

Some NP-COMPLETE EDGE PACKING AND PARTITIONING PROBLEMS IN PLANAR GRAPHS

Jed Yang*1
${ }^{1}$ Department of Mathematics and Computer Science, Bethel University, St Paul, MN 55112, USA

First submitted: December 28, 2021
Accepted: March 24, 2022
Published: April 18, 2022

Abstract

Graph packing and partitioning problems have been studied in many contexts, including from the algorithmic complexity perspective. Consider the packing problem of determining whether a graph contains a spanning tree and a cycle that do not share edges. Bernáth and Király proved that this decision problem is NP-complete and asked if the same result holds when restricting to planar graphs. Similarly, they showed that the packing problem with a spanning tree and a path between two distinguished vertices is NP-complete. They also established the NP-completeness of the partitioning problem of determining whether the edge set of a graph can be partitioned into a spanning tree and a (not-necessarily spanning) tree. We prove that all three problems remain NP-complete even when restricted to planar graphs.

Keywords: Edge packing, spanning trees, NP-completeness, planar graphs, graph partitioning

[^0]
1 Introduction

A connected graph contains a spanning tree. Does it contain two spanning trees which do not share edges? In other words, can the graph stay connected after removing the edges of a spanning tree? This problem can be solved in polynomial time [5, 7]. In general, given two classes A and B of graphs, one could ask the packing problem of whether a graph G contains edge-disjoint subgraphs $A \in \mathrm{~A}$ and $B \in \mathrm{~B}$. Similarly, one could consider the covering problem where the union of A and B is G, or the partitioning problem, where A and B are edge-disjoint and whose union is G.

Bernáth and Király [2] considered seven classes, including paths, cycles, and trees. They noted that there are 44 natural ${ }^{1}$ graph theoretic questions under this setup. Prior to their work, some of these problems were known to be in P, while some were NP-complete. They settled the status of each remaining problem in the sense of either giving a polynomial time algorithm or proving that the problem is NP-complete. Moreover, for the NP-complete problems, they noted that most of these remain NP-complete even when restricted to planar graphs. ${ }^{2}$ However, five of these cases were left open. The goal of this paper is to settle the three remaining cases that involve spanning trees.

Theorem 1.1. The following problems are NP-complete, even when restricted to planar graphs:
(i) the packing problem with a spanning tree and a cycle; ${ }^{3}$
(ii) the packing problem with a spanning tree and a path between two distinguished vertices; and
(iii) the partitioning problem with a spanning tree and a tree.

The paper is organized as follows. In Section 2, we give definitions and some background. The NP-completeness of the three problems are presented in sections 3, 4, and 5, respectively. We conclude in Section 6 with some remarks and briefly discuss the remaining two problems (the partitioning problems with two trees and with a cut and a forest).

2 Definitions and background

Let G be a graph, and write $V(G)$ and $E(G)$ for its vertex and edge sets, respectively. We are concerned with undirected simple graphs, and follow standard terminology. Given a (connected) graph G, a subgraph H of G is nonseparating if $G-E(H)$ is connected.

Following the notation of [2], albeit with a different font, we write C for the class of all cycles, SpT the class of spanning trees, ${ }^{4} \mathrm{~T}$ the class of (not-necessarily spanning) trees, and $\mathrm{P}_{s t}$ the class of $s-t$ paths (paths from s to t), where s and t are distinguished vertices. The

[^1]packing problem with classes A and B is denoted $A \wedge B$, while the partitioning problem is denoted $A+B$.

The decision problem Planar $C \wedge$ SpT takes a planar graph G as input, and outputs whether there is a cycle $Q \in \mathrm{C}$ and a spanning tree $T \in \mathrm{SpT}$ such that Q and T are edgedisjoint subgraphs of G. As $G-E(Q)$ contains a spanning tree if and only if it is connected, we are equivalently asking to decide the existence of a nonseparating cycle in G.

Theorem 1.1 asserts that the following three decision problems are NP-complete.

Planar C \wedge SpT

Instance: Planar graph G.
Decide: Does G contain a nonseparating cycle?
Planar $\mathrm{P}_{s t} \wedge \mathrm{SpT}$
Instance: Planar graph G and distinguished vertices $s, t \in V(G)$.
Decide: Does G contain a nonseparating $s-t$ path?
Planar T + SpT
Instance: Planar graph G.
Decide: Can $E(G)$ be partitioned into a tree and a spanning tree?
These three problems are trivially in NP. We prove their NP-hardness by similar reductions from a planar version of boolean satisfiability, which we define below.

A boolean variable takes boolean values + (true) and - (false). We identify + and with 1 and -1 , respectively, allowing us to negate and multiply boolean values by inheriting the notations and operations from \mathbb{Z}. A literal is a variable x or its negation $-x$. A finite collection of literals is called a clause. A boolean expression φ (in conjunctive normal form) consists of a set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of variables and a set $C=\left\{C^{1}, \ldots, C^{m}\right\}$ of clauses. Let the associated graph G_{φ} be the graph with vertex set $X \sqcup C$ and edges

$$
\left\{x_{i} C^{j}: x_{i} \text { or }-x_{i} \text { occurs in } C^{j}\right\} \cup\left\{x_{i} x_{i+1}: i \in\{1, \ldots, n\}\right\},
$$

where subscripts are hereafter read modulo n. A boolean expression φ is planar if its associated graph G_{φ} is. An assignment $f: X \rightarrow\{ \pm\}$ of boolean values to the variables is satisfying if each clause contains a + literal under such an assignment.

Planar SAT

Instance: Planar boolean expression φ.
Decide: Does φ admit a satisfying assignment?
Lichtenstein [3] proved that Planar SAT is NP-complete, even when each clause contains precisely three literals.

3 Planar $\mathrm{C} \wedge \mathrm{Sp}_{\mathrm{p}}$ is NP-complete

We reduce $\operatorname{Planar} \operatorname{SAT}$ to $\operatorname{Planar} \mathrm{C} \wedge \mathrm{SpT}$. Given a boolean expression φ with variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and clauses $\left\{C^{1}, \ldots, C^{m}\right\}$ such that the associated graph G_{φ} is planar, we form a new planar graph H_{φ} from G_{φ} such that H_{φ} contains a nonseparating cycle if and only if φ admits a satisfying assignment.

3.1 Reduction construction

Fix a proper plane drawing of G_{φ}. Color each edge $x_{i} C^{j}$ by + if $x_{i} \in C^{j}$ and - if $-x_{i} \in C^{j}$. (Note that if a clause C^{j} contains both x_{i} and $-x_{i}$, then we may omit C^{j}. Therefore, without loss of generality, assume this does not happen.)

For each i, take a small neighborhood D_{i} about x_{i} containing only the vertex x_{i} and initial segments of edges leaving x_{i}. We locally modify the plane graph. First, subdivide edge $x_{i} x_{i+1}$ to the path $x_{i} t_{i} s_{i+1} x_{i+1}$, where the new vertices s_{i} and t_{i} lie within D_{i} for each i.

From now on, we focus on a fixed i and perform local replacements. Each new vertex is added inside D_{i}, and is decorated with a subscript i, which may be suppressed for notational convenience. Similarly, new edges are to be drawn inside D_{i}, the reader is encouraged to check that each new edge can be drawn without introducing crossings.

Subdivide each edge $x_{i} C^{j}$ with a new vertex $\beta^{j}=\beta_{i}^{j}$, and color the vertex with the color of $x_{i} C^{j}$. Delete vertex x_{i} (and all incident edges). Let k be a sufficiently large number, say, two times the number of the β vertices introduced. Add paths $P_{i}^{+}=s v^{0} v^{1} \ldots v^{4 k} t$ and $P_{i}^{-}=s u^{0} u^{1} \ldots u^{4 k} t$, where $u^{j}=v^{j}$ for $j \equiv 2(\bmod 4)$. Draw them in such a way that they "cross" each other at these common points (see Figure 1), and color the edges in P^{+}and P^{-} by + and - , respectively. Add path $u^{j} \omega^{j} v^{j}$ for each $j \equiv 0(\bmod 4)$, and paths $u^{j-1} \sigma^{j} v^{j+1}$ and $v^{j-1} \tau^{j} u^{j+1}$ for each $j \equiv 2(\bmod 4)$.

Figure 1: Replacement within $D_{i} ; k=2 ; P_{i}^{-}$darkened.
Finally, for each β^{j}, pick an edge of P^{+}or P^{-}of the same color, subdivide that edge with a vertex a^{j}, and join $a^{j} \beta^{j}$ by an edge. The edges from the subdivisions stay in P^{+}or P^{-}in the obvious way. As k is large, we may pick these edges distinct, such that the new edges $a^{j} \beta^{j}$ can be properly drawn within D_{i} without introducing crossings.

After doing such local replacements for all i, contract $t_{i} s_{i+1}$ to a new vertex y_{i} for each i. We consider P_{i}^{+}and P_{i}^{-}to be $y_{i-1}-y_{i}$ paths. This concludes the construction of H_{φ}.

3.2 Correctness of reduction

First, note that the construction produces a planar graph $H:=H_{\varphi}$ in polynomial time.
Suppose $f: X \rightarrow\{+,-\}$ is a satisfying assignment for φ. For $r \in\{+,-\}$, let $Q^{r}=$ $\bigcup_{i} P_{i}^{r f\left(x_{i}\right)}$. (Recall that the multiplication of $\{+,-\}$ is afforded by the identification with $\pm 1 \in \mathbb{Z}$.) Note that Q^{+}and Q^{-}are edge-disjoint cycles. We claim that $H-E\left(Q^{-}\right)$is connected, which means there is a spanning tree of H that is edge-disjoint from Q^{-}, as desired.

Indeed, $H-E\left(Q^{-}\right)$contains the cycle Q^{+}, and the σ, τ, and ω vertices are clearly connected to Q^{+}. Moreover, each vertex in $V\left(Q^{-}\right) \backslash V\left(Q^{+}\right)$is connected to Q^{+}through a σ, τ, or ω vertex. As a_{i}^{j} and β_{i}^{j} are connected to C^{j} for each j, it remains to show that each C^{j} is connected to Q^{+}. By definition, Q^{+}contains $P_{i}^{f\left(x_{i}\right)}$. As f is satisfying, C^{j} contains a literal x_{i} such that $f\left(x_{i}\right)=+$, or a literal $-x_{i}$ such that $f\left(x_{i}\right)=-$. In either case, β_{i}^{j} is colored with $f\left(x_{i}\right)$, and hence a_{i}^{j} lies on $P_{i}^{f\left(x_{i}\right)}$. That is, $C^{j} \beta_{i}^{j} a_{i}^{j}$ is a path from C^{j} to Q^{+}, as desired.

Conversely, suppose H contains a cycle Q such that $H-E(Q)$ is connected. Note that Q cannot contain a vertex of degree $2($ in $H)$, lest the vertex be isolated in $H-E(Q)$. Therefore, Q is contained in the subgraph H^{\prime} of H where the vertices of degree 2, namely, the β, σ, τ, and ω vertices, are deleted. Moreover, the (now) isolated C vertices may also be deleted from H^{\prime}. Let Y consists of the y vertices and the u^{j} vertices for $j \equiv 2(\bmod 4)$. There are two large faces that contain Y on its boundary. Each of the remaining small faces is bounded by precisely two vertices in Y and two paths between them.

The ω^{j} vertices prevent Q from containing (both paths of) a small face, lest $u^{j} \omega^{j} v^{j}$ form a connected component of $H-E(Q)$. Therefore, Q contains precisely one of the two paths for each small face. Similarly, the σ and τ vertices force Q to "oscillate" and contain either P_{i}^{+}or P_{i}^{-}between y_{i-1} and y_{i} for each i. As such, $Q=\bigcup_{i} P_{i}^{-f\left(x_{i}\right)}$ for some $f: X \rightarrow\{ \pm\}$.

It remains to show that this f is a satisfying assignment. Suppose not, and there is some clause C^{j} such that every literal evaluates to - by f. This means that $a_{i}^{j} \in Q$ for each i, and hence C^{j}, together with the a_{i}^{j} and the β_{i}^{j} for all i, form a connected component in $H-E(Q)$, a contradiction.

4 Planar $\mathrm{P}_{s t} \wedge \mathrm{SpT}$ is NP-complete

A similar reduction from Planar SAT to $\mathrm{Planar} \mathrm{P}_{s t} \wedge \mathrm{Sp} T$ exhibits its NP-completeness.

4.1 Reduction construction

We follow the construction in Section 3.1. Given a boolean expression φ with planar G_{φ}, we form H_{φ} in the same way, except that when contracting $t_{i} s_{i+1}$ to a new vertex y_{i} for each i, we do not contract $t_{n} s_{1}$. Instead, delete the edge $t_{n} s_{1}$, and let $s=s_{1}$ and $t=t_{n}$. Call this graph $H:=H_{\varphi}^{\prime}$.

4.2 Correctness of reduction

Of course, H is a planar graph that is constructed in polynomial time. From a satisfying assignment, define Q^{+}and Q^{-}the same way but note that they are edge-disjoint $s-t$ paths. As before, $H-E\left(Q^{-}\right)$is connected. Conversely, if there is an $s-t$ path Q such that $H-E(Q)$ is connected, then $Q=\bigcup_{i} P_{i}^{-f\left(x_{i}\right)}$, yielding a satisfying assignment f. We omit the easy details.

5 Planar $\mathrm{T}+\mathrm{SpT}$ is NP-complete

We show that Planar $T+S p T$ is NP-complete by a reduction from Planar SAT.

5.1 Reduction construction

We continue with the construction in Section 4.1. Given a boolean expression φ with planar G_{φ}, we form H_{φ}^{\prime} as above, but additionally insist that when subdividing edges of P^{+} and P^{-}to create the a vertices, edges must belong to different small faces (as defined in Section 3.2). Add new cycles $s s^{\prime} s^{\prime \prime} s$ and $t t^{\prime} t^{\prime \prime} t$, where $s^{\prime}, s^{\prime \prime}, t^{\prime}, t^{\prime \prime}$ are new vertices. Call this new graph $H:=H_{\varphi}^{\prime \prime}$.

5.2 Correctness of reduction

As before, H is a planar graph constructed in polynomial time. Suppose there is a tree T such that $H-E(T)$ is a spanning tree. Certainly T must contain an edge of $s s^{\prime} s^{\prime \prime} s$ and an edge of $t t^{\prime} t^{\prime \prime} t$. As such, T contains an $s-t$ path Q. As $H-E(T)$ is a spanning tree, $H-E(Q)$ is connected. By the same argument as the previous two correctness proofs, we extract a satisfying assignment f from Q.

Conversely, take a satisfying assignment f and define Q^{+}and Q^{-}as before. We alter Q^{+}and Q^{-}such that they are a spanning tree and a tree, respectively, and their edge sets partition that of H. Take the edges incident to the σ, τ, and ω vertices, and add them (along with all incident vertices) to Q^{+}. Note that Q^{+}is still a tree and contains all u and v vertices.

Consider a clause C^{j}. Let i be minimal such that $a_{i}^{j} \in V\left(Q^{+}\right)$. As f is satisfying, such an i exists. Add the path $a_{i}^{j} \beta_{i}^{j} C^{j}$ to Q^{+}. Note that Q^{+}is still a tree, since we added two new edges and two new vertices. For each $a_{\ell}^{j} \in V\left(Q^{+}\right), \ell \neq i$, add $a_{\ell}^{j} \beta_{\ell}^{j} C^{j}$ to Q^{+}. Since both a_{ℓ}^{j} and C^{j} were already in Q^{+}, we added one new vertex and two edges, and hence created a single cycle. The cycle contains an $a_{\ell}^{j}-C^{j}$ path P avoiding β_{ℓ}^{j}. Let e be the first edge in P that intersects Q^{-}, which exists by the extra stipulation in Section 5.1 above. Delete e from Q^{+}to destroy the only cycle. Add e to Q^{-}, which does not create cycles as they share precisely one vertex. Finally, for each $a_{\ell}^{j} \in V\left(Q^{-}\right)$, add $a_{\ell}^{j} \beta_{\ell}^{j} C^{j}$ to Q^{+}, which grows the tree Q^{+}by two vertices and two edges.

After performing the procedure for all clauses, Q^{+}is a spanning tree of H_{φ}^{\prime}. For the remaining 6 edges of $H-E\left(H_{\varphi}^{\prime}\right)$, add the paths $s s^{\prime} s^{\prime \prime}$ and $t t^{\prime} t^{\prime \prime}$ to Q^{+}and the remaining two edges $s s^{\prime \prime}$ and $t t^{\prime \prime}$ to Q^{-}. The edge sets of Q^{+}and Q^{-}partition that of H, while Q^{+}is a spanning tree and Q^{-}is a tree, as desired.

6 Final remarks

6.1

The use of Planar SAT can be replaced by the NP-complete problem Planar 3SAT, where each clause has exactly three literals. If so, the planar graphs constructed here have maximum degree 4 . Vertices of degree 4 are critically used to allow paths to cross each other.

It would be interesting to see if this can be circumvented by using some other "crossing gadget" to lower the maximum degree to 3 .

Similarly, vertices of degree 2 are used, as in [2], to forbid paths or cycles from meandering into the wrong places and moreover control the way they turn. If one succeeds in lowering the maximum degree to 3 , it would then be reasonable to ask each of these questions when restricted to planar cubic graphs, where every vertex is of degree 3 .

6.2

In [2], $\mathrm{C} \wedge \mathrm{SpT}$ is listed among problems whose planar restrictions were not known to be NP-complete. In its draft arXiv version, [1] is referenced, which (erroneously) claims that $C \wedge S p T$ is in P when restricted to planar graphs. Indeed, [1] outlines an algorithm FindNonSeparatingCycle (G) that answers the $\mathrm{C} \wedge$ SpT problem for a planar graph G. However, the algorithm fails on the graph shown in Figure 2, which contains a nonseparating cycle $a b c a$. If the face bounded by abdea is chosen in Step 1.2 of the algorithm, the recursive algorithm fails to identify a nonseparating cycle. This counterexample was communicated to Bernáth, leading to the correct list appearing in [2].

Figure 2: A graph on which the FindNonSeparatingCycle algorithm fails.

6.3

Partition the vertex set of a graph into two non-empty parts. The set of all edges intersecting both parts form a cut, which is acyclic if it contains no cycles. By planar duality, a nonseparating cycle determines an acyclic cut in the dual graph and, similarly, the existence of an acyclic cut guarantees a nonseparating cycle in the dual graph. As such, the problem of determining the existence of an acyclic cut in a (planar) graph (possibly with parallel edges) is NP-complete.

6.4

Pálvölgyi [6] showed that the problem $\mathrm{T}+\mathrm{T}$ of partitioning a graph into two (not necessarily spanning) trees is NP-complete. The reduction is from NAE-SAT, where an assignment is satisfying if each clause contains a + and $a-$ ("not all equal"). The naïve approach of simply using the planar version does not work, since, somewhat surprisingly, Planar NAE-SAT can be solved in polynomial time [4].

The problem Cut $+F$ of partitioning a graph into a cut and a forest, equivalent to coloring the vertex set with two colors such that there are no monochromatic cycles, is NP-
complete [2]. It is unknown whether these two problems remain NP-complete when restricted to planar graphs.

Acknowledgements. I am grateful to Attila Bernáth for the attentive reading of this paper and providing useful comments. This work is supported by NSF RTG grant NSF/DMS1148634.

References

[1] A. Bernáth and M. Kaminski, Nonseparating cycles in planar and Eulerian graphs, Tech. Report TR-2014-05, Egerváry Research Group, Budapest, 2014, http://www.cs.elte. hu/egres/tr/egres-14-05.pdf.
[2] A. Bernáth and Z. Király, On the tractability of some natural packing, covering and partitioning problems, Discrete Appl. Math. 180 (2015), 25-35.
[3] D. Lichtenstein, Planar formulae and their uses, SIAM J. Comput. 11 (1982), 329-343.
[4] B. M. E. Moret, Planar NAE3SAT is in P, SIGACT News 19 (1988), 51-54.
[5] C. S. J. A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961), 445-450.
[6] D. Pálvölgyi, Partitionability to two trees is NP-complete, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 52 (2009), 131-135.
[7] W. T. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36 (1961), 221-230.

[^0]: *jed-yang@bethel.edu

[^1]: ${ }^{1}$ For example, it makes no sense to pack paths as a trivial path consisting of a single vertex can be used.
 ${ }^{2}$ Most of these remain NP-complete even when restricted to planar graphs of maximum degree 3 or 4.
 ${ }^{3}$ Previously, this problem was (erroneously) claimed to be in P. See Section 6.2 for a discussion.
 ${ }^{4}$ Formally, SpT depends on (the number of vertices of) the underlying graph in question. By abuse of notation, we ignore these trivial technicalities.

