3,283 research outputs found

    Strategic Directions in Object-Oriented Programming

    Get PDF
    This paper has provided an overview of the field of object-oriented programming. After presenting a historical perspective and some major achievements in the field, four research directions were introduced: technologies integration, software components, distributed programming, and new paradigms. In general there is a need to continue research in traditional areas:\ud (1) as computer systems become more and more complex, there is a need to further develop the work on architecture and design; \ud (2) to support the development of complex systems, there is a need for better languages, environments, and tools; \ud (3) foundations in the form of the conceptual framework and other theories must be extended to enhance the means for modeling and formal analysis, as well as for understanding future computer systems

    Dynamically typed languages

    Get PDF
    Dynamically typed languages such as Python and Ruby have experienced a rapid grown in popularity in recent times. However, there is much confusion as to what makes these languages interesting relative to statically typed languages, and little knowledge of their rich history. In this chapter I explore the general topic of dynamically typed languages, how they differ from statically typed languages, their history, and their defining features

    TAE Plus: Transportable Applications Environment Plus tools for building graphic-oriented applications

    Get PDF
    The Transportable Applications Environment Plus (TAE Plus), developed by NASA's Goddard Space Flight Center, is a portable User Interface Management System (UIMS), which provides an intuitive WYSIWYG WorkBench for prototyping and designing an application's user interface, integrated with tools for efficiently implementing the designed user interface and effective management of the user interface during an application's active domain. During the development of TAE Plus, many design and implementation decisions were based on the state-of-the-art within graphics workstations, windowing system and object-oriented programming languages. Some of the problems and issues experienced during implementation are discussed. A description of the next development steps planned for TAE Plus is also given

    Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models

    Get PDF
    The upcoming many-core architectures require software developers to exploit concurrency to utilize available computational power. Today's high-level language virtual machines (VMs), which are a cornerstone of software development, do not provide sufficient abstraction for concurrency concepts. We analyze concrete and abstract concurrency models and identify the challenges they impose for VMs. To provide sufficient concurrency support in VMs, we propose to integrate concurrency operations into VM instruction sets. Since there will always be VMs optimized for special purposes, our goal is to develop a methodology to design instruction sets with concurrency support. Therefore, we also propose a list of trade-offs that have to be investigated to advise the design of such instruction sets. As a first experiment, we implemented one instruction set extension for shared memory and one for non-shared memory concurrency. From our experimental results, we derived a list of requirements for a full-grown experimental environment for further research

    Designing Traceability into Big Data Systems

    Full text link
    Providing an appropriate level of accessibility and traceability to data or process elements (so-called Items) in large volumes of data, often Cloud-resident, is an essential requirement in the Big Data era. Enterprise-wide data systems need to be designed from the outset to support usage of such Items across the spectrum of business use rather than from any specific application view. The design philosophy advocated in this paper is to drive the design process using a so-called description-driven approach which enriches models with meta-data and description and focuses the design process on Item re-use, thereby promoting traceability. Details are given of the description-driven design of big data systems at CERN, in health informatics and in business process management. Evidence is presented that the approach leads to design simplicity and consequent ease of management thanks to loose typing and the adoption of a unified approach to Item management and usage.Comment: 10 pages; 6 figures in Proceedings of the 5th Annual International Conference on ICT: Big Data, Cloud and Security (ICT-BDCS 2015), Singapore July 2015. arXiv admin note: text overlap with arXiv:1402.5764, arXiv:1402.575

    Traits at Work: the design of a new trait-based stream library

    Get PDF
    International audienceRecent years saw the development of a composition mechanism called Traits. Traits are pure units of behavior that can be composed to form classes or other traits. The trait composition mechanism is an alternative to multiple or mixin inheritance in which the composer has full control over the trait composition. To evaluate the expressiveness of traits, some hierarchies were refactored, showing code reuse. However, such large refactorings, while valuable, may not exhibit all possible composition problems, since the hierarchies were previously expressed using single inheritance and following certain patterns. This paper presents our work on designing and implementing a new trait-based stream library named Nile. It evaluates how far traits enable reuse, what problems can be encountered when building a library using traits from scratch and compares the traits solution to alternative composition mechanisms. Nile's core allows the de?nition of compact collection and ?le streaming libraries as well as the implementation of a backward-compatible new stream library. Nile method size shows a reduction of 40% compared to the Squeak equivalent. The possibility to reuse the same set of traits to implement two distinct libraries is a concrete illustration of trait reuse capability

    Ring: a Unifying Meta-Model and Infrastructure for Smalltalk Source Code Analysis Tools

    Get PDF
    International audienceSource code management systems record different versions of code. Tool support can then compute deltas between versions. To ease version history analysis we need adequate models to represent source code entities. Now naturally the questions of their definition, the abstractions they use, and the APIs of such models are raised, especially in the context of a reflective system which already offers a model of its own structure. We believe that this problem is due to the lack of a powerful code meta-model as well as an infrastructure. In Smalltalk, often several source code meta-models coexist: the Smalltalk reflective API coexists with the one of the Refactoring Engine or distributed versioning system such as Monticello or Store. While having specific meta-models is an adequate engineered solution, it multiplies meta-models and it requires more maintenance efforts (e.g., duplication of tests, transformation between models), and more importantly hinders navigation tool reuse when meta-models do not offer polymorphic APIs. As a first step to provide an infrastructure to support history analysis, this article presents Ring, a unifying source code meta-model that can be used to support several activities and proposes a unified and layered approach to be the foundation for building an infrastructure for version and stream of change analyses. We re-implemented three tools based on Ring to show that it can be used as the underlying meta-model for remote and off-image browsing, scoping refactoring, and visualizing and analyzing changes. As a future work and based on Ring we will build a new generation of history analysis tools
    • …
    corecore