120,707 research outputs found

    Some NP-complete edge packing and partitioning problems in planar graphs

    Full text link
    Graph packing and partitioning problems have been studied in many contexts, including from the algorithmic complexity perspective. Consider the packing problem of determining whether a graph contains a spanning tree and a cycle that do not share edges. Bern\'ath and Kir\'aly proved that this decision problem is NP-complete and asked if the same result holds when restricting to planar graphs. Similarly, they showed that the packing problem with a spanning tree and a path between two distinguished vertices is NP-complete. They also established the NP-completeness of the partitioning problem of determining whether the edge set of a graph can be partitioned into a spanning tree and a (not-necessarily spanning) tree. We prove that all three problems remain NP-complete even when restricted to planar graphs.Comment: 6 pages, 2 figure

    Parameterized Complexity of Path Set Packing

    Full text link
    In PATH SET PACKING, the input is an undirected graph GG, a collection P\cal P of simple paths in GG, and a positive integer kk. The problem is to decide whether there exist kk edge-disjoint paths in P\cal P. We study the parameterized complexity of PATH SET PACKING with respect to both natural and structural parameters. We show that the problem is W[1]W[1]-hard with respect to vertex cover plus the maximum length of a path in P\cal P, and W[1]W[1]-hard respect to pathwidth plus maximum degree plus solution size. These results answer an open question raised in COCOON 2018. On the positive side, we show an FPT algorithm parameterized by feedback vertex set plus maximum degree, and also show an FPT algorithm parameterized by treewidth plus maximum degree plus maximum length of a path in P\cal P. Both the positive results complement the hardness of PATH SET PACKING with respect to any subset of the parameters used in the FPT algorithms

    Lossy Kernelization

    Get PDF
    In this paper we propose a new framework for analyzing the performance of preprocessing algorithms. Our framework builds on the notion of kernelization from parameterized complexity. However, as opposed to the original notion of kernelization, our definitions combine well with approximation algorithms and heuristics. The key new definition is that of a polynomial size α\alpha-approximate kernel. Loosely speaking, a polynomial size α\alpha-approximate kernel is a polynomial time pre-processing algorithm that takes as input an instance (I,k)(I,k) to a parameterized problem, and outputs another instance (I,k)(I',k') to the same problem, such that I+kkO(1)|I'|+k' \leq k^{O(1)}. Additionally, for every c1c \geq 1, a cc-approximate solution ss' to the pre-processed instance (I,k)(I',k') can be turned in polynomial time into a (cα)(c \cdot \alpha)-approximate solution ss to the original instance (I,k)(I,k). Our main technical contribution are α\alpha-approximate kernels of polynomial size for three problems, namely Connected Vertex Cover, Disjoint Cycle Packing and Disjoint Factors. These problems are known not to admit any polynomial size kernels unless NPcoNP/polyNP \subseteq coNP/poly. Our approximate kernels simultaneously beat both the lower bounds on the (normal) kernel size, and the hardness of approximation lower bounds for all three problems. On the negative side we prove that Longest Path parameterized by the length of the path and Set Cover parameterized by the universe size do not admit even an α\alpha-approximate kernel of polynomial size, for any α1\alpha \geq 1, unless NPcoNP/polyNP \subseteq coNP/poly. In order to prove this lower bound we need to combine in a non-trivial way the techniques used for showing kernelization lower bounds with the methods for showing hardness of approximationComment: 58 pages. Version 2 contain new results: PSAKS for Cycle Packing and approximate kernel lower bounds for Set Cover and Hitting Set parameterized by universe siz

    Some NP-complete Edge Packing and Partitioning Problems in Planar Graphs

    Get PDF
    Graph packing and partitioning problems have been studied in many contexts, including from the algorithmic complexity perspective. Consider the packing problem of determining whether a graph contains a spanning tree and a cycle that do not share edges. Bernáth and Király proved that this decision problem is NP-complete and asked if the same result holds when restricting to planar graphs. Similarly, they showed that the packing problem with a spanning tree and a path between two distinguished vertices is NP-complete. They also established the NP-completeness of the partitioning problem of determining whether the edge set of a graph can be partitioned into a spanning tree and a (not-necessarily spanning) tree. We prove that all three problems remain NP-complete even when restricted to planar graphs

    Improved Approximation Algorithms for Cycle and Path Packings

    Full text link
    Given an edge-weighted (metric/general) complete graph with nn vertices, the maximum weight (metric/general) kk-cycle/path packing problem is to find a set of nk\frac{n}{k} vertex-disjoint kk-cycles/paths such that the total weight is maximized. In this paper, we consider approximation algorithms. For metric kk-cycle packing, we improve the previous approximation ratio from 3/53/5 to 7/107/10 for k=5k=5, and from 7/8(11/k)27/8\cdot(1-1/k)^2 for k>5k>5 to (7/80.125/k)(11/k)(7/8-0.125/k)(1-1/k) for constant odd k>5k>5 and to 7/8(11/k+1k(k1))7/8\cdot (1-1/k+\frac{1}{k(k-1)}) for even k>5k>5. For metric kk-path packing, we improve the approximation ratio from 7/8(11/k)7/8\cdot (1-1/k) to 27k248k+1632k236k24\frac{27k^2-48k+16}{32k^2-36k-24} for even 10k610\geq k\geq 6. For the case of k=4k=4, we improve the approximation ratio from 3/43/4 to 5/65/6 for metric 4-cycle packing, from 2/32/3 to 3/43/4 for general 4-cycle packing, and from 3/43/4 to 14/1714/17 for metric 4-path packing.Comment: To appear in WALCOM 202

    On the tractability of some natural packing, covering and partitioning problems

    Get PDF
    In this paper we fix 7 types of undirected graphs: paths, paths with prescribed endvertices, circuits, forests, spanning trees, (not necessarily spanning) trees and cuts. Given an undirected graph G=(V,E)G=(V,E) and two "object types" A\mathrm{A} and B\mathrm{B} chosen from the alternatives above, we consider the following questions. \textbf{Packing problem:} can we find an object of type A\mathrm{A} and one of type B\mathrm{B} in the edge set EE of GG, so that they are edge-disjoint? \textbf{Partitioning problem:} can we partition EE into an object of type A\mathrm{A} and one of type B\mathrm{B}? \textbf{Covering problem:} can we cover EE with an object of type A\mathrm{A}, and an object of type B\mathrm{B}? This framework includes 44 natural graph theoretic questions. Some of these problems were well-known before, for example covering the edge-set of a graph with two spanning trees, or finding an ss-tt path PP and an ss'-tt' path PP' that are edge-disjoint. However, many others were not, for example can we find an ss-tt path PEP\subseteq E and a spanning tree TET\subseteq E that are edge-disjoint? Most of these previously unknown problems turned out to be NP-complete, many of them even in planar graphs. This paper determines the status of these 44 problems. For the NP-complete problems we also investigate the planar version, for the polynomial problems we consider the matroidal generalization (wherever this makes sense)

    A Constant Factor Approximation Algorithm for Unsplittable Flow on Paths

    Get PDF
    In the unsplittable flow problem on a path, we are given a capacitated path PP and nn tasks, each task having a demand, a profit, and start and end vertices. The goal is to compute a maximum profit set of tasks, such that for each edge ee of PP, the total demand of selected tasks that use ee does not exceed the capacity of ee. This is a well-studied problem that has been studied under alternative names, such as resource allocation, bandwidth allocation, resource constrained scheduling, temporal knapsack and interval packing. We present a polynomial time constant-factor approximation algorithm for this problem. This improves on the previous best known approximation ratio of O(logn)O(\log n). The approximation ratio of our algorithm is 7+ϵ7+\epsilon for any ϵ>0\epsilon>0. We introduce several novel algorithmic techniques, which might be of independent interest: a framework which reduces the problem to instances with a bounded range of capacities, and a new geometrically inspired dynamic program which solves a special case of the maximum weight independent set of rectangles problem to optimality. In the setting of resource augmentation, wherein the capacities can be slightly violated, we give a (2+ϵ)(2+\epsilon)-approximation algorithm. In addition, we show that the problem is strongly NP-hard even if all edge capacities are equal and all demands are either~1,~2, or~3.Comment: 37 pages, 5 figures Version 2 contains the same results as version 1, but the presentation has been greatly revised and improved. References have been adde

    Approximating Disjoint-Path Problems Using Greedy Algorithms and Packing Integer Programs

    Get PDF
    In the edge(vertex)-disjoint path problem we are given a graph GG and a set T{\cal T} of connection requests. Every connection request in T{\cal T} is a vertex pair (si,ti),(s_i,t_i), 1iK.1 \leq i \leq K. The objective is to connect a maximum number of the pairs via edge(vertex)-disjoint paths. The edge-disjoint path problem can be generalized to the multiple-source unsplittable flow problem where connection request ii has a demand ρi\rho_i and every edge ee a capacity ue.u_e. All these problems are NP-hard and have a multitude of applications in areas such as routing, scheduling and bin packing. Given the hardness of the problem, we study polynomial-time approximation algorithms. In this context, a ρ\rho-approximation algorithm is able to route at least a 1/ρ1/\rho fraction of the connection requests. Although the edge- and vertex-disjoint path problems, and more recently the unsplittable flow generalization, have been extensively studied, they remain notoriously hard to approximate with a bounded performance guarantee. For example, even for the simple edge-disjoint path problem, no o(E)o(\sqrt{|E|})-approximation algorithm is known. Moreover some of the best existing approximation ratios are obtained through sophisticated and non-standard randomized rounding schemes. In this paper we introduce techniques which yield algorithms for a wide range of disjoint-path and unsplittable flow problems. For the general unsplittable flow problem, even with weights on the commodities, our techniques lead to the first approximation algorithm and obtain an approximation ratio that matches, to within logarithmic factors, the O(E)O(\sqrt{|E|}) approximation ratio for the simple edge-disjoint path problem. In addition to this result and to improved bounds for several disjoint-path problems, our techniques simplify and unify the derivation of many existing approximation results. We use two basic techniques. First, we propose simple greedy algorithms for edge- and vertex-disjoint paths and second, we propose the use of a framework based on packing integer programs for more general problems such as unsplittable flow. A packing integer program is of the form maximize cTx,c^{T}\cdot x, subject to Axb,Ax \leq b, A,b,c0.A,b,c \geq 0. As part of our tools we develop improved approximation algorithms for a class of packing integer programs, a result that we believe is of independent interest

    Fast Algorithms for Parameterized Problems with Relaxed Disjointness Constraints

    Full text link
    In parameterized complexity, it is a natural idea to consider different generalizations of classic problems. Usually, such generalization are obtained by introducing a "relaxation" variable, where the original problem corresponds to setting this variable to a constant value. For instance, the problem of packing sets of size at most pp into a given universe generalizes the Maximum Matching problem, which is recovered by taking p=2p=2. Most often, the complexity of the problem increases with the relaxation variable, but very recently Abasi et al. have given a surprising example of a problem --- rr-Simple kk-Path --- that can be solved by a randomized algorithm with running time O(2O(klogrr))O^*(2^{O(k \frac{\log r}{r})}). That is, the complexity of the problem decreases with rr. In this paper we pursue further the direction sketched by Abasi et al. Our main contribution is a derandomization tool that provides a deterministic counterpart of the main technical result of Abasi et al.: the O(2O(klogrr))O^*(2^{O(k \frac{\log r}{r})}) algorithm for (r,k)(r,k)-Monomial Detection, which is the problem of finding a monomial of total degree kk and individual degrees at most rr in a polynomial given as an arithmetic circuit. Our technique works for a large class of circuits, and in particular it can be used to derandomize the result of Abasi et al. for rr-Simple kk-Path. On our way to this result we introduce the notion of representative sets for multisets, which may be of independent interest. Finally, we give two more examples of problems that were already studied in the literature, where the same relaxation phenomenon happens. The first one is a natural relaxation of the Set Packing problem, where we allow the packed sets to overlap at each element at most rr times. The second one is Degree Bounded Spanning Tree, where we seek for a spanning tree of the graph with a small maximum degree

    Approximation Algorithms for Round-UFP and Round-SAP

    Get PDF
    We study Round-UFP and Round-SAP, two generalizations of the classical Bin Packing problem that correspond to the unsplittable flow problem on a path (UFP) and the storage allocation problem (SAP), respectively. We are given a path with capacities on its edges and a set of jobs where for each job we are given a demand and a subpath. In Round-UFP, the goal is to find a packing of all jobs into a minimum number of copies (rounds) of the given path such that for each copy, the total demand of jobs on any edge does not exceed the capacity of the respective edge. In Round-SAP, the jobs are considered to be rectangles and the goal is to find a non-overlapping packing of these rectangles into a minimum number of rounds such that all rectangles lie completely below the capacity profile of the edges. We show that in contrast to Bin Packing, both problems do not admit an asymptotic polynomial-time approximation scheme (APTAS), even when all edge capacities are equal. However, for this setting, we obtain asymptotic (2+?)-approximations for both problems. For the general case, we obtain an O(log log n)-approximation algorithm and an O(log log 1/?)-approximation under (1+?)-resource augmentation for both problems. For the intermediate setting of the no bottleneck assumption (i.e., the maximum job demand is at most the minimum edge capacity), we obtain an absolute 12- and an asymptotic (16+?)-approximation algorithm for Round-UFP and Round-SAP, respectively
    corecore