small, step-bounded analysis.

Method m fam. 100 steps 200 steps 400 steps 800 steps

p Time p Time p Time p Time

PMC 0.913 172 1.000 231 1.000 335 1.000 335

SMC-LSS 10,000 1 0.000 2 0.004 3 0.004 4 0.004 5

2 0.000 2 0.000 3 0.000 3 0.000 5

3 0.000 3 0.028 3 0.027 4 0.032 5

100,000 1 0.000 24 0.041 35 0.044 43 0.043 58

2 0.000 23 0.281 39 0.281 48 0.281 62

3 0.000 26 0.225 39 0.225 47 0.225 58

1,000,000 1 0.286 264 0.343 396 0.343 476 0.343 630

2 0.318 250 0.317 398 0.317 481 0.317 620

3 0.351 258 0.351 394 0.350 470 0.349 601

10,000,000 3 0.426 11,513

SMC/unif. 0.000 0 0.000 0 0.000 0 0.000 0
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4.2 The barto-medium and barto-big Tracks

We next consider the three variants of an R-shaped track shown in Fig. 2: the
original barto-big track on the right, and two versions of reduced size. We use
these variants of presumably increasing difficulty to find the point where our
three methods stop being able to find non-trivial strategies. The MDP for track
barto-medium-small has 35,149,687 states, barto-medium-large has 69,918,581,
and barto-big has 330,872,263. The experimental results are shown in Table 4.
For PMC, mcsta manages to check the two barto-medium benchmarks without
running out of memory, but on barto-big, 16 GB of memory do not suffice. In
its “hybrid” disk-based mode, where the MDP and all value vectors are kept in
memory-mapped files, mcsta manages even this largest model, at a significant
runtime cost. Deep RL for DSMC again does not manage to learn a useful NN in
up to 30 min for all sizes of the barto tracks but is able to deliver a near-optimal
strategy after 741,000 episodes for barto-medium-small. The slightly increased
difficulty of barto-medium-large is already enough such that the NN has still a
poor performance with a goal probability of 0.002 after 641,000 episodes which
took 18 h and 40 min. barto-big is then too difficult to learn a strategy reaching
the goal even after 29 h with 665,000 training episodes when using the normal
start setting. From other works we know finding a good strategy is no issue for
deep RL in the random start setting [44,46]. For LSS, we only show the best
result achieved among the three families with m = 1,000,000 and a bound of 800
steps. The barto-medium-small track is the last one where LSS manages to find
non-trivial strategies, however these strategies already perform very poorly. Our

Fig. 2. The barto-medium-small, barto-medium-large, and barto-big tracks.

Table 4. Results for the two barto-medium tracks and the barto-big track.

Method barto-medium-small barto-medium-large barto-big

p Time Episodes p Time Episodes p Time Episodes

PMC 0.999 156 – 1.000 402 – 1.000 17,413 –

DSMC 0.000 600 8,000 0.000 600 8,000 0.000 600 5,000

0.000 1,800 21,000 0.000 1,800 18,000 0.000 1,800 11,000

0.946 50,400 741,000 0.002 67,200 641,000 0.000 104,400 665,000

SMC-LSS 0.023 670 – 0.000 742 – 0.000 1,048 –
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explanation for this result, despite the barto-medium models having a similar
number of states as barto-small, is that the tracks require much more specific
behaviour to navigate the R shape, i.e., fewer strategies are successful and thus
the probability mass of successful strategies becomes too low for LSS. In essence,
LSS hits a “rare strategy problem”. We do not show the uniform random strat-
egy, which again does not manage to hit the goal; in fact, it does not manage to
do so for any of our examples in this section.

4.3 The maze Track

Fig. 3. The maze track.

The maze track is depicted in Fig. 3. The MDP for
this track consists of 156,967,073 states. The results
of the experiments are summarized in Table 2.
mcsta implementing PMC solves the benchmark
in around 22 min. While we do not need to use its
hybrid disk-based mode, it still needs more than
16 GB of memory at certain points and is thus
slowed down by the operating system swapping
memory contents to disk. Because of the very nar-
row streets on the track, LSS has no chance: any use-
ful strategy needs to pick a long sequence of exactly
the right actions to not crash into a wall, which is
very unlikely to be sampled. Consequently, we only see probability-zero strate-
gies in our experiments. The same issue makes it infeasible to learn an NN of
reaching the goal with deep RL in the normal start setting: the random explo-
ration phase most likely never manages to hit any goal state and thus obtain
a positive reward. Even after 15.5 h and 981,000 training episodes, we found

Table 5. Results for river-deadend-narrow.

Method m fam. p Time Episodes

PMC – – 1.000 1,563 –

DSMC – – 0.000 1,800 18,000

– – 0.984 36,600 981,000

SMC-LSS 10,000 1 0.483 11 –

2 0.111 12 –

3 0.007 16 –

100,000 1 0.547 139 –

2 0.427 145 –

3 0.590 159 –

1,000,000 1 0.590 1,476 –

2 0.587 1,446 –

3 0.609 1,490 –
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no strategy reaching the goal. We remark that deep RL has no issues with this
track in the random start setting [46].

4.4 The river-deadend-narrow Track

Fig. 4. The river-deadend-narrow track.

Finally, we consider the river-deadend-
narrow track (Fig. 4) in the shape of
a river delta. The experimental results
are shown in Table 5. The MDP of this
model has 175,783,293 states. mcsta

can find a policy with a goal probabil-
ity of 0.984 in 26 min (again slightly
slowed down by swapping). As before,
deep RL is not able to find a useful
strategy in up to 30 min but delivers a
nearly optimal strategy in around 10 h
after 981,000 training episodes. SMC with LSS, for which we show the results
for time bound 800 in Table 5 (since the time bound does not lead to a difference
in results here), finds strategies that are successful up to 60% of the time. While
still far from the optimum, these are the best results that LSS achieves across
the tracks we experiment with. We hypothesise that this is because no “complex
navigation” is required to reach the goal; strategies that are mild variants of
moving straight ahead are reasonably successful here. Of these, enough appear
to exist for LSS to do reasonably well.

4.5 Summary

We observe that the Racetrack benchmarks are non-trivial in terms of decision-
making, with the uniform random strategy being completely useless. mcsta

manages to analyse all of them with PMC, at the cost of white-box model
access—and we intentionally selected tracks that are not too large to be able
to make useful comparisons. LSS only works when the decisions need not be
too specific. It appears to be an indicator of where learning, including deep RL
with normal start, has difficulties starting up. Compared to deep RL, LSS is fast.
Deep RL learned near-optimal strategies for all but the maze and the larger barto
tracks, at a massive computational effort. In practice, the burden of this effort
is on the GPU, making runtimes more acceptable. For the Racetrack cases, we
could have significantly sped up deep RL (and made it work for all tracks) with
the random start approach. Random start is clearly crucial for efficient deep RL;
however it is only so easy to apply to intuitively structured models like Racetrack
maps. For arbitrary verification models as, e.g., in the quantitative verification
benchmark set [60], suitable random start procedures (e.g., by sensibly assigning
non-initial values to the model’s variables) still need to be developed.
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5 Outlook

Our survey of verification- and AI-based approaches for finding strategies high-
lights their very different characteristics in terms of the required model interface,
memory usage, and runtime, which in turn depend on the structure of the MDP.
We have seen that all three methods can be effective in finding reasonable, good,
or even (near-)optimal strategies in suitable cases. All three methods also have
tool support in the Modest Toolset to apply them to verification models such
as those from the quantitative verification benchmark set [60]. However, various
challenges remain to make these approaches work better, interconnect them, and
make the strategies they find useful and accessible to domain expert users.

Informed Exploration. We saw how crucial the random start process is to boot-
strap the exploration phase in learning. For LSS, the uninformedness of the
search is inherent: it simply picks many random strategies (in the sense of ran-
domly chosen fixed decisions, not randomised decisions resampled every time as
in the uniform random strategy). We speculate that, given a suitable heuristic
indicating, e.g., the distance to the goal, the currently monolithic LSS strategies
could be split into segments that could be individually sampled and combined,
going backwards from the goal. A random start-like process for LSS may lead
to robust strategies that work well not only for a single starting point.

Interconnecting Tools Through Strategies. Currently, specific connections exist
between strategy-finding methods like LSS or deep RL and strategy-evaluation
methods like SMC or PMC: the final phase of LSS is an SMC evaluation, and
DSMC brings NN into modes. Other works connect deep RL with PMC [25].
All of these are specific to a pair of strategy-finding and strategy-evaluation
implementations. This is because today’s verification tools do not treat strategies
as first-class objects. At the least, we should be able to apply a strategy found
with any method to the model (determinising it) in the evaluation using any
other method (such as PMC or SMC). This will require standardised formats
or interfaces to represent or dynamically query strategies (similar to JANI),
and further implementation work in tools to take strategies as input wherever
possible.

Explaining Strategies. Each of the strategy-finding methods delivers its result
in a specific format: lists of state-action pairs for PMC, an integer strategy
identifier for LSS, and a NN definition for deep RL. None of them helps the user
to understand and implement the strategy. Without understanding, especially
in safety-critical situations, it is hard for users to trust the verification or AI
tool’s result. A promising way out is to convert the strategy into an (often small
and human-readable) decision tree, using as input an NN from deep RL [3] or a
state-action pair list from PMC [6]. Ideally, we would integrate such a method
directly into our verification and learning tool ecosystem around the Modest

Toolset, which poses technical but also conceptual challenges to, e.g., obtain
a decision tree from an LSS scheduler identifier without having to exhaustively
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enumerate all of the MDP’s states and thus negating the memory advantage of
the SMC-LSS approach. And in the end, while such approaches may make the
strategy understandable, they still do not explain why the strategy at hand is
(near-)optimal and should be the one to be implemented. A different approach
is visualisation, which works well for illustrative benchmarks like Racetrack or
other cyber-physical systems. A first such tool is TraceVis [43], visualising the
DSMC results and traces. An extension of the tool towards visualisation of the
NN internals and the learning process is currently under development.

Beyond Discrete Markov Models. Models with general probability distributions,
such as stochastic automata [31], are desirable to more realistically represent
phenomena such as time-to-failure distributions or combinations of failures,
inspections, repairs, and attacks. Continuous dynamics specified by differential
equations, as in hybrid automata [65], allow the inclusion of models of physical
processes and thus the analysis of cyber-physical systems. SMC also effectively
works for non-Markovian and hybrid formalisms, as evidenced by modes’ sup-
port for stochastic hybrid automata, however LSS does not [30]. We have recently
combined SMC for such models with RL, but used explicitly stored Q-functions
and discretisation for learning [86]. PMC approaches for such models are the
subject of active research, with simple approaches based on interval abstrac-
tions provided by the Modest Toolset today [53,54]. NN, on the other hand,
can in principle handle continuous inputs and outputs just as well as discrete
ones. In light of these various advances of learning and verification into non-
Markovian continuous-time and continuous-state models, a coherent toolchain
that supports verification models with a focus on strategies is still lacking today.

Future Racetracks. We are working on a continuous version of the Racetrack
benchmark where the car does not move in a discrete grid. We also continuously
extend the benchmark with features like tanks to restrict fuel consumption,
different engine types, and other variants [9]. The current developments of Race-
track can always be found online at racetrack.perspicuous-computing.science.

Data Availability. A dataset with models, tools, and scripts from our exper-
imental evaluation is archived and available at DOI https://doi.org/10.4121/
20669646.
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Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 16

34. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
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