Dartmouth College
Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

10-1-1997

Approximating Disjoint-Path Problems Using Greedy Algorithms
and Packing Integer Programs

Stavros G. Kolliopoulos
Dartmouth College

Clifford Stein
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

b Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation

Kolliopoulos, Stavros G. and Stein, Clifford, "Approximating Disjoint-Path Problems Using Greedy
Algorithms and Packing Integer Programs" (1997). Computer Science Technical Report PCS-TR97-325.
https://digitalcommons.dartmouth.edu/cs_tr/158

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.


https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/158?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Approximating Disjoint-Path Problems Using Greedy
Aigorithms and Packing integer Programs

Stavrox Kolliopoulos
Clifford Stein
Technical Report PCS-TR97-325

11/97



Approximating Disjoint-Path Problems Using Greedy Algorithms and
Packing Integer Programs

Stavros G. Kolliopoulos! Clifford Stein!

Abstract

In the edge( vertez)-disjoint path problem we are given a graph G and a set 7 of connection
requests. Every connection request in 7 is a vertex pair (s;,%;), 1 < i < K. The objective is
to connect a maximum number of the pairs via edge( vertex)-disjoint paths. The edge-disjoint
path problem can be generalized to the multiple-source unsplittable flow problem where connection
request 7 has a demand p; and every edge e a capacity u.. All these problems are NP-hard and
have a multitude of applications in areas such as routing, scheduling and bin packing.

Given the hardness of the problem, we study polynomial-time approximation algorithms. In
this context, a p-approximation algorithm is able to route at least a 1/p fraction of the con-
nection requests, Although the edge- and vertex-disjoint path problems, and more recently the
unsplittable flow generalization, have been extensively studied, they remain notoriously hard to ap-
proximate with a bounded performance guarantee. For example, even for the simple edge-digjoint
path problem, no-o(y/|E|)-approximation algorithm is known. Moreover some of the best existing
approximation ratios are obtained through sophisticated and non-standard randomized rounding
schemes.

In this paper we introduce techniques which yield algorithms for a wide range of digjoint-path
and unsplittable flow problems. For the general unsplittable flow problem, even with weights on the
commodities, our techniques lead to the first approximation algorithm and obtain an approximation
ratio that matches, to within logarithmic factors, the O(\/|E~|) approximation ratio for the simple
edge-disjoint path problem. In addition to this result and to improved bounds for several digjoint-
path problems, our techniques simplify and unify the derivation of many existing approximation
results.

We use two basic techniques. First, we propose simple greedy algorithms for edge- and vertex-
digjoint paths and second, we propose the use of a framework based on packing integer programs for
more general problems such as unsplittable flow. A packing integer program is of the form maximize
eT .z, subject to Az < b, A,b,¢c > 0. As part of our tools we develop improved approximation
algorithms for a class of packing integer programs, a result that we believe is of independent
interest.

Dartmouth College, Department of Computer Science, Hanover, NH 03755-3510. E-mail:  {stavros,
cliff}@cs.dartmouth.edu. Research partly supported by NST' Award CCR-9308701 and NSF Career Award CCR-
9624828.



1 Introduction

This paper examines approximation algorithms for disjoint-path problems and their generalizations.
In the edge( vertex)-disjoint path problem, we are given a graph G = (V, E) and a set 7 of connection
requests, also called commodities. Every connection request in 7 is a vertex pair (s;,%;), 1 < i < K.
The objective is to connect a maximum number of the pairs via edge( vertex)-disjoint paths. For
vertex-disjoint paths problem, the connection requests are assumed to be disjoint. We call the set
of connected pairs realizable. A generalization of the edge-disjoint paths problem is multiple-source
unsplittable flow. In this problem every commodity & in the set 7 has an associated demand pyg,
and every edge e has a capacity u.. The demand pp must be routed on a single path from s to
ti. The objective is to maximize the sum of the demands that can be fully routed while respecting
the capacity constraints. Without loss of generality, we assume that maxy pp = 1, and following the
standard definition of the problem in the literature, u. > 1, Ve € E. When all demands and capacities
are 1 in the multiple-source unsplittable flow problem we obtain the edge-disjoint path problem. (See
[10, 14] for further applications and motivation for unsplittable flow.) In all the above problems one
can assign a weight w; < 1 to each connection request and seek to find a realizable set of maximum
total weight. In this paper we will state explicitly when we deal with the weighted version of a problem.

Both the edge- and vertex-disjoint path problems are fundamental, extensively studied (see e.g.
[25, 6, 26, 20, 10, 13, 3]), NP-hard problems [9], with a multitude of applications in areas such as
telecommunications, VLSI and scheduling. Despite the attention they have received, disjoint-path
problems on general graphs remain notoriously hard in terms of approximation; even for edge-disjoint
paths, no algorithm is known which can find even an w(1/+/[E]) fraction of the realizable paths.

In approximating these problems, we use the traditional notion of a p-approzimation algorithm,
p > 1, which is one that outputs, in polynomial time, a realizable set of size at least 1/p times
the optimum. We will also give and refer to algorithms which output a realizable set whose size is
non-linear function of the optimum OPT, such as O PT?/|E|.

Overview of previous work. Two main approaches have heen followed for approximation.

(i) The first approach, which we call the rounding approach, consists of solving a fractional relax-
ation and then use rounding techniques to obtain an integral solution. The fractional relaxation is
typically multicommodity flow and the rounding techniques used to date involved sophisticated and
non-standard use of randomized rounding [30]. The objective value of the resulting solution is com-
pared to the fractional optimum y*, which is an upper bound on the integral optimum, OPT. This
approach has been the more successful one and recently yielded the first approximation algorithms for
the edge-disjoint path problem [30], and for uniform unsplittable flow which is the special case of un-
splittable flow where all the capacities have the same value. Let d denote the dilation of the fractional
solution, i.e. the maximum length of a flow path in the fractional relaxation. Bounds that rely on
the dilation are particularly appealing for expander graphs where it is known that d = O(polylog(n))
[15, 12]. The rounding approach yields, for unweighted uniform unsplittable flow (and thus for un-
weighted edge-disjoint paths as well) a realizable set of size Q(max{(y*)?/|E|,v*/\/|E],y*/d}) and
an Q(max{(y*)?/|E|,y*/d}) bound for the weighted version [30] . This approach is known to have
limitations, e.g. it is known that a gap of Q(/[V]) exits between the fractional and integral optima,
for both the edge- and vertex-disjoint path problems on a graph with |E| = O(|V]) [7].

(ii) Under the second approach, which we call the routing approach, a commodity is never split, i.e.
routed fractionally along more than one path during the course of the algorithm. In the analysis, the
objective value of the solution is compared to an estimated upper bound on the O PT. This approach
has found very limited applicability so far, one reason being the perceived hardness of deriving upper
bounds on O PT without resorting to a fractional relaxation. The only example of this method we are
aware of is the on-line Bounded Greedy Algorithm in [10] whose approximation guarantee depends
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Table 1: Known approximation bounds for edge-disjoint paths (EDP), uniform capacity unsplittable flow
(UCUFP), and general unsplittable flow (UFP), Q-notation omitted. £, denotes the set of edges used by some
path in the integral optimal solution and d, the average length of the paths in the same solution. Results with
no citation come from the present paper. Our y*/\/TE’! bound for the weighted EDP problem holds under the
assumption that the number of connection requests K = O(|E}).

also on the diameter of the graph. The algorithm can be easily modified into an off-line procedure
that outputs realizable sets of size Q(OPT/\/|El) (U OPT//|V])) for edge( vertex)-disjoint paths.
The Q(OPT/+/]V]) bound is the best known bound to date for vertex-disjoint paths.

Our contribution. In this paper we provide techniques for approximating disjoint-path problems
that bear on both of the above approaches. Tables 1 and 2 summarize previous and new bounds for
edge-, vertex-disjoint path and unsplittable low problems.

Under the routing approach (approach (ii)) we give a simple deterministic greedy algorithm GrREEDY_PaTH
for edge-disjoint paths that has performance guarantees comparable to those obtained by the multi-
commodity flow based algorithms. Greedy algorithms have been extensively studied in combinatorial
optimization due to their elegance and simplicity. Our work provides another example of the usefulness
of the greedy method. The underlying idea is that if one keeps routing commodities along sufficiently
short paths the final number of commodities routed is lowerbounded with respect to the optimum.

GREEDY_PATH outputs a realizable set of size Q(max{OPT?/|E,|,OPT/\/[E,|}) for the edge-
disjoint path problem. Here E, C E is the set of edges used by the paths in an optimal solution. Note
that OPT?/|E,| always dominates O PT/+/|L,| in the unweighted case that we consider; we give both
bounds to facilitate comparison with existing work and to conform with the traditional notion of a
p-approximation algorithm. Our approximation existentially improves upon the multicommodity-flow
based results when |E,| = o(|F|), i.e. when the optimal solution uses a small portion of the edges of
the graph. Another bound can be obtained by noticing that O PT?/|E,| = OPT/d,, where d, denotes
the average length of the paths in an optimal solution.

Essentially the same algorithm, GREEDY_VPATH, obtains for the vertex-disjoint path problem a
realizable set of size Q(max{OQPT?/|V,|,0PT/\/[V,]}), where V, C V is the set of vertices used by
the paths in an optimal solution. Recall that the best known bound to date is t = Q(OPT/\/[V]).
The realizable set output by our algorithm has size Q(¢%) and potentially better than this when |V,| =
o(|V|). This is a significant improvement when OPT = w(y/[V]). For example, when O PT = Q(|V]),
we obtain a constant-factor approximation. Again an Q(OPT/d,) guarantee follows immediately.

We turn to the rounding approach (approach (i)) to handle the weighted disjoint path and unsplit-
table flow problems. We propose the use of packing integer programs as a unifying framework that
abstracts away the need for customized and complex randomized rounding schemes. A packing integer
program is of the form maximize ¢’ -z, subject to Az < b, A,b, ¢ > 0. We first develop, as part of our
tools, an improved approximation algorithm for a class of packing integer programs, called column
restricted, that are relevant to unsplittable flow problems. Armed with both this new algorithm and
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Table 2: Known approximation bounds for vertex-disjoint paths, Q-notation omitted. V, denotes the set of
vertices used by some path in the integral optimal solution and d, the average length of the paths in the same
solution. Results with no citation come from the present paper.

existing algorithms for general packing integer programs, we show how packing formulations both
provide a unified and simplified derivation of many results from [30] and lead to new ones. In par-
ticular, we obtain the first approximation algorithm for weighted multiple-source unsplittable flow on
networks with arbitrary demands and capacities and the first approximation algorithm for weighted
vertex-disjoint paths. Further, we believe that our new algorithm for column-restricted packing integer
programs is of independent interest.

We now elaborate on our results under the rounding approach, providing further background as
necessary.

1.1 Packing Integer Programs

Packing integer programs are a well-studied class of integer programs that can model several NP-
complete problems, including independent set, hypergraph k-matching [18, 1], job-shop scheduling
[22, 27, 32, 19] and many flow and path related problems. Many of these problems seem to be difficult
to approximate, and not much is known about their worst-case approximation ratios. Following [29]
a packing integer program (PIP) is defined as follows.

Definition 1.1 Given A € [0,1]™*™, b € [1,00)™ and ¢ € [0,1]" with max;c; = 1, a PIPP = (A,b,¢)
seeks to mazimize ¢L -z subject to & € 2% and Az < b. Constraints of the form 0 < x; < d; are also
allowed. If A € {0,1}™*", each entry of b is assumed integral. Let B = min; b;, and o be the mazimum
number of non-zero entries in any column of A.

The parameters B and « in the definition above appear in the approximation bounds. For con-
venience we call b; the capacity of row ¢. The restrictions on the values of the entries of A,b,c are
without loss of generality; the values in an arbitrary packing program can be scaled to satisfy the
above requirements [28]. We will state explicitly when some packing program in this paper deviates
from these requirements. When A € {0,1}™*", we say that we have a (0, 1)-PIP.

Previous Work on Packing Programs. The basic techniques for approximating packing integer
programs have been the randomized rounding technique of Raghavan and Thompson [23, 24] and the
work of Plotkin, Shmoys and Tardos [22]. Let y* denote the optimum value of the linear relaxation.
Standard randomized rounding yields integral solutions of value Q(y*/m!/P) for general PIP’s and
Q(y* /m B+ for (0,1)-PIP’s [24] (see also [28].) Srinivasan [28, 29] improved on the standard
randomized rounding bounds and obtained bounds of Q(y*(y*/m)/ B~} and Q(y*/a/B-1) for
general PIP’s and Q(y*(y*/m)YB) and Q(y*/a/B) for (0,1)-PIP’s.

New results for column-restricted PIP’s. The above results show that for various combinations
of values for y*, m and B, the bounds obtained for a (0,1)-PIP are significantly better than those for
general PIP’s. In fact they are always better when y™ < m. As another example, the approximation



ratio m!/(B+1) obtained for a (0, 1)-PIP is polynomially better than the approximation ratio of a PIP
with the same parameters. Thus it is natural to ask whether we can bridge this gap. We make
progress in this direction by defining a column-restricted PIP P, as one where all non-zero entries of
the j-th column of A have the same value p; < 1. Column-restricted PIP’s arise in applications such
as unsplittable flow problems (see next section). We show how to obtain approximation guarantees
for column-restricted PIP’s that are similar to the ones obtained for (0,1)-PIP’s. Let y* denote the
optimum of the linear relaxation of P,. We obtain an integral solution of value Q(y;/m/®) and
Qyr /e B). Letting o(y}) = Qy:(y:/m)"/?) we also obtain a bound that is at least as good as o(y)
for y¥ < mlogn and in any case it is never worse by more than a O(logl/ B n) factor. Finally we show
how to improve upon the stated approximations when max; p; is bounded away from 1.

We now give an overview of our technique. First we find an optimum solution z* to the linear
relaxation of the column-restricted PIP P.. We partition the p;’s into a fixed number of intervals
according to their values and generate a packing subproblem for each range. In a packing subproblem
PL corresponding to range L, we only include the columns of A with p; € L and to each component of
the bl -vector we allocate only a fraction of the original b; value, a fraction that is determined by z*.
Next we find approximate solutions to each subproblem and combine them to obtain a solution to the
original problem. Perhaps the key idea is in using the solution 2* to define the capacity allocation to
the b"-vector for subproblem P¥. This generalizes previous work of the authors [14] on single-source
unsplittable flow. The other key idea is that each subproblem can be approximated almost as well as
a (0,1)-PIP.

1.2 Applications of packing to approximation

We introduce a new framework for applying packing techniques to disjoint-path problems. First, we
formulate an integer program (which is not necessarily a PIP) and solve a linear relaxation of this
integer program to obtain a solution z. Typically this is a multicommodity flow problem. We then
explicitly use the solution 2 to guide the formation of a column-restricted or (0,1) PIP. A related
usage of a solution to the linear relaxation of integer programs in a different context can be found in
[8, 31]. An integral approximate solution to the created PIP will be an approximate solution to the
original disjoint path problem (with possibly some small degradation in the approximation factor).
This integral solution can be found using existing algorithms for approximating PIP’s as a black box.
Our algorithms apply to the case when there are weights on the commodities, and thus generalize
those of Srinivasan for edge-disjoint paths. This approach yields four applications which we explain
below.

Application 1: weighted unsplittable flow. Let Fy, I, Fy denote (y*)?/|E], v*//[E] and y*/d
respectively. We obtain a realizable set of weight Q(max{Fy/log|F|, F3}) for unsplittable flow with
arbitrary demands and capacities. We also give a bound at least as good as Fy/log®|E| whose
analytical form is complicated (c¢f. Thms 3.1,4.4.) In the case where the number of commodities
K = O(|E]) we show how to obtain an Q(max{F;/log|E|, F2}) bound. Notice that for the edge-
disjoint path problem this is a natural assumption since at most |F| connection requests can be
feasibly routed. We also note that a p-approximation for y* entails an O(plog|FE|) approximation for
the problem of routing in rounds [2, 10]. We do not pursue any further the latter problem in this
extended abstract.

Application 2: weighted vertex-disjoint paths. We give an algorithm that outputs a solution
of value Q(max{(y*)?/|V|,v*//IV],v*/d}). The algorithm relies on the observation that after solving
the relaxation the problem of rounding is essentially an instance of hypergraph matching; thus it can



be formulated as a packing program with |V| constraints. The algorithm is surprisingly simple but
the performance guarantee matches the integrality gap known for the problem [7].

Application 3: routing with low congestion. A problem that has received a lot of attention
in the literature on routing problems (e.g. [24, 16, 22, 21, 10, 14]) is that of minimizing congestion,
i.e. the factor by which one is allowed to scale up capacities in order to achieve an optimal (or near-
optimal) realizable set. In our usage of packing in the rounding algorithms we have assumed that the
parameter B of the packing program is equal to 1. Allowing B > 1 is equivalent to allowing congestion
B in the corresponding disjoint-path problem. Thus another advantage of the packing approach is that
tradeoffs with the allowed congestion B can be obtained immediately by plugging in B in the packing
algorithms that we use as a black box. For example the approximation for edge-disjoint paths becomes
Q(max{y*(y*/|ENE, y* /| E|M B+ y*/dt/B}), when the number of connection requests is O(|E]).
Our congestion tradeoffs gemeralize previous work by Srinivasan [30] who showed the Q(y*/d'/B)
tradeoff for uniform capacity unsplittable flow. We do not state the tradeoffs explicitly for the various
problems since they can be obtained easily by simple modifications to the given algorithms.

Application 4: Independent Set in the square of a graph. Given a graph G = (V, F) the k-th
power GF = (V, El“) of (7 is a graph where two vertices are adjacent if and only if they are at distance
at most k in G. We further demonstrate the power of packing formulations by providing an O(y/[VT])
approximation algorithm for finding a maximum independent set in the square of a graph. We also
give results that depend on the maximum vertex degree A in . Our approximation ratio cannot be
polynomially improved in the sense that no (n /4)1/ 2—2 approximation, for any fixed ¢ > 0, can be
obtained in polynomial time unless NP = ZPP. Studying NP-hard problems in powers of graphs is a
topic that has received some attention in the literature [5, 33, 17, 4].

Independently of our work Srinivasan (personal communication) has obtained results similar to ours
for approximating vertex-disjoint paths under the rounding approach and column-restricted packing
integer programs. His work builds on the methods in [30].

2 Approximating a column-restricted PIP

In this section we present the approximation algorithm for column-restricted PIP’s. Let P = (4,0, ¢)
be a column-restricted PIP. We call p; < 1, the value of the non-zero entries of the j-th column,
1 < j < n, the value of column j. Throughout this section we assume that there is a polynomial-time
algorithm that given a (0,1)-PIP with fractional optimum y* outputs an integral solution of value at
least o(m, B, a,y*) where m, B, a are the parameters of the packing program. For example a known
o is Q(y*/7n1+B). We start by providing a subroutine for solving a column-restricted PIP when the
column values are close in range.

Theorem 2.1 Let P = (A,b,c) be a column-restricted PIP where all column values p; are equal to
p. and where each b; = k;I'p, T' > 1, k; positive integer, 1 < 1 < m. Here min; b; is not necessarily
greater than 1. Then we can find in polynomial time a solution of value at least o(m, kI', e, y*), where
y* denotes the optimum of the linear relaxzation of P and k = mingk;.

Proof. Transform the given system P to a (0,1)-PIP P' = (A', V', ¢) where b; = k;I', and AL, = A;;/p.
Every feasible solution (either fractional or integral) Z to P’ is a feasible solution to P and vice versa.
Therefore the fractional optimum %* is the same for both programs. Also the maximum number of
non-zero entries on any column is the same for A and A’. Thus we can unambiguously use a for both.
We have assumed that there is an approximation algorithm for P’ returning a solution with objective
value o(m, kI, a, y*). Invoking this algorithm completes the proof. 1

The proof of the following lemma generalizes that of Lemma 4.1 in [11].



Lemma 2.1 Let P = (A4,b,¢), be a column-restricted PIP with column values in the interval (a1, az],
and b; > Tag, Vi and some number I' > 1. Here min; b; is not necessarily greater than 1. There s an
algorithm a_PACKING that finds a solution g to P of value at least o(m,I', a, % LLy*) where y* is the
optimum of the fractional relazation of P. The algorithm runs in polynomial time.

Proof sketch. We sketch the algorithm a_PackiNGg. Obtain a PIP P/ = (A',V, ¢) from P as follows.
Round down b; to the nearest multiple of T'ag and then multiply it with aq/ag. Set b equal to the
resulting value. Every b} is now between aq/2ay and aq/ag times the corresponding b;. Set A to ay if
Aj; #0and to 0 otherw_lse P’ has thus a fractional solution of value at least (aq/2as)y* thaJt can be
obtained by scaling down the optimal fractional solution of P. Note that every b is a multiple of T'ay.
Thus we can invoke Theorem 2.1 and find a solution ¢’ to P’ of value at least o(m, [, a, (a1/2a2)y*).
Scaling up every component of g’ by a factor of at most ay/ay yields a vector g that is feasible for P

and has value at least o(m, T, a, 52-y%). 1

Lemma 2.2 Let P = (A4,b,¢), be a column-restricted PIP with column values in the interval (ay, as],
and b; a multiple of Taq, Vi and some number I' > 1. Here min; b; is not necessarily greater than 1.
There is an algorithm INTERVAL_PACKING that finds a solution g to P of value at least o(m, T, a, 22y*),
where y* is the optimum of the fractional relazation of P. The algorithm runs in polynomial time.

Proof sketch. Similar to that of Lemma 2.1. Since all b;’s are already multiples of Bag, we don’t
pay the 1/2 factor for the initial rounding. |

We now give the idea behind the full algorithm. The technique generalizes earlier work of the
authors on single-source unsplittable flow [14]. Let z* denote the optimum solution to the linear
relaxation of P. We are going to create packing subproblems P = (A%, b}, ¢*) where A* contains only
the columns of A with values in some fixed range (ay-1,ay]. We will obtain our integral solution to
P by combining approximate solutions to the subproblems. The crucial step is capacity allocation to
subproblems. Consider a candidate for the b -vector that we call the A-th fmctional capacity vector.
In the fractional capacity vector the i-th entry is equal to Ejlpﬁ(axnuou] Ajjz}. In other words we
allocate capacity to the A-th subproblem by pulling out of b the amount of capacity used up in the
solution z* by the columns with values in (ax_1,a@)]. The benefit of such a scheme would be that
by using the relevant entries of 2* we could obtain a feasible solution to the linear relaxation of P*.
However, to be able to benefit from Lemma 2.1 to find an approximate integral solution to each P, we
need all entries of b* to be larger than Ba. This increases the required capacity for each subproblem
potentially above the fractional capacity. Thus we resort to more sophisticated capacity allocation to
ensure that (i) there is enough total capacity in the b-vector of P to share among the subproblems
(ii) the subproblems can benefit from the subroutines in Lemmata 2.1, 2.2. In particular, we initially
assign to each subproblem A only 1/2 of the fractional capacity vector; this has the asymptotically
negligible effect of scaling down the fractional optimum for each subproblem by at most 2. We exploit

the unused (1/2)b vector of capacity to add an extra Ba) units to the entries of br, VA,

Given ay,a;, let J¥% be the set of column indices k& for which a; < pr < ;. We then define,
A%% 1o be the m x |J¥%| submatrix of A consisting of the columns in J*#%/, and for any vector
z, 4% to be the |J¥H%/|-entry subvector & consisting of the entries whose indices are in J&#%/, We
will also need to combine back together the various subvectors, and define 2“0 U. ..U a%~-1% to be
the n-entry vector in which the various entries in the various subvectors are mapped back into their
original positions. Any positions not in any of the corresponding index sets J“#*7 are set to 0.

ALGORITHM COLUMN_PARTITION(P)
Step 1. Find the n-vector z, that yields the optimal solution to the linear relaxation of P.

Step 2a. Define a partition of the (0, 1] interval into ¢ = O(logn) consecutive subintervals (0,n7%], ...,
(472472474, (4“1, 1] where k is a constant larger than 1. For A = 1...¢ —1 form subprob-
lem P* = (A* b, ¢*). A* and ¢* are the restrictions defined by A* = AT AT 47 AT
Define similarly P5 (A€, b€, cf) such that Af = A9n7", cf = O™

and ¢* =



Step 2b. Let d} be the ith entry of (A* - 2*). We define b* = b when X is 1 or ¢, and otherwise b} =
B(1/4)*1 + (1/2)d}. :

Step 3. Form solution & by setting x; to 1if p; € (0, n~*¥], and 0 otherwise.

Step 4. On each P*, 2 < XA < € — 1, invoke . PACKING to obtain a solution vector 2*. Combine the solutions
to subproblems 2 through & — 1 to form n-vector & = U2<}\<§_1Z‘)\.

Step 5. Invoke INTERVAL_PACKING on P! to obtain a solution vector . Let & = Uz!.

T

Step 6. Of the three vectors &, & and &, output the one, call it z, that maximiges ¢* - z.

Two tasks remain. First, we must show that the vector z output by the algorithm is a feasible
solution to the original packing problem P. Second, we must lower bound ¢’ -z in terms of the
optimum y. = ¢’ -z, of the fractional 1elaxat10n of P. Let yit"? = ¢"m221"2 and if ry = (1/4)" and
ro = (1/4)*~! then we abbreviate ;'™ as y}. We examine first the vector & in the following lemma.

Lemma 2.3 Algorithm COLUMN_PARTITION runs in polynomial time and the n-vector & it outputs
is a feasible solution to P of value at least EA =t-1 o(m, B,a, (1/16)y).

Proof sketch. Let §* be the optimal solution to the linear relaxation of P*. By Lemma 2.1 the
value of the solution z*, 2 < A < € — 1, found at Step 4 is at least a(m, B, a, (1/2)(1/4)§). By the
definition of b* in Py, (1/2)z) ,i.e. the restriction of z scaled by 1/2, is a feasible fractional solution
for Py. Thus §* > (1/2)y). Hence the value of 2” is at least o(m, B, a, (1/16)y2). The claim on the
value follows.

For the feasibility, we note that the aggregate capacity used by & on row 7 of A is the sum of
the capacities used by :z:/\ 2 <A< E-1, 0n ea,ch subproblem. This sum is by Stop 2b at most
(1/2) 8=t ap +BZA:2 Y1/at But BYSTL(1/4M < 1/2 < (1/2)b; and 257 d < b
Thus the agglegate capacity used by & is at most (1/2)[) +(1/2)b; = b;. |

It remains to account for Z and & The following theorem is the main result of this section.

Theorem 2.2 Let P = (A,b,¢) be a column-restricted PIP and y* be the optimum of the linear
relazation of P. Algorithm COLUMN_PARTITION finds in polynomial time a solution g to P of value
Qmasx{y*fm /B, y* o118 (" fmlog n)l/B}).

Proof. Fach of the three vectors &,&,% solves a packing problem with demands lying in (0, 1/n¥),
(1/n*,1/4] and (1/4,1] respectively. Let P, P, P be the three induced packing problems. The optimal
solution to the linear relaxation of at least one of them will have value at least 1/3 of the optimal
solution to the linear relaxation of P. It remains to lower bound the approximation achieved by each
of the three vectors on its corresponding domain of demands. Since m, B, and «a are fixed for all
subproblems, note that o is a function of one variable, y*.

Vector & solves P optimally. The solution is feasible since all demands are less than 1/7* and
thus the value of the left-hand side of any packing constraint cannot exceed 1. By Lemma 2.1 vector
Z outputs a solution to P of value at least o(m, B, o, (1/4)y. L/4, 1)

For P, the value of the solution output is given by the sum A = Z§;l2 o(m, B, a,(1/16)y)) in
Lemma 2.3. We distinguish two cases. If o is a function linear in y, then A > o(m, B, «, (1/16)3/2%’4—1 ).
If o is a function convex in ¢, the sum A is minimized when all the terms g are equal to (9((1/7*rk’4_1 [logn).
Instantiating o(y,) with the function Q(max{y./m'/ B+ vy, /a/B}) in the linear case and with
Q(y«(y«/m)"/B) in the convex case completes the proof. |

We can actually obtain an w(y*(y*/mlogn)'/?) bound for y* < mlogn that has a complicated
analytic expression. The details are in the Appendix. Based on this improved bound and a different
parameterization of the algorithm, we can obtain the following result for the case when the maximum
column value max; p; = p is bounded away from 1.



Theorem 2.3 Let P = (A,b,¢) be a column-restricted PIP with p < 1 being the mazimum column
value. Let 83, 0 < 8y < 1, be a constant such that (1 — p)(1 — 63)/p > 1. Let y* be the optimum of
the linear relazation of P and ¢ be any constant greater than or equal to (1 — p)(1— 83)/p. There is a
polynomial time algorithm that outputs a solution to P of value Q(y*(y*/mlog n)l/(CB)).

3 Applications of PIP’s to approximation

3.1 Weighted multiple-source unsplittable flow

In this section we examine the weighted multiple-source unsplittable flow problem.

Our approach consists of finding the optimum of the fractional relaxation, i.e. weighted multicom-
modity flow, which can be solved in polynomial time via linear programming. The relaxation consists
of allowing commodity & to be shipped along more than one path. Call these paths the fractional
paths. We round in two stages. In the first stage we select at most one of the fractional paths for
each commodity, at the expense of congestion, i.e. some capacities may be violated. In addition, some
commodities may not be routed at all. In the second stage, among the commodities routed during the
first stage, we select those that will ultimately be routed while respecting the capacity constraints. It
is in this last stage that a column-restricted PIP is used.

We introduce some terminology before giving the algorithm. A routingis a set of sy;-t, paths Py,
used to route pg, amount of flow from sy, to t, for each (sg,,tx,) € I C 7. Given a routing g, the
flow g through edge e is equal to 3 p ¢, p5. pi- A routing g for which g. < u, for every edge e is an
unsplittable flow. A fractional routing is one where the flow for some commodity is split on potentially
many paths; this is just standard multicommodity flow. A fractional single-path routing is one where
the flow for a commodity is shipped on one path if at all, but only a fraction of the demand py, is
shipped for commodity k. The value of a routing ¢ is the weighted sum of the demands routed in g¢.

ALGORITHM MAX_RoUTING (G = (V, E,u),T)

Step 1. Find an optimum fractional routing f by invoking a weighted multicommodity flow algorithm. Denote
by o/ (T) the value of f.

Step 2. Scale up all capacities by a factor of ©(log |F|) to obtain network G’ with capacity function . Invoke
Raghavan’s algorithm [23] on G’ to round f to a routing ¢'.

Step 3. Scale down the flow on every path of g’ by a factor of at most ©(log | E|) to obtain a fractional single-path
routing ¢ that is feasible for G.

Step 4. Construct a column-restricted PIP P = (A4, b, ¢) as follows. Let ky, ko, ..., ky be the set of commodities
shipped in g, A < K. A has A columns, one for each commodity in g, and |E| rows, one for each edge of

G. Agj = py,; if the path Py, in g for commodity k; goes through edge ¢; and 0 otherwise. The cost vector
¢ has entry ¢; set to wy, for each commodity k; shipped in g. Finally, b; = u.,, 1 <i <|E].

Step 5. Invoke algorithm COLUMN_PARTITION to find an integral solution § to P. Construct an unsplittable
flow ¢” by routing commodity k; on path Py, if and only if g; = 1.

Theorem 3.1 Given a weighted multiple-source unsplittable flow problem (G = (V, E),T), algorithm
MAX_ROUTING finds in polynomial time an unsplittable flow of value at least Q(max{af (T)/(log| E|V[E]),
(@ (T)?/(|E|log® | E])}), where af (T) is the value of an optimum fractional routing f.
Proof sketch. First note that since routing ¢’ is feasible for G/, after scaling down the flow at Step 3,
routing ¢ is feasible for (7. The rounded solution to P maintains feasibility. For the value, we can easily
extend the analysis of Raghavan’s algorithm to show that even with weights, it routes in G’ a constant
fraction of o/ (7) [23]. Set zj; to be equal to the amount of flow that is routed in g for commodity
k; divided by py,. The A-vector z is a feasible fractional solution to P of value Q(a/(7)/log|E|). The
theorem follows by using Theorem 2.2 to lower bound the value of the integral solution § to P. 1

We now give a bound that depends on the dilation d of the fractional routing f.



Theorem 3.2 Given a weighted multiple-source unsplittable flow problem (G = (V, E),T), there is a
polynomial-time algorithm that finds an unsplittable flow of value at least QU (T)/d), where o/ (T)
is the value and d the dilation of an optimum fractional routing f.
Proof. See Appendix. |

The construction in the proof of Theorem 3.2 can also be used to give an
Qmax{af (T)/(VIED, (/(T))?/(|E|log|E])}), bound in the case where the number of commodities
|7| = O(|E]). We omit the details.

3.2 Weighted vertex-disjoint paths

In this section we give an approximation algorithm for the weighted vertex-disjoint path problem.

A relaxation of the problem is integral multicommodity flow where every commodity has an as-
sociated demand of 1. We can express vertex-disjoint paths as an integer program Z that has the
same constraints as multicommodity flow together with additional “bandwidth” constraints on the
vertices such that the total flow through a vertex is at most 1. Let £P be the linear relaxation of Z.
The optimal solution f to LP consists of a set of fractional flow paths. Our algorithm relies on the
observation that f gives rise (and at the same time is a fractional solution) to a PIP. The particular
PIP models a l-matching problem on a hypergraph H with vertex set V and a hyperedge (subset of
V) for every path in the fractional solution. In other words, the paths in f may be viewed as sets of
vertices without any regard for the flow through the edges of G. We proceed to give the full algorithm.

ALGORITHM PATH_PACKING(G = (V,E),T)
Step 1. Formulate the linear relaxation £P and find an optimal solution f to it. Using flow decomposition
express f as a set of paths Py, Py, ..., Py each connecting a pair of terminals and carrying z < 1,
1 < ¢ < A, units of flow.
Step 2. Construct a (0,1)-PIP P = (4,b,¢) as follows. A is a |V| x A matrix; Ay is one if path P; includes
vertex 1 and 0 otherwise. b is a vector of ones. ¢; is equal to wy such that path P; connects terminals sy
and 1.

Step 3. Find an integral solution g to P and output the corresponding set of paths P(g).

Theorem 3.3 Given a weighted vertez-disjoint paths problem (G = (V, E), T), algorithm PATH_PACKING
finds in polynomial time a solution of value Q(max{y*/\/IV], (y*)?/|V],y*/d}), where d is the dilation
and y* 1is the value of an optimum solution to the linear relazation LP.

Proof sketch. We show first that P(g) is a feasible solution to the problem. Clearly the constraints
of the packing program P, constructed at Step 2 ensure that the paths in P(g) are vertex disjoint.
This excludes the possibility that more than one (sg,t)-path is present in P(g) for some k. The
optimal value of the linear relaxation of P is at least y* since setting z; equal to z;, 1 < j < A, yields a
feasible fractional solution to P. By applying either standard randomized rounding [24] or Srinivasan’s
algorithms [28, 29] at Step 3, we obtain the claimed bounds on the objective value L ogo 1

3.3 An Application to Independent Set

In this section we show how a packing formulation leads to an O(1/|V|) approximation for the following
problem: find a maximum weight independent set in the square of the graph G = (V, ).

Theorem 3.4 Gliven a graph G = (V, E) and ¢ € [0, ].]'Vl a weight vector on the vertices, there exists
a polynomial-time algorithm that outputs an independent set in the square G* = (V, E*) of G of weight
Q(max{y*/V/IV], (y*)?/|V],y*/A}). Here y* denotes the optimum of a fractional relazation and A is
the mazimum vertex degree in G.

A hardness of approximation result for the problem of finding a maximum independent set in the
k-th power of a graph follows.



Theorem 3.5 For the problem of finding a mazimum independent set in the k-th power G* = (V, E¥)
of a graph G = (V, E) for any fized integer k > 0, there is no p-approzimation with p = (%%)1/2‘8,
for any fized ¢ > 0, unless NP = ZPP.

4 Greedy Algorithms for Disjoint Paths

In this section we turn to the routing approach for the unweighted edge- and vertex-disjoint path
problems.

ALGORITHM GREEDY._PATH(G,T)
Step 1. Set A to (.
Step 2. Let (s.,t.) be the commodity in 7 such that the shortest path P, in G from s. to ¢, has minimum

length. If no such path exists halt and output A.

Step 3. Add P. to A and remove the edges of P, from G. Remove (s, 1) from 7. Goto Step 2.

We begin by giving an upper bound on the approximation ratio of the algorithm.

Theorem 4.1 Algorithm GREBRDY.PATH runs in polynomial time and oulputs a solution to an edge-
disjoint paths problem (G = (V, E),T) of size at least 1/(\/|E,| + 1) times the optimum, where F, C E
is the set of edges used by the paths in an optimal solution.

We now prove improved bounds on the size of the realizable set output by GREEDY_PaTH.

Theorem 4.2 Algorithm GREEDY_PATH outputs a solution to an edge-disjoint path problem (G =
(V,E),T) of size QOPT?/|E,|), where E, C E is the set of edges used by the paths in an optimal

solution.

Proof. Let ¢ be the total number of iterations of GREEDY_PATH and A4; be the set A at the end of
the ¢-th iteration. Let O be an optimal set of paths. We say that a path P, hits a path P, if P, and
P, share an edge. We define the set O © A as the paths in O that correspond to commodities not
routed in A. Let P; be the path added to A at the i-th iteration of the algorithm. If P; hits k; paths
in @& A; that are not hit by a path in A;_y, then P; must have length at least k;. In turn each of the
paths hit has length at least k; otherwise it would have been selected by the algorithm instead of P;.
Furthermore all paths in O are edge-disjoint with total number of edges | E,|. Therefore St_; k? < | E,|.
Applying the Cauchy-Schwartz inequality on the left-hand side we obtain that (32f_; k;)?/t < | E,|. But
S ki = |OOA,] since upon termination of the algorithm all paths in O A; must be hit by some path
in A;. We obtain ‘—O—-@—;—L‘—tﬁ < |E,|. Without loss of generality we can assume that | A = o(]O]), since
otherwise GREEDY_PATH obtains a constant-factor approximation. It follows that ¢ = Q(|O*)/|E,|) =
QoOPT?/E]). 1

Corollary 4.1 Algorithm GREEDY.PATH outputs a solution to an edge-disjoint path problem (G =
(V, E),T) of size Q(OPT/d,), where d, is the average length of the paths in an optimal solution.

Algorithm GREEDY_PATH gives a solution to vertex-disjoint paths with the following modification
at Step 3: remove the vertices of P, from . Call the resulting algorithm GREEDY.VPATH. The
analogues of the results above can be seen to hold for GREEDY_VPATH as well.

Theorem 4.3 Algorithm GREEDY_VPATH outputls a solution to a vertex-disjoint path problem (G =
(V,E),T) of size Qmax{OPT/|V,|,0PT?/|V,|,0PT/d.}), where V, C V is the set of vertices used
by the paths in an optimal solution and d, is the average length of the paths in an optimal solution.
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Appendix

A different bound for column-restricted PIP’s. We show how one can modify the first two
steps of algorithm COLUMN_PARTITION to obtain a new approximation bound in addition to those
stated in Theorem 2.2.

Let 65,63 be constants in (0,1) such that (03 = 6(1 — ;). Note that given a 6 < 1, it is always
possible to select &3, so that ¢ > 1 and vice versa. We partition the interval (0, 1] of demands into
¢ geometrically increasing subintervals (0, 63(65)672%], ..., (63(62)+, 63(82)'], . . ., (8362, 63), (63, 1], such
that 63(82)¢~2 < 1/n* for suitably large constant k > 1. We now run COLUMN_PARTITION from Step
3 and on. Each of the three vectors i, %, Z solves a packing problem with demands lying in (0,1/n"],
(1/n*,85] and (é3,1] respectively. Let P, P, P be the three induced packing problems. The optimal
solution to the linear relaxation of at least one of them will have value at least 1/3 of the optimal
solution to the linear relaxation of P. It remains to lower bound the approximation achieved by each
of the three vectors on its corresponding domain of demands. Since m, B, ¢ and « are fixed for all
subproblems, note that ¢ is a function of one variable, y*.

Vector § solves P optimally. The solution is feasible since all demands are less than 1/n* and
thus the value of the left-hand side of any packing constraint cannot exceed 1. By Lemma 2.1 vector
g outputs a solution to P of value at least o(m, B, a, 63yf3"1).

Deriving the analogue of Lemma 2.3 one can establish for P that the value of the solution output
is given by the sum A = Ef;f a(m, (B, a, (1 — 5)yfs(52)"’53(52)7_1). If function o is convex the sum
above is minimized when all the terms yfa(&")l’és(&z)wl, 1 <1< ¢ -2, are equal to yf—k"ss/(k’log n)
where k' is a constant chosen so that &' log n is equal to £ —2. Instantiating o(y.) with Q(y.(y«/m)/P)
we obtain the following theorem.

Theorem 4.4 Let P = (A,b,c) be a column-restricted PIP. Let y* be the optimum of the linear
relazation of P and ( be a constant greater than or equal to 1. There is a polynomial time algorithm
that outputs a solution to P of value

L y,}-k,% 1/(¢B) e /B
T(m,(B,y*) = Q | max 0"y % | = it | E— :
mlogn m

Let us comment on the above bound. Comparing the function y*(y*/mlog n)l/(CB) to the function
y*(y*/m)l/(B) there is a logn in the denominator. However the exponent is 1/(¢B) for any constant
¢ which makes this bound particularly powerful and in fact w(y*(y*/m)"(B)) in the case when the

. . —k .
middle term dominates and s 03 < mlogn.

Proof of Theorem 3.2. The algorithm is similar to MAX_RoOUTING but omits the Steps 2 and 3
that find the single-path fractional routing. Step 4 is modified as follows. Let 1,..., M be an arbitrary
ordering of the paths in the flow decomposition of f. A has M + |7 total columns, one for each path
in the decomposition and an additional |7 special columns. The number of rows is | 2]+ |7|. The first
| B| rows correspond to capacity constraints in G and their entries are filled in the manner described
in Algorithm Max_RovuTING. The remaining rows correspond to constraints that enforce that only
one path is chosen per commodity in the final integral solution. In particular row |E|+4,1 <1 < |7},
has p; in column 7, 1 < j < M, if the j-th path in the flow decomposition carries flow for commodity
i; otherwise the entry is zero. The entries of column M + [, 1 <1 < |7, are all zero except for the
(|E|+1)-th row where the entry is equal to 1 —p;. Finally each entry b4, 1 < @ < |71, of the b-vector
is set to 1. We set ¢;, 1 <1 < M to the weight of the commodity that flows along the ¢-th path in the
decomposition. The entries in the c-vector past the M-th position are set to 0.
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It is straightforward to verify that the above construction enforces an integral solution where at
most one of the fractional paths is chosen for each commodity. The resulting PIP is column-restricted
with fractional optimum y* and maximum number of non-zero entries in a column equal to d + 1. The
theorem follows.
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