380,837 research outputs found

    Toward a periodic table of personality: Mapping personality scales between the five-factor model and the circumplex model

    Get PDF
    In this study, we examine the structures of 10 personality inventories (PIs) widely used for personnel assessment by mapping the scales of PIs to the lexical Big Five circumplex model resulting in a Periodic Table of Personality. Correlations between 273 scales from 10 internationally popular PIs with independent markers of the lexical Big Five are reported, based on data from samples in 2 countries (United Kingdom, N 286; United States, N 1,046), permitting us to map these scales onto the Abridged Big Five Dimensional Circumplex model (Hofstee, de Raad, & Goldberg, 1992). Emerging from our findings we propose a common facet framework derived from the scales of the PIs in our study. These results provide important insights into the literature on criterion-related validity of personality traits, and enable researchers and practitioners to understand how different PI scales converge and diverge and how compound PI scales may be constructed or replicated. Implications for research and practice are considered

    Feature Optimization for Atomistic Machine Learning Yields A Data-Driven Construction of the Periodic Table of the Elements

    Full text link
    Machine-learning of atomic-scale properties amounts to extracting correlations between structure, composition and the quantity that one wants to predict. Representing the input structure in a way that best reflects such correlations makes it possible to improve the accuracy of the model for a given amount of reference data. When using a description of the structures that is transparent and well-principled, optimizing the representation might reveal insights into the chemistry of the data set. Here we show how one can generalize the SOAP kernel to introduce a distance-dependent weight that accounts for the multi-scale nature of the interactions, and a description of correlations between chemical species. We show that this improves substantially the performance of ML models of molecular and materials stability, while making it easier to work with complex, multi-component systems and to extend SOAP to coarse-grained intermolecular potentials. The element correlations that give the best performing model show striking similarities with the conventional periodic table of the elements, providing an inspiring example of how machine learning can rediscover, and generalize, intuitive concepts that constitute the foundations of chemistry.Comment: 9 pages, 4 figure

    Measuring temperature - dependent propagating disturbances in coronal fan loops using multiple SDO/AIA channels and surfing transform technique

    Get PDF
    A set of co-aligned high resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling quantitative description of subvisual coronal motions with low signal-to-noise ratios of the order of 0.1 %. The technique operates with a set of one-dimensional "surfing" signals extracted from position-time plots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency - velocity space which exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the coronal plasma following the square root dependence predicted for the slow mode magneto-acoustic wave which seems to be the dominating wave mode in the studied loop structures. This result extends recent observations by Kiddie et al. (Solar Phys., 2012) to a more general class of fan loop systems not associated with sunspots and demonstrating consistent slow mode activity in up to four AIA channels.Comment: 23 pages, 8 figures, 2 table

    2DMatPedia: An open computational database of two-dimensional materials from top-down and bottom-up approaches

    Get PDF
    Two-dimensional (2D) materials have been a hot research topic in the last decade, due to novel fundamental physics in the reduced dimension and appealing applications. Systematic discovery of functional 2D materials has been the focus of many studies. Here, we present a large dataset of 2D materials, with more than 6,000 monolayer structures, obtained from both top-down and bottom-up discovery procedures. First, we screened all bulk materials in the database of Materials Project for layered structures by a topology-based algorithm, and theoretically exfoliate them into monolayers. Then, we generated new 2D materials by chemical substitution of elements in known 2D materials by others from the same group in the periodic table. The structural, electronic and energetic properties of these 2D materials are consistently calculated, to provide a starting point for further material screening, data mining, data analysis and artificial intelligence applications. We present the details of computational methodology, data record and technical validation of our publicly available data (http://www.2dmatpedia.org/)
    • …
    corecore