
HAL Id: inria-00216108
https://hal.inria.fr/inria-00216108

Submitted on 27 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Traits at Work: the design of a new trait-based stream
library

Damien Cassou, Stéphane Ducasse, Roel Wuyts

To cite this version:
Damien Cassou, Stéphane Ducasse, Roel Wuyts. Traits at Work: the design of a new
trait-based stream library. Computer Languages, Systems and Structures, Elsevier, 2008,
�10.1016/j.cl.2008.05.004�. �inria-00216108�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50323133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00216108
https://hal.archives-ouvertes.fr

Traits at Work: the design of a new

trait-based stream library

Published in Computer Languages, Systems and Structures

September 2008 ⋆,⋆⋆

Damien Cassou a Stéphane Ducasse b Roel Wuyts c

aINRIA-Futurs Bordeaux
bINRIA-Lille Nord Europe, Adam Team, CNRS 8022 - LIFL/UTSL

cIMEC, Kapeldreef 75, B-3001 Leuven and KU Leuven

Abstract

Recent years saw the development of a composition mechanism called Traits.
Traits are pure units of behavior that can be composed to form classes or other traits.
The trait composition mechanism is an alternative to multiple or mixin inheritance
in which the composer has full control over the trait composition.

To evaluate the expressiveness of traits, some hierarchies were refactored, showing
code reuse. However, such large refactorings, while valuable, may not exhibit all
possible composition problems, since the hierarchies were previously expressed using
single inheritance and following certain patterns.

This paper presents our work on designing and implementing a new trait-based
stream library named Nile. It evaluates how far traits enable reuse, what problems can
be encountered when building a library using traits from scratch and compares the
traits solution to alternative composition mechanisms. Nile’s core allows the definition
of compact collection and file streaming libraries as well as the implementation of a
backward-compatible new stream library. Nile method size shows a reduction of 40%
compared to the Squeak equivalent. The possibility to reuse the same set of traits to
implement two distinct libraries is a concrete illustration of trait reuse capability.

Keywords. Object-Oriented Programming, Inheritance, Refactoring, Traits, Code
Reuse, Smalltalk

⋆ We gratefully acknowledge the financial support of the Cook ANR French project.
⋆⋆This work is based on an earlier work: “Redesigning with Traits: the Nile Stream
trait-based Library”, in Proceedings of the 2007 International Conference on Dynamic
Languages (ESUG/ICDL 2007) http://doi.acm.org/10.1145/1352678.1352682 c©
ACM, 2007

Email addresses: damien.cassou@inria.fr (Damien Cassou),
stephane.ducasse@inria.fr (Stéphane Ducasse), Roel.Wuyts@imec.be (Roel
Wuyts).

Preprint submitted to Elsevier Science 11 April 2008

1 Introduction

Multiple inheritance has been the focus of a large amount of work and research
efforts. Recently, traits proposed a solution in which the composite entity has
the control and which can be flattened away, i.e., traits do not affect the run-
time semantics [1,2]. Traits are fine-grained units that can be used to compose
classes. Like any solution to multiple inheritance, the design of traits is the
result of a set of trade-offs. Traits favor simplicity and fine-grained composition.
Traits are meant for single inheritance languages. Trait composition conflicts
are automatically detected and the composer is empowered to resolve these
conflicts explicitly. Traits claim to avoid many of the problems of multiple
inheritance and mixin-based approaches that mainly favor linearization where
conflicts never arise explicitly and are solved implicitly by ordering.

Note that there exist different trait models. In the original trait model, Stateless
traits [1,2], traits only define methods, but not instance variables. Stateful
traits [3] extends this model and lets traits define state. Freezable traits [4]
extend stateless traits with a visibility mechanism. In the context of this paper
when we use trait we mean Stateless trait. The reader unfamiliar with traits
may read the appendix A for a rapid introduction to stateless traits.

Previous research evaluated the usefulness of traits by refactoring the Smalltalk
collection and stream libraries, which showed up to 12% gain in terms of code
reuse [5]. Other research tried to semi-automatically identify traits in existing
libraries [6]. While these are valuable results, they are all refactoring scenarios
that investigated the applicability of traits taking existing single inheritance
systems as input. Usability and reuse of traits when developing a new system
has not been assessed. Implementing a non-trivial library from scratch is an
important experience to test the expressiveness of traits. By doing so we may
face problems that may have been hidden in previous experiences and also face
new trait composition problems.

The goal of this paper is to experimentally verify the original claims of simplicity
and reuse of traits in the context of a forward engineering scenario. More
specifically, our experiments want to answer the following questions that
quickly arise when using traits in practice:

• What is a good granularity for traits that maximizes their reusability and
composition? (See Section 7.1)
• Can we identify guidelines to assess when trait composition should be

preferred over inheritance? (See Section 7.2)
• Are traits better reusable than classes? (See Section 7.3)
• Can an application still be made efficient when using traits composition?

(See Section 7.4)

2

• What trait limits and problems do we encounter? (See Sections 7.5 and 7.6)

Our approach is based on designing and implementing a non-trivial library
from scratch using traits. We decided to build a stream collection library (called
Nile) that follows the ANSI Smalltalk standard [7] yet remains compatible in
terms of implemented protocols with the current Smalltalk implementations.
The choice for a stream library was motivated by a number of reasons:

• streams are naturally modeled using multiple inheritance. When implemented
in a single inheritance language developers need to resort to duplicating code
and canceling inherited methods;
• N. Schärli [5] and A. Lienhard [6] already refactored the Stream library using

traits so we can directly compare their refactoring results with a design
based from the start on traits;
• streams are an important abstraction of computer language libraries;
• being a real-world implementation, several practical constraints are imposed

on the stream library: ANSI Smalltalk standard compatibility is required
and backward-compatibility with existing Smalltalk dialects is needed.

Nile is structured around just six core traits and a set of libraries. During the
definition of the libraries, the core traits proved to have a good granularity: it
was easy to obtain any needed functionality by composing with the relevant
part of the core. Moreover, Nile has neither canceled methods nor methods
implemented too high in the hierarchy. There are only three method overridden
compared to the fourteen of Squeak 1 . In addition the exact same library core
supports the building of backward-compatible libraries while at the same time
supporting more compact ones. This design shows that traits are good unit
of code reuse. In addition, Nile’s compact design has 40% less methods and
39% less bytecodes than the existing single-inheritance Squeak collection-based
stream library.

This article is an extension of our previous work [8]. The differences between the
current paper and our previous work are (1) a large rethought of Nile’s core, (2)
the possibility to use the new core to express compact collection-based and file-
based stream libraries as well as the implementation of a backward-compatible
new stream library, and (3) a new analysis based on the new core.

The contributions of the paper are: (1) the design description of Nile, a new
stream library made of composable units, (2) the assessment that traits are
good building units for defining libraries and that they enable clean design
and reuse through composibility, and (3) the identification of problems when
using traits.

1 Overridden methods are methods implemented in class A and reimplemented in B
(subclass of A) without invoking the method in A.

3

We start by presenting the limits of the existing Squeak Stream hierarchy
and the ANSI Smalltalk standard protocols (Section 2). Section 3 presents an
overview of Nile and the library core with its most important traits. Section 4
details the implementation of the collection-based and file-based stream libraries.
Two other libraries are presented in Section 5. Section 6 presents a backward-
compatible stream library based on the exact same core, illustrating the trait
reuse power. Section 7 answers the questions regarding traits usage and limits.
Section 8 compares our approach with the one of N. Schärli [5] and with other
related work. Section 9 concludes the paper.

2 Current stream library analyses

Streams are a well-known data structure, present in most programming lan-
guage libraries. They provide operations to stream over data (typically with an
operation to get the next element in the stream). One of the primary usages
of streams is in IO, where they are used as an abstraction to read or write
data to various outputs, such as the console or files. Streams are by nature a
sequential access data structure, but some are random access data structures
(file streams can be positionable, for example, in order to read or write data in
a specific position in the file). Stream libraries in Smalltalk support random
access streams through the SequencedStream abstraction.

In this section, we analyze the existing stream hierarchy of the open-source
Smalltalk Squeak [9]. We highlight the key problems and present the ANSI
Smalltalk standard.

2.1 Analysis of the Squeak stream hierarchy

Squeak [9], like all Smalltalk environments, has its own implementation of a
stream hierarchy. Figure 1 presents the core of this implementation, which
is solely based on single inheritance and does not use traits. Note that most
Smalltalk dialects reimplemented streams and therefore have a similar design
with slightly different implementations: even though Squeak and VisualWorks
are both direct descendants from the original Smalltalk-80, their stream hierar-
chies are different since the one in VisualWorks was completely reimplemented.

The existing single-inheritance implementation has different problems (methods
implemented too high, unused superclass state, simulating multiple inheritance
and duplicated code) that we detail in the next sections.

Methods implemented too high in the hierarchy. A common technique

4

atEnd
close
contents
do:
flush
next
next:
next:put:
nextPut:
nextPutAll:
upToEnd

Stream

atEnd
contents
isEmpty
next:
peek
position
position:
reset
setToEnd
skip:
skipTo:
upTo:
upToEnd

collection
position
readLimit

Positionable

Stream

next
next:
nextPut:
size
upTo:
upToEnd

ReadStream

contents
flush
next
nextPut:
nextPutAll:
position:
reset
setToEnd
size
space
cr

writeLimit
WriteStream

close
contents
next
next:

ReadWriteStream

atEnd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size
skip:
upTo:
upToEnd

rwmode
name
fileID
buffer1

FileStream

Fig. 1. The Squeak core Stream hierarchy. Only the most important methods are
shown.

to avoid duplicating code consists in implementing a method in the topmost
common superclass of all classes which need this method. This technique
pollutes the interface of classes which do not want this method but inherit it
along with methods they need. For example, Stream defines nextPutAll: which
calls nextPut:

Stream>>nextPutAll: aCollection
"Append the elements of aCollection to the sequence of objects
accessible by the receiver. Answer aCollection."

aCollection do: [:v | self nextPut: v].
^ aCollection.

The method nextPutAll: writes all elements of the parameter aCollection to the
stream by iterating over the collection and calling nextPut: for each element.
The method nextPut: is abstract and must be implemented in subclasses.
The problem is that some subclasses are used for read-only purposes, like
ReadStream. Those classes must cancel explicitly the methods they don’t
want 2 . This approach, even if it was probably the best available solution at the
time of the first implementation, has several drawbacks. First of all the class
Stream and its subclasses are polluted with a number of methods that are not
available in the end. This complicates the task of understanding the hierarchy
and extending it. It also makes it more difficult to add new subclasses. To add
a new subclass, a developer must analyze all of the methods implemented in
the superclasses and cancel all unwanted ones.

Unused superclass state. The class FileStream is a subclass of ReadWrite-
Stream and an indirect subclass of PositionableStream which is explicitly made

2 In Smalltalk, canceling a method is done by reimplementing the method in the
subclass and calling shouldNotImplement from it.

5

to stream over collections (see Figure 1). It inherits three instance variables
(collection, position and readLimit) from PositionableStream and one (writeLimit)
from WriteStream. None of these four variables is used in FileStream or in any
of its subclasses.

Simulating multiple inheritance by copying. ReadWriteStream is concep-
tually both a ReadStream and a WriteStream. However, Smalltalk is a single
inheritance language, so ReadWriteStream can only subclass one of these. The
other behavior has to be copied, leading to code duplication and all of its
related maintenance problems.

The designers of the Squeak stream hierarchy decided to subclass WriteStream
to implement ReadWriteStream, and then copy the methods related to reading
from ReadStream.

One of the copied methods is next, which reads and returns the next element
in the stream. This leads to a strange situation where next is being canceled
out in WriteStream (because it should not be doing any reading), only to be
reintroduced by ReadWriteStream. The reason for this particular situation is
due to the combination of next defined too high in the hierarchy and single
inheritance.

Reimplementation. Figure 1 shows that next: is implemented five times. Not
a single implementation uses super which means that each class completely
reimplements the method logic instead of specializing it. But this statement
should be tempered because often in the Squeak stream hierarchy, methods
override other methods to improve speed execution: this is because in subclasses,
the methods have more knowledge and, thus, can do a faster job. However,
a method reimplemented in nearly all of the classes in a hierarchy suggests
inheritance hierarchy anomalies.

2.2 The ANSI Smalltalk standard

SequencedStream

GettableStream CollectionStream

ReadStream WriteStream

PuttableStream

ReadWriteStream

Fig. 2. The ANSI Smalltalk standard stream protocol hierarchy.

Figure 2 shows that even if Smalltalk is a single inheritance language, the ANSI
Smalltalk standard [7] defines the different protocols using multiple inheritance.

6

In the standard, streams are based on the notion of sequence values. Each
stream has past and future sequence values. The ANSI Smalltalk standard
defines a decomposition of stream behavior around three main protocols:
SequencedStream, PuttableStream and GettableStream. Table 1, Table 2 and
Table 3 summarize the protocol contents.

SequencedStream

close Disassociate a stream from its backing store.

contents Returns a collection containing the receiver’s past and future sequence values in order.

isEmpty Returns a boolean indicating whether there are any sequence values in the receiver.

position Returns the number of sequence values in the receiver’s past sequence values.

position: Sets the number of sequence values in the receiver’s past sequence values to be the parameter.

reset Resets the position of the receiver to be at the beginning of the stream of values.

setToEnd Set the position of the stream to its end.

Table 1
The SequencedStream protocols defined by the ANSI Smalltalk standard.

PuttableStream

flush Upon return, if the receiver is a write-back stream, the state of the stream backing store
must be consistent with the current state of the receiver.

nextPut: Writes the argument to the stream.

nextPutAll: Enumerate the argument, adding each element to the receiver.

Table 2
The PuttableStream protocols defined by the ANSI Smalltalk standard.

GettableStream

atEnd Returns true if and only if the receiver has no future sequence values available for
reading.

do: Evaluates the argument with each receiver future sequence value.

next The first object is removed from the receiver’s future sequence values and appended to
the end of the receiver’s past sequence values. The object is returned.

next: Does next a certain amount of time and returns a collection of the objects returned by
next.

nextMatchFor: Reads the next object from the stream and returns true if and only if the object is
equivalent to the argument.

peek Returns the next object in the receiver’s future sequence values without advancing the
receiver’s position.

peekFor: Peek at the next object in the stream and returns true if and only if it matches the
argument.

skip: Skip a given amount of object in he receiver’s future sequence values.

skipTo: Sets the stream just after the next occurrence of the argument and returns true if it’s
found before the end of the stream.

upTo: Returns a collection of all the objects in the receiver up to, but not including the next
occurrence of the argument.

Table 3
GettableStream protocol defined by the ANSI Smalltalk standard.

The ANSI Smalltalk standard provides a useful starting point for an imple-
mentation even if a lot of useful methods are not described. We therefore chose
to adopt it for Nile, with the exception of the peekFor: method.

About the method peekFor: in GettableStream. The standard proposes

7

a definition of peekFor: that most Smalltalk implementations do not follow.
In the ANSI Smalltalk standard, peekFor: is equivalent to an equality test
between the peeked object and the parameter:

GettableStream>>peekFor: anObject
^ self peek = anObject

Most Smalltalk implementations (including Dolphin, GemStone, Squeak, Vi-
sualAge, VisualSmalltalk, VisualWorks, Smalltalk-X and GNU Smalltalk) do
not only test the equality but also increment the position in case of equality
as shown by the following implementation.

peekFor: anObject
"Answer false and do not move over the next element if it is not equal
to the argument, anObject, or if the receiver is at the end. Answer
true and increment the position, if the next element is equal to
anObject."

^ (self atEnd not and: [self peek = anObject])
ifTrue: [self next. true]
ifFalse: [false]

This definition lets the following code parse ’145’, ’ 145’ and ’-145’ without
problem:

stream := ReadStream on: ’- 145’.
negative := stream peekFor: $-.
stream peekFor: Character space.
number := stream upToEnd.

Regarding the name of SequencedStream. The name SequencedStream is
not well chosen, since this protocol provides absolute positioning in the stream.
A name evoking this would have been better.

3 Nile overview and core

Nile is designed around a core of traits offering base functionality reflecting the
ANSI Smalltalk standard. The core consists of only six traits (See Figure 3)
and it is then used in several libraries that we discuss in detail throughout the
paper. File-based streams and collection-based streams are among the most
prominent libraries. The other libraries we present in the paper are support
for decoders, streams that can be chained and history stream. In addition, the
exact same core is used to implement a backward-compatible version of the
stream library presented in Section 6. By backward-compatible we mean that

8

do:
nextMatchFor:
next:
peekFor:
skip:
skipTo:
upTo:
upToEnd
upToElementSatisfying:

atEnd
next
peek
outputCollectionClass

TGettableStream

atEnd
atStart
back
close
isEmpty
position:
reset
setToEnd

position
setPosition:
size

TPositionableStream

nextPutAll:
next:put:
print:
flush

nextPut:
TPuttableStream

Core

binary
close
closed
isBinary
isClosed
isStream

TStream

back
backUpTo:
match:
nextDelimited:
skip:

TGettablePositionableStream TPuttablePositionableStream

writeBack

@ {#basicBack->#back}

Fig. 3. Nile core composed of six traits. — We use a UML-based notation to represent
traits: methods on the left are provided and methods on the right are required.

the solution follows the original Smalltalk class level decomposition described
in the Stream class hierarchy [10,7]. Such hierarchy was mainly composed of
ReadStream, ReadWriteStream and WriteStream.

We designed Nile around three traits reflecting the ANSI Smalltalk stan-
dard: TPositionableStream, TGettableStream and TPuttableStream. To increase
reuse we added three other traits: TStream, TGettablePositionableStream and
TPuttablePositionableStream. The two traits TGettablePositionableStream and
TPuttablePositionableStream have been implemented to group behavior where
both positioning and reading (or writing) was available. Also, a trait named
TStream is implemented as a placeholder to provide behavior common to all
streams. A description of each trait follows.

TStream. The trait TStream implements methods like isStream and isClosed
which must be available for all traits.

TGettableStream. The trait TGettableStream is meant for all streams used to
read elements of any kind. The trait requires 4 methods: atEnd, next, peek and
outputCollectionClass. The method peek returns the following element without
moving the stream whereas next reads and returns the following element and
moves the stream. The method outputCollectionClass in TGettableStream is used
to determine the type of collection which is used when returning collections of

9

elements, and is for example used in methods next: and upTo:.

TPositionableStream. The trait TPositionableStream allows for the creation
of streams that are positioned in an absolute manner. It corresponds to the
ANSI Smalltalk standard SequencedStream protocol; we thought the name
TPositionableStream made more sense. The only required methods are size and
two accessors for a position variable. We decided to implement the bounds
verification of the method position: in the trait itself: the parameter must be
between zero and the stream size. This means that two methods have to be
implemented: a pure accessor, named setPosition: here, and the real public
accessor named position: which verifies its parameter value.

TPuttableStream. This trait provides nextPutAll:, next:put:, print: and flush
and requires nextPut:. By default, flush does nothing. It is used for ensuring
that everything has been written. Buffer-based streams should provide their
own implementations.

TGettablePositionableStream. This trait allows streams to be readable and
positionable. It uses the two traits TGettableStream and TPositionableStream.
It implements different methods available when both of these features are
available. The methods back and skip: override methods in TPositionableStream
and TGettableStream respectively. The method back now returns the element
before the current position. This is not possible in TPositionableStream because
this trait is not able to read elements. The implementation of this method uses
the basicBack: alias to call the previous implementation and then returns the
result of sending peek. The method skip: which was naively implemented as a
succession of nexts in TGettableStream, is now implemented efficiently using
position:.

TPuttablePositionableStream. This trait implements behaviour that needs
writing and positioning. The method writeBack: is equivalent to a call to back
followed by a call to nextPut:.

4 Collection-based and file-based streams

This section presents two libraries based on the core described earlier: the
collection-based and file-based streams. The resulting implementation is shown
in Figure 4.

10

do:
nextMatchFor:
next:
peekFor:
skip:
skipTo:
upTo:
upToEnd
upToElementSatisfying:

atEnd
next
peek
outputCollectionClass

TGettableStream

atEnd
atStart
back
close
isEmpty
position:
reset
setToEnd

position
setPosition:
size

TPositionableStream
nextPutAll:
next:put:
print:
flush

nextPut:
TPuttableStream

Core

binary
close
closed
isBinary
isClosed
isStream

TStream

back
backUpTo:
match:
nextDelimited:
skip:

TGettablePositionableStream TPuttablePositionableStream

writeBack

@ {#basicBack->#back}

collection
contents
next
next:
nextPut:
nextPutAll:
originalContents
outputCollectionClass
peek
position
resetContents
size

collection
position
streamSize

CollectionStreamatEnd
nextPut:
next
outputCollectionClass

fileID:
filename
isBinary

FileStream

cr
tab
space

TCharacterWriting

int16:
uint16:
uint32:

TByteWriting

next
nextPut:

StringStream

ByteStream

- {#back}
- {#back}

Fig. 4. Nile’s core with two libraries: CollectionStream and FileStream.

4.1 Collection-based streams

With the core traits in place, the implementation of the collection-based
stream library becomes straightforward. The library implements all collection-
oriented methods in a single class: CollectionStream. This class replaces the
three classes ReadStream, ReadWriteStream and WriteStream of the traditional
Smalltalk stream hierarchy (See Figure 1). The reasons of this design decision

11

are explained in Section 7. The class declares three instance variables (namely
collection, position and streamSize) and their accessors, and implements all
required methods (like next, outputCollectionClass and peek). The variable
streamSize allows the internal collection to be larger than the number of
elements in the stream. This is a common technique used to avoid the creation
of a new internal collection object for each single object written to the stream.
The method size returns the value of this instance variable.

There is a method conflict in CollectionStream because of two implementations
of the back method: one coming from TGettablePositionableStream and the
other one coming from TPositionableStream through TPuttablePositionable-
Stream. The one we want is the one from TGettablePositionableStream which is
an improved version, returning the element before the current position (see
Section 3). That is why the class CollectionStream removes the method back
when it declares the use of trait TPuttablePositionableStream.

Streams of Strings are used much more than any other collection-based
stream. For example, the Smalltalk systems uses them a lot internally to
parse and concatenate strings. We decided to implement a specific stream,
named StringStream for Strings as shown in Figure 4. There are two reasons
for this choice: (1) to be able to make specific speed improvements and (2)
to add character-related methods that are only valid for string-based streams
and that should not pollute general collection streams. The character-related
methods (like tab and cr) put non-printable characters in the streams. They
are implemented in a reusable trait named TCharacterWriting. We chose a trait
over a direct implementation in the class to be able to reuse them in file-based
streams also.

For the same reasons, we implemented the trait TByteWriting to manipulate
streams of bytes. The class ByteStream uses this trait to stream over collection
of bytes.

Note that, in contrast to the default Squeak implementation [11] and similar
to VisualWorks, our implementation actually works with any sequenceable
collection, not just Arrays and Strings, which is a real limitation of the Squeak
implementation.

4.2 File-based streams

Nile includes a file-based stream library, shown in Figure 4. As with other file-
based streams, it allows one to work with both binary and text files, supporting
three access modes for each (read, write, and readwrite).

The implementation of this part of the library requires only one class: FileStream.

12

This class is responsible for reading and writing in both text and binary files.
We chose to implement all features in just one class to ease use of this library.
This choice is the same as the one made by Squeak.

FileStream uses the traits TByteWriting and TCharacterWriting to ease writing
in binary and text files respectively.

5 Other libraries

In this section we show how traits support reuse by presenting two small
libraries. We first present a history stream which encapsulates undo/redo logic.
Then we describe the trait TDecoder that implements stream composition.
Note that Nile offers several other libraries which are summarized later in
Table 4.

5.1 History

It is often tedious to handle properly a history mechanism with back and
forward actions, like in internet browsers for example. This is because, as a
developer, you have to take care of the underlying collection, your position in
the collection and the modifications to this collection. Nile provides a history
stream that encapsulates such a behavior. Such a stream can then manipulate
any kind of objects such as web pages or Commands (design pattern [12]) to
easily implement undo/redo behaviour. The following operations are possible
in a history:

• positioning operations to go forward and backward by one element.
• an operation to insert an element at the current position. Existing elements

after the current position are then removed (the inserted element replaces
them).

This behavior is illustrated in Figures 5–6.

page1 page2page1 page2 page3page1

Fig. 5. A new history is empty. The user opens to page 1. — The user clicks on a
link to page 2. — The user clicks on a link to page 3.

A history is a gettable and puttable stream which is not positionable, i.e., we
want to go forward and backward, and we want to be able to add elements, but
we do not want to let the user go to a specific position directly. The History

13

page2 page3page1 page2 page3page1 page4page1

Fig. 6. The user clicks on the back button. He is now viewing page 2 again. — The
user clicks again the back button. Page 1 is now displayed. — From page 1, the user
clicks on a link to page 4. The history forgets pages 2 and 3.

class benefits from the traits TGettableStream and TPuttableStream but could
not be a subclass of CollectionStream because we do not want methods that
offer direct positioning behaviour to pollute the interface. Internally, however,
the history is implemented using a collection-based internal stream. Figure 7
presents a class diagram of our implementation.

TGettableStream

atEnd
next
peek
outputCollectionClass
nextPut:

internalStream
History

TPuttableStream

Fig. 7. The class History

The implementation of the class History reuses the traits TGettableStream and
TPuttableStream. The class declares an instance variable internalStream which
will contain a CollectionStream.

The implementation of the four required methods from the trait TGetta-
bleStream are straightforward and simply delegate to the internal stream. For
example, here is the implementation of next:

History>>next
^ internalStream next

The implementation of method nextPut: is a little bit more difficult. Imagine
a user goes backward a few times before clicking on a link to go to another
page. It is then no longer possible to go forward again. This mechanism is
implemented in the method nextPut::

History>>nextPut: anObject
| result |
result := internalStream nextPut: anObject.
internalStream streamSize: internalStream position.

14

^ result

Setting the stream size to the current position prevents the user from going
forward after this call.

5.2 Decoders

Developers often want to chain several streams to use them like connected pipes.
For example, a developer may want a stream to read from a file and another
stream which decompresses the first one on-the-fly. We generalized a mechanism
which was already available in Squeak for classes like ZipWriteStream and have
implemented a trait to support the composition of such decoders. We first
present a scenario for such decoders and then describe a clean implementation
using traits.

A decoder is a GettableStream which reads its data from another GettableStream
called its input stream. This way decoders can be chained. The decoder can
do whatever it wants with the contents of its input stream: for example, it can
ignore some elements, it can convert characters to numbers, or it can compress
or decompress the input.

Selective number reading. Imagine you have a string, or a file, containing
space separated numbers. We can get all even numbers as presented in the
code below. Here the developer composes three elementary streams which are
subclasses of the class Decoder (which uses the trait TDecoder).

| stream |
stream := ReadableCollectionStream on: ’123 12 142 25’.
stream := NumberReader inputStream: stream.
stream := SelectStream selectBlock: [:each | each even] inputStream: stream.

stream peek. ==> 12
stream next. ==> 12
stream atEnd. ==> false
stream next. ==> 142
stream atEnd. ==> true

Figure 8 illustrates the chaining of streams. NumberReader transforms a
character-based stream into a number-based stream. SelectStream ignores
all elements in the input stream for which the select block does not answer
true.

The trait TDecoder. Figure 9 shows the decoder hierarchy. A decoder is a
GettableStream and therefore class TDecoder uses the trait TGettableStream.
We chose to implement the decoding methods in a trait to let developers

15

system selectStream numberReader readableCollection

next
next

upTo: Character space

'123'
123

next

12

upTo: Character space

'12'

12

Fig. 8. Chaining streams

incorporate its functionalities into their own hierarchies.

TGettableStream

initializeDecoder
next
peek
outputCollectionClass

atEnd
atEnd:
nextValue
nextValue:
effectiveNext

TDecoder

atEnd
atEnd:
inputStream
inputStream:
nextValue
nextValue:

atEnd
inputStream
nextValue

Decoder

effectiveNext
inputStream:

NumberReader

selectBlock:
effectiveNext
selectBlock:inputStream:

selectBlock
SelectStream

Fig. 9. The decoder and two possible clients (underlined methods are instance-creation
methods).

TDecoder implements all required methods of TGettableStream with the excep-
tion of atEnd and it requires four accessors (including atEnd) and the method
effectiveNext. This last method is where all of the work happens. It reads from
its input stream and returns a new element. The method next in TDecoder calls
effectiveNext and catches StreamAtEndErrors for setting the atEnd variable.

Factoring the Nile core in traits again proved to be useful. If we had implemented
it using single inheritance in the Squeak hierarchy, we would have been forced
to choose a superclass between class Stream, which provides writing methods
we don’t want, or a subclass of PositionableStream which only streams over
collections, which is not what we want to do with decoders.

16

6 Backward-compatible collection-based streams

Traits have been proposed as a way to ease reuse. To verify that claim, we
wanted to test if our traits could be used to implement a backward-compatible
version of the original stream library as present in Squeak and the original
Smalltalk design [10].

The original Squeak implementation of the library is represented in Figure 1. In
this implementation different classes were available to read (ReadStream), write
(WriteStream) or read/write (ReadWriteStream) elements in collections. We
mimic this implementation by creating the classes ReadableCollectionStream,
WriteableCollectionStream and ReadWriteCollectionStream. These classes selec-
tively reuse core traits.

The integration between this backward-compatible implementation and the
core is shown in Figure 10 while Figure 11 presents a more detailed view.

In the rest of the section, we detail the different entities of this implementation.

AbstractCollectionStream. The class AbstractCollectionStream is the common
superclass to iterate over collections. It declares the two instance variables
collection and position and their accessors.

WriteableCollectionStream. This class subclasses AbstractCollectionStream to
benefit from the variable and accessor declarations and uses TPuttablePosi-
tionStream. It implements the method nextPut: which is indirectly required
by TPuttablePositionableStream. The class also reimplements nextPutAll: for
efficiency reasons. The method size returns the value of the instance variable
streamSize.

A careful reader may have noticed there is no reason for the implementation of
these methods to be different from the ones in CollectionStream (see Figure 10).
In fact, the methods are duplicated between the new library and the backward-
compatible one. We chose this duplication over the introduction of another trait
that would merely group these methods. We tried to use traits to factor common
behavior representing an abstraction and not just a couple of shared methods.
Moreover, it’s not worth complicating the new design only to keep backward
compatibility. Another, equivalent, duplication occurs for the methods used to
read data from streams.

TReadableCollectionStream. This trait factors out methods to read data
from collection-based streams. It is used by both ReadableCollectionStream and
ReadWriteCollectionStream. We implemented that trait to avoid duplication of
code between these two classes and because it represents a coherent abstraction.

17

do:
nextMatchFor:
next:
peekFor:
skip:
skipTo:
upTo:
upToEnd
upToElementSatisfying:

atEnd
next
peek
outputCollectionClass

TGettableStream

atEnd
atStart
back
close
isEmpty
position:
reset
setToEnd

position
setPosition:
size

TPositionableStream
nextPutAll:
next:put:
print:
flush

nextPut:
TPuttableStream

Core

collection
contents
next
next:
nextPut:
nextPutAll:
originalContents
outputCollectionClass
peek
position
resetContents
size

collection
position
streamSize

CollectionStream

binary
close
closed
isBinary
isClosed
isStream

TStream

back
backUpTo:
match:
nextDelimited:
skip:

TGettablePositionableStream TPuttablePositionableStream

writeBack

@ {#basicBack->#back}

atEnd
nextPut:
next
outputCollectionClass

fileID:
filename
isBinary

FileStream

cr
tab
space

TCharacterWriting

int16:
uint16:
uint32:

TByteWriting

next
nextPut:

StringStream

ByteStream

ReadableCollectionStream

next
outputCollectionClass
peek
...

TReadingCollectionStream

....

collection
position

AbstractCollectionStream

....
streamSize
WriteableCollectionStream

ReadWriteCollection
Stream

Backward Compatible

- {#back}

- {#back}

Fig. 10. Nile’s core with three libraries: CollectionStream, FileStream and the
backward-compatible collection-based streams.

ReadableCollectionStream. This class uses the traits TReadableCollection-
Stream and inherits from AbstractCollectionStream. The only method it imple-
ments is the method size which returns the size of the associated collection.

ReadWriteCollectionStream. This class allows for both reading and writing
in collections. It inherits its instance variables, accessors and writing behavior
from WriteableCollectionStream and its reading behavior from TReadableCollec-
tionStream.

18

size
ReadableCollectionStream

nextPut:
nextPutAll:
size

streamSize

Writeable
CollectionStream

ReadWriteCollectionStream

next
peek
outputCollectionClass

collection
position
position:
atEnd

TReadableCollectionStream

TGettablePositionableStream TPuttablePositionableStream

Core

collection
setCollection:
position
setPosition:

collection
position

AbstractCollectionStream

Fig. 11. The collection-based stream library.

7 Nile Analysis: Revisiting the Questions

Section 1 raised a number of questions regarding the traits model. This section
revisits these questions one by one and provides answers based on our experience
with developing Nile.

7.1 Trait granularity

When developing with traits, it is very tempting to develop traits that are
too fine-grained. Similarly to the idea that inheritance is not only a reuse
mechanism but can have a stronger semantics when used with subtyping in
mind, we favored traits to represent coherent abstractions over a mere reuse
mechanism. We avoided to create traits just to group and reuse a couple of
methods; instead we developed our traits to represent abstractions. Our focus
was to build a set of core abstractions that can be recombined in the context
of collection and file-based streams.

While developing Nile, we first tried to mimic ANSI Smalltalk standard and
Squeak by developing one class for each access mode on collections: reading,
writing and reading-writing. We even went further, developing twelve entities
(traits, concrete and abstract classes) only to manage file streams [8,13]. We
had six concrete classes which represented the Cartesian product between
binary and text files on one side and the three access modes on the other sides.
These classes were linked with three abstract classes and three traits. This

19

implementation lets the users choose which kind of file streams they want and
only get the necessary methods. On the downside we realized that this was
far too complex and reimplemented everything in just one class. This solution
is much simpler to use and to maintain. However, the user now has access to
methods she doesn’t really want (i.e., she can send the method nextPut: even
if her stream is read-only). In general, developing is making a lot of trade-offs.
Traits introduce another dimension when designing a system and as such open
the trade-off space.

From our experience developing Nile we conclude that traits support well the
choice and the granularity of the abstractions that a programmer can define
and compose.

7.2 Deciding between traits and classes

TGettablePositionableStream

TPositionableStream

TPuttablePositionableStream

Core

TReadingCollectionStream

ReadableCollection
Stream

ReadWriteCollection
Stream

WriteableCollection
Stream

TCharacterWriting

TDecoder

SharedQueue

c
o
lle
c
ti
o
n
-b
a
c
k
w
a
rd

TPuttableStreamTGettableStream

CollectionStream

AbstractCollectionStream

TByteWriting

StringStreamByteStream

Random

History

Decoder

TStream

FileStream

Fig. 12. An overview of some of the Nile’s libraries

One of the key questions when building a system with traits is to decide when
to use classes and when to use traits. In certain situations as illustrated by the
Squeak stream hierarchy (see Section 2), defining a class or inheriting from a
class does not make sense since some of its state is inherited but not used or
inherited behavior should be canceled. There are clear design signs showing
that the solution is suboptimal when the programmer could use instead traits,
since traits can solve such problems.

Now defining one or more traits instead of a class is not a simple decision to
take. The designer has to assess whether potential clients may benefit from

20

the traits, i.e., if the defined behavior can be reused in another hierarchy. In
addition as we mentioned earlier traits can be used as a reuse mechanism but
we believe that they are better when representing (composable) abstractions.

7.3 Reusability of traits at work

Figure 12 offers an overview of the core libraries of Nile as well as some other
ones.

library name superclass and trait used met. description

TDecoder TGettableStream 3 allows stream chaining (see Section 5)

Decoder TDecoder 1 allows stream chaining (see Section 5)

Random TGettableStream 13 generate random numbers.

LinkedListStream TGettableStream
TPuttableStream

10 stream over linked elements.

History TGettableStream
TPuttableStream

18 manage an history of elements and allows
going back(see Section 5).

SharedQueue TGettableStream
TPuttableStream

11 concurrent access on a queue.

CompositionStream Decoder 2 multiplexer for input streams.

Tee Decoder 3 fork the input stream (like the Unix tee
command).

Buffer Decoder 3 add a buffer to any kind of input stream.

NumberReader Decoder 2 read numbers from a character based input
stream.

SelectStream Decoder 2 select elements from an input stream.

PipeEntry TGettableStream
TPuttableStream

10 allow data to be manually put into a pipe.

Table 4
Nile libraries

Nile comes with reusable traits that can be plugged in any other hierarchy.
For example, implementing socket-based streams would only require socket
manipulation work whereas utility methods like nextPutAll:, skip:, upToEnd are
offered to the developer. Using the trait TGettableStream, a developer can easily
implement a Random class which is basically a stream over random numbers.
Table 4 presents the current libraries we implemented in Nile using traits
as well as the number of implemented methods to get the desired behavior
(without the accessors).

Table 5 presents how much the core traits are reused. It presents for each trait
the number of libraries, the number of required methods and the number of
methods that the trait provides. We see a good ratio provided/required for
most of the traits. The ratio may still improve if additional behavior based on
the core functionality is introduced.

Table 6 presents some metrics which compare the same functionalities in the

21

Trait client classes required m. provided m. provided
required

TGettableStream 17 5 18 360%

TPositionableStream 10 4 14 350%

TPuttableStream 8 2 12 600%

TGettablePositionableStream 5 7 30 428%

TPuttablePositionableStream 5 5 20 400%

TCharacterReading 4 5 2 40%

TCharacterWriting 4 1 8 800%

TByteReading 4 3 14 466%

TByteWriting 4 3 13 433%

TDecoder 7 7 21 300%

Table 5
Nile-trait reusability.

Squeak Nile Squeak−Nile
Squeak

Number of Classes And Traits 5 6 -20%

Number of Methods 55 33 40%

Number of Bytes 1769 1064 39%

Number of Cancelled Methods 2 0 100%

Number of Reimplemented Methods 14 3 78%

Number of Methods Implemented Too High 10 0 100%

Table 6
Some metrics for the collection-based streams

Squeak implementation and in Nile for the collection-based streams. The first
metric indicates that Nile has only one more entity (class/trait) than the
Squeak implementation. The next two (number of methods and number of
bytes) are also interesting and show that the amount of code is smaller in Nile
than in Squeak. Nile has 40% less methods and 39% less bytecodes than the
corresponding Squeak collection-based stream library. This means we avoided
reimplementation of a lot of methods by putting them in the right traits.
Finally, we can deduce from the last metrics that the design of Nile is better:
there is neither cancelled methods nor methods implemented too high and
there are only three methods reimplemented for speed reasons compared to
the fourteen of the Squeak version.

About Trait Composition. During trait composition, it is possible that
required methods of a trait are fulfilled by the provided methods of another
trait. When this happens the developer does not have to do any extra work

22

and benefits from the composition result. We can see this at work for the
method atEnd that is required in TGettableStream and provided by TPosition-
ableStream. The trait TGettablePositionableStream doesn’t have any work to
get the implementation of atEnd. Such a situation is rare and based on the
decomposition of traits using a compatible behavior and vocabulary.

On the other hand, it is sometimes better or even necessary to override a
method coming from a trait. Similar to specializing an inherited method, the
new implementation has more knowledge than the overridden one and thus can
do a better job. For example, the method skip: in TGettablePositionableStream
overrides the one in TGettableStream. The new method is more efficient because
the stream is positioned directly, needing only a small bound computation:

TGettablePositionableStream>>skip: amount
"Moves relatively in the stream. Go forward amount elements.
Go backward if amount is negative."
"Overrides TGettableStream>>skip: for efficiency and backward possibility."

self position: ((self position + amount) min: self size max: 0)

Moreover, skip: is now able to go backward if the amount given is negative,
which is not possible for the general implementation of TGettableStream.

7.4 Performance optimization

One of the key challenges of Nile’s design in terms of performance is to be able
to iterate over any kind of collection while at the same time being as efficient
as the Squeak implementation that only accepts (and is optimised for) Arrays
and Strings. We present our solution to this challenge.

Contrary to the Squeak class WriteStream which can only iterate over Ar-
rays and Strings, Nile’s CollectionStream is able to iterate over any kind of
SequenceableCollection. In Squeak the method nextPutAll: in WriteStream di-
rectly manipulates its internal collection using a call to the primitive replace-
From:to:with:startingAt: implemented in String and Array 3 . Nile has more work
to do.

The idea is to propose a dedicated set of classes working specifically on Array
and String. We first reimplemented the method nextPutAll: in CollectionStream
to take care of any kind of collection. This proved to be slow when iterating over
Arrays and Strings compared to Squeak. Benchmarking shows that too much

3 While replaceFrom:to:with:startingAt: is implemented for all kinds of Sequence-
ableCollections, it does not work for OrderedCollection.

23

time was lost into calling methods. We have then implemented an optimized
version (i.e., using the primitive method replaceFrom:to:with:startingAt:) of
nextPutAll: directly into the class StringStream in which we are sure that the
underlying collection is a String (the problem and the solution are the same to
handle Arrays).

Table 7 shows that we managed to make Nile even more efficient than Squeak.
We tested the methods next, next:, nextPut: and nextPutAll: on string-based
streams. The benchmarks have been executed on a GNU/Linux 2.6.22 ker-
nel with an Intel Pentium M 2.13Ghz processor. This results are important
because they show that traits allows better design while not preventing fine
optimizations where necessary.

Squeak Nile Nile−Squeak
Nile

next 72.2 72.9 1%

next: 144.4 202.8 29%

nextPut 64.2 105.5 39%

nextPutAll 177.8 185.4 4%

Table 7
Benchmarks comparing Squeak and Nile for string-based streams. The first two
results are in number of executions per second. The third one shows the difference.

7.5 Traits Interface pollution problem

In this section we present some problems of traits due to class interface
extension.

Required accessors. With stateless traits, it is not possible to add state, i.e.,
instance variables, to traits. Instead, the developer must add required accessors
to its trait and the classes will implement those required accessors and the
instance variables. This is a problem because (1) the accessors are then part of
the interface of the classes and (2) this adds a burden to the class developers.
(1) could be solved if Smalltalk would have method access control, such as
a “protected” modifier, because the accessor methods could then be hidden
instead of being public. A solution to solve both problems would be to use
stateful traits [3], where traits can contain private state. For example, if we
had used stateful traits the methods setPosition: in TPositionableStream would
not have been required.

Lazily initialized variables. There are basically three ways of initializing
an instance variable with an initial first value: initializing the variable lazily
in the accessor, using an initialize method, or initializing the variable in the
instance creation method through an accessor.

24

Lazy initialization is a common programming pattern. Here is an example in
Smalltalk which returns the value of the variable checked if it has been set, or
sets it to the initial value of false and then returns the value:

checked
^ checked ifNil: [checked := false]

Imagine a situation where a trait needs a variable and wants to give an initial
value for that variable. Since traits cannot contain state, the variable cannot
be declared directly in the trait. Accessors for that variable are made required
methods instead. The question then is where we need to lazy initialize the
variable. Two solutions are possible: you can either force users of the trait to
initialize the variable or you can initialize the variable in the trait and use
another method for accessing the variable. Here is an example of the latter
possibility:

checked
^ self getChecked ifNil: [self checked: false. false].

checked: aBoolean
self explicitRequirement.

getChecked
self explicitRequirement.

This solution pollutes the trait interface with an unnecessary method get-
Checked. Note that method access control such as “protected” would solve
that problem. The other solution consists of letting the trait user initialize
the variable. This solution does not pollute the interface but gives more
responsibility to other developers and may produce code duplication or bugs.

The same problem appears when you want to do some checking before assigning
to a variable as shown in position: in TPositionableStream for example:

TPositionableStream>>position: newPosition
"Sets the number of elements before the position to be the parameter
newPosition. 0 for the start of the stream. Throws an error if the
parameter is lesser than 0 or greater than the size."

(self isInBounds: newPosition) ifFalse: [InvalidArgumentError signal].
self setPosition: newPosition.

This setter needs an additional method setPosition: which really modifies the
variable and which is a required method of the trait. Two methods are then
part of the interface where only one was really necessary.

Initializing a trait. In a class, when a developer wants to initialize a newly

25

created object, he can use an initialize method:

initialize
super initialize.
color := Color transparent.

This code sends initialize to the superclass and then sets a default value for the
color instance variable. This can be done in a trait as well, provided that the
developer uses an accessor instead of a direct reference to the variable. However,
a class or a trait can use multiple traits, each defining their own initialize method.
In this case, there will be conflicts between the initialize methods obtained
by these traits. This is not a problem by itself: when composing the initialize
methods can be removed and the different initialize methods can be aliased
so that they can still be called in the composition. While not problematic,
this brings a lot of pollution in the class interface (all the aliased initialization
methods) and requires work.

Another solution would be to use a specific name for each initialize method.
For example, if the trait TPositionableStream needs an initialize method, the
developer can name it initializePositionableStream. Each user of the trait now
needs to define its own initialize method which calls initializePositionableStream.
This still requires too much work from the developer and does not solve the
class interface pollution problem.

Initializing in the instance creation method. Instance creation methods
can be used to initialize variables. This is what we did for Nile:

CollectionStream>>on: aCollection
^ self basicNew

initialize;
setCollection: aCollection;
streamSize: 0;
reset;
yourself

Smalltalk is made such that this requires that setters are available in the
interface of the class. It also puts more responsibility on the instance creation
method which now needs more knowledge over the class it instantiates.

7.6 Challenges for supporting development with traits

While traits are a powerful reuse mechanism, they introduce another axe of
freedom in the already difficult task of developing. The following paragraphs
detail a number of practical problems a developer faces when he wants to apply
traits in practice.

26

Orthogonal relation representations. Representations of single inheritance
class hierarchies have been done for a long time now and are working well in
IDEs. Traits offer a new orthogonal relation between classes and traits. This
makes IDE views harder to represent and understand. The more entities, the
more difficult it is to represent the relations in a clean way.

Lack of code browsing support. While alternative browsers have been
prototyped [14], there is currently no good tool to browse the orthogonal
representations of class and trait hierarchies in a unified view. This makes
things difficult when the developer wants to add features or refactor code.
When the developer browses a class, she has to know where methods are really
implemented (in this class, in a super class or in a trait) and where to put new
methods.

Understanding two orthogonal hierarchies. In a class-only hierarchy, it
is sometimes already difficult to know in which class to put a new feature.
With traits, it is even more complicated and only a global understanding of
the classes and traits used will allow adding a new feature in the correct place.
Traits granularity and composition make certain changes possible as shown in
the design of Nile: we can change the traits and their relationships easily and
still get the same behavior for the streams.

8 Related work

8.1 Comparison with previous work

There is no previous work building a library from scratch using traits. However,
Schärli et al. [5] were the first to refactor the collection and stream hierarchies
using traits.

Figure 13 shows Schärli’s stream hierarchy. Their work is a refactoring, where
they took the original Squeak stream hierarchy and extracted the existing be-
havior into traits. This was a valuable experience that showed how a non-trivial
implementation could be replaced with a cleaner implementation that was
backward-compatible. While valuable, the backward compatibility constraint
forces the result to be linked to the original implementation. Therefore it
exhibits a number of problems:

• The positioning methods for a stream have to be based on collections
because the methods position:, atEnd and setToEnd are all defined in the trait
TStreamPositionable which depends on collection and collection:. Therefore
it can not be used, for example, with files. This problem comes from the

27

flush
close
closed
isStream
new
on:

error:
basicNew

TStreamCommon
contents:
contentsOfEntireFile
last
originalContents
atEnd
isEmpty
position:
reset
resetContents
setToEnd
skip:
on:
on:from:to:

error:
position
privatePosition:
collection
collection:
readLimit
readLimit:
basicNew

TStreamPositionable

on:from:to: position:
collection
collection:
readLimit:

TStreamReadWriteCommon

nextMatchFor:
upToEnd
do:
next:

atEnd
next

TStreamReadable

next
next:
peek
peekFor:
size
upTo:
upToEnd

position
collection
position:
readLimit:
skip:

TStreamReadablePositionable

nextPutAll: nextPut:
error:

TStreamWriteable

resetToStart
nextPut:
size
with:
with:from:to:

position
position:
skip:
collection
collection:
readLimit
readLimit:
writeLimit
writeLimit:
basicNew

TStreamWriteablePositionable

StreamTop

collection
collection:
readLimit
readLimit:
position
privatePosition:

collection
position
readLimit

StreamPositionableStream

StreamReadStream

writeLimit
writeLimit:
close
closed
contents

writeLimit
StreamReadWriteStream

-{#size}

writeLimit
writeLimit:
basicOn:from:to:
on:from:to:

writeLimit

StreamWriteStream

@{#basicOn:from:to: -> #on:from:to:}

Fig. 13. Schärli’s refactored stream hierarchy.

implementation in the Squeak hierarchy, where the class PositionableStream
introduces both positioning and collections in the same time.
• The methods peek and upToEnd in TStreamReadablePositionable depends on

the existence of methods collection and position, which should not be the
case.
• The implementation only takes care of array-based and string-based streams.

8.2 Non-trait related work

We already compared our approach with the research on refactoring existing
code using traits [5,6]. We now present the approaches that automatically
transform existing libraries using Formal Concept Analysis (FCA) or other
techniques. FCA was used in different ways.

Godin [15] developed incremental FCA algorithms to infer implementation
and interface hierarchies guaranteed to have no redundancy. To assess their
solutions from a point of view of complexity and maintainability they propose
a set of structural metrics. They analyze the Smalltalk Collection hierarchy.
One important limitation is that they consider each method declaration as a
different method and thus cannot identify code duplication. Moreover their
approach serves rather as a help for program understanding than reengineering
since the resulting hierarchies cannot be implemented in Smalltalk because of
single inheritance.

28

Snelting and Tip analyze a class hierarchy making the relationship between class
members and variables explicit [16]. By analyzing the usage of the hierarchy by
a set of client programs they are able to detect design anomalies such as class
members that are redundant or that can be moved into a derived class. Taking
into account a set of client programs, Streckenbach infer improved hierarchies
in Java with FCA [17]. Their proposed refactoring can then be used for further
manual refactoring. The tool proposes the reengineer to move methods up in
the hierarchy to work around multiple inheritance situations generated by the
generated lattice. The work of Streckenbach is based on the analysis of the
usage of the hierarchy by client programs. The resulting refactoring is behavior
preserving (only) with respect to the analyzed client programs.

Lienhard et al. applied Formal Concept Analysis to semi-automatically identify
traits [6]. We cannot really compare their resulting hierarchy with ours since
the information about the respective traits is no longer available. However we
can conclude that the resulting hierarchy was limited and resulted only from a
refactoring effort and not from a new design.

Interfaces and specifications of the Smalltalk collection hierarchy are also
analyzed by Cook [18]. He also takes method cancellation into account to
detect protocols. By manual analysis and development of specifications of
the Smalltalk collection hierarchy he proposes a better protocol hierarchy.
Protocol hierarchies explicitly represent similarities between classes based on
their provided methods. Thus, compared to our approach, protocol hierarchies
present a client view of the library rather than one of the implementor.

Moore [19] proposes automatic refactoring of Self inheritance hierarchies. Moore
focuses on factoring out common expressions in methods. In the resulting
hierarchies none of the methods and none of the expressions that can be
factored out are duplicated. Moore’s factoring creates methods with meaningless
names which is a problem if the code should be read. The approach is more
optimizing method reuse than creating coherent composable groups of methods.
Moore’s analysis finds some of the same problems with inheritance that we
have described in this paper, and also notes that sometimes it is necessary to
manually move a method higher in the hierarchy to obtain maximal reuse.

Casais uses an automatic structuring algorithm to reorganize Eiffel class
hierarchies using decomposition and factorization [20]. In his approach, he
increases the number of classes in the new refactored class hierarchy. Dicky et
al. propose a new algorithm to insert classes into a hierarchy that takes into
account overridden and overloaded methods [21].

The key difference from our results is that all the work on hierarchy reorgani-
zation focuses on transforming hierarchies using inheritance as the only tool.
In contrast, we are interested in exploring other mechanisms, such as explicit

29

composition mechanisms like traits composition in the context of mixin-like
languages. Another important difference is that we don’t rely on algorithms.
We want to be able to use our result to compare it with the result of future
approach extracting traits automatically, so the Nile library may serve as a
reference point.

9 Conclusion

Traits are units of reuse that can be used to compose classes. This paper is an
experience report. Even if other experiences have been made to test traits, they
were always refactoring an existing hierarchy, moving methods from classes
to traits. Our work presents a brand new implementation. We started from
the textual description from the ANSI Smalltalk standard and from existing
implementations of stream libraries in Squeak and VisualWorks. Our result is
a completely new implementation, named Nile, of the stream hierarchy which
does not share any code with previous implementations.

Our experience shows that traits are good building blocks which favor reuse
across different hierarchies. In the present implementation of Nile we get up to
40% less code than the corresponding Squeak implementation. Core traits are
reused by numerous libraries. We also presented the problems we faced during
the experience and believe that Nile can be used in the future as a reference
point for comparing future trait enhancements.

This experience shows that well-defined traits can naturally fit into lots of
different libraries which can benefit from methods offered by the trait for a
relatively low cost. In the future we plan to further develop the new library
core and its extensions since it supports both backward-compatible extensions
and more compact ones.

Acknowledgment

We gratefully acknowledge the financial support of the Agence Nationale pour
la Recherche (ANR) for the project “Cook: Rearchitecting object-oriented
applications” (2005-2008). We thank Alexandre Bergel and Mathieu Suen for
their reviews.

30

References

[1] Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.: Traits: Composable units
of behavior. In: Proceedings of European Conference on Object-Oriented
Programming (ECOOP’03). Volume 2743 of LNCS., Springer Verlag (July
2003) 248–274

[2] Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.: Traits: A mechanism
for fine-grained reuse. ACM Transactions on Programming Languages and
Systems (TOPLAS) 28(2) (March 2006) 331–388

[3] Bergel, A., Ducasse, S., Nierstrasz, O., Wuyts, R.: Stateful traits. In: Advances
in Smalltalk — Proceedings of 14th International Smalltalk Conference (ISC
2006). Volume 4406 of LNCS., Springer (August 2007) 66–90

[4] Ducasse, S., Wuyts, R., Bergel, A., Nierstrasz, O.: User-changeable visibility:
Resolving unanticipated name clashes in traits. In: Proceedings of 22nd
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’07), New York, NY, USA, ACM Press (October
2007) 171–190

[5] Black, A.P., Schärli, N., Ducasse, S.: Applying traits to the Smalltalk collection
hierarchy. In: Proceedings of 17th International Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA’03). Volume 38.
(October 2003) 47–64

[6] Lienhard, A., Ducasse, S., Arévalo, G.: Identifying traits with formal concept
analysis. In: Proceedings of 20th Conference on Automated Software Engineering
(ASE’05), IEEE Computer Society (November 2005) 66–75

[7] ANSI New York: American National Standard for Information Systems
- Programming Languages - Smalltalk, ANSI/INCITS 319-1998. (1998)
http://wiki.squeak.org/squeak/uploads/172/standard_v1_9-indexed.pdf.

[8] Cassou, D., Ducasse, S., Wuyts, R.: Redesigning with traits: the nile stream
trait-based library. In: Proceedings of the 2007 International Conference on
Dynamic Languages (ICDL 2007), ACM Digital Library (2007) 50–75

[9] Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the future:
The story of Squeak, A practical Smalltalk written in itself. In: Proceedings
OOPSLA ’97, ACM SIGPLAN Notices, ACM Press (November 1997) 318–326

[10] Goldberg, A., Robson, D.: Smalltalk-80: The Language. Addison Wesley (1989)

[11] Black, A., Ducasse, S., Nierstrasz, O., Pollet, D., Cassou, D., Denker, M.: Squeak
by Example. Square Bracket Associates (2007) http://SqueakByExample.org/.

[12] Alpert, S.R., Brown, K., Woolf, B.: The Design Patterns Smalltalk Companion.
Addison Wesley (1998)

[13] Cassou, D.: Remodularisation à base de traits. Master’s thesis, Université
Bordeaux I (2007)

31

[14] Black, A.P., Schärli, N.: Traits: Tools and methodology. In: Proceedings ICSE
2004. (May 2004) 676–686

[15] Godin, R., Mili, H., Mineau, G.W., Missaoui, R., Arfi, A., Chau, T.T.: Design of
Class Hierarchies based on Concept (Galois) Lattices. Theory and Application
of Object Systems 4(2) (1998) 117–134

[16] Snelting, G., Tip, F.: Reengineering Class Hierarchies using Concept Analysis.
In: ACM Trans. Programming Languages and Systems. (1998)

[17] Streckenbach, M., Snelting, G.: Refactoring class hierarchies with KABA. In:
OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN Conference on
Object-oriented programming, systems, languages, and applications, New York,
NY, USA, ACM Press (2004) 315–330

[18] Cook, W.R.: Interfaces and Specifications for the Smalltalk-80 Collection
Classes. In: Proceedings of OOPSLA ’92 (7th Conference on Object-Oriented
Programming Systems, Languages and Applications). Volume 27., ACM Press
(October 1992) 1–15

[19] Moore, I.: Automatic Inheritance Hierarchy Restructuring and Method
Refactoring. In: Proceedings of OOPSLA ’96 (11th Annual Conference on
Object-Oriented Programming Systems, Languages, and Applications), ACM
Press (1996) 235–250

[20] Casais, E.: Automatic reorganization of object-oriented hierarchies: A case study.
Object-Oriented Systems 1(2) (December 1994) 95–115

[21] Dicky, H., Dony, C., Huchard, M., Libourel, T.: On Automatic Class
Insertion with Overloading. In: Proceedings of OOPSLA ’96 (11th ACM
SIGPLAN conference on Object-oriented Programming, Systems, Languages,
and Applications), ACM Press (1996) 251–267

A Appendix: Traits in a Nushell

To ease the understanding of this paper we added this section which presents
traits in a nutshell. This part is taken from [4] and is not part of the current
article. It is just added here for sake of completeness and understanding the
ideas presented in the paper.

Reusable groups of methods. Traits are units of behaviour. They are sets
of methods that serve as the behavioural building block of classes and primitive
units of code reuse [2]. In addition to offering behaviour, traits also require
methods, i.e., methods that are needed so that trait behaviour is fulfilled. Traits
do not define state, instead they require accessor methods.

Figure A.1 shows a class SyncStream that uses two traits, TSyncReadWrite and
TStream. The trait TSyncReadWrite provides the methods syncRead, syncWrite

32

lock
lock:
isBusy
hash

lock
SyncStream

TSyncReadWrite
syncRead
syncWrite
hash

read

write

lock:

lock

@{hashFromSync -> hash}

TStream
read
write
hash

@{hashFromStream -> hash}

syncRead

 | value |

 self lock acquire.

 value := self read.

 self lock release.

 ^ value

syncWrite

 | value |

 self lock acquire.

 value := self write.

 self lock release.

 ^ value

hash

 ^ self hashFromSync

 bitXOr: self hashFromStream

Fig. A.1. The class SyncStream is composed of the two traits TSyncReadWrite and
TStream.

and hash. It requires the methods read and write, and the two accessor methods
lock and lock:. We use an extension to UML to represent traits (the right
column lists required methods while the left one lists the provided methods).

Explicit composition. A class contains a super-class reference, uses a set
of traits, defines state (variables) and behaviour (methods) that glue the
traits together; a class implements the required trait methods and resolves any
method conflicts.

Trait composition respects the following three rules:

• Methods defined in the composer take precedence over trait methods. This
allows the methods defined in a composer to override methods with the same
name provided by the used traits; we call these methods glue methods.
• Flattening property. In any class composer the traits can be in principle

in-lined to give an equivalent class definition that does not use traits.
• Composition order is irrelevant. All the traits have the same precedence,

and hence conflicting trait methods must be explicitly disambiguated.

Conflict resolution. While composing traits, method conflicts may arise. A
conflict arises if we combine two or more traits that provide identically named
methods that do not originate from the same trait. There are two strategies to
resolve a conflict: by implementing a (glue) method at the level of the class
that overrides the conflicting methods, or by excluding a method from all but
one trait. Traits allow method aliasing; this makes it possible to introduce an
additional name for a method provided by a trait. The new name is used to
obtain access to a method that would otherwise be unreachable because it has
been overridden [2].

In Figure A.1, the class SyncStream is composed from TSyncReadWrite and

33

TStream. The trait composition associated to SyncStream is:

TSyncReadWrite alias hashFromSync → hash

+ TStream alias hashFromStream → hash

The class SyncStream is composed of (i) the trait TSyncReadWrite for which the
method hash is aliased to hashFromSync and (ii) the trait TStream for which
the method hash is aliased to hashFromStream.

Method composition operators. The semantics of trait composition is
based on four operators: sum (+), override (⊲), exclusion (−) and aliasing
(alias →) [2].

The sum trait TSyncReadWrite + TStream contains all of the non-conflicting
methods of TSyncReadWrite and TStream. If there is a method conflict, that
is, if TSyncReadWrite and TStream both define a method with the same name,
then in TSyncReadWrite + TStream that name is bound to a known method
conflict. The + operator is associative and commutative.

The override operator (⊲) constructs a new composition trait by extending an
existing trait composition with some explicit local definitions. For instance,
SyncStream overrides the method hash obtained from its trait composition.

A trait can exclude methods from an existing trait using the exclusion operator
−. Thus, for instance, TStream − {read, write} has a single method hash.
Exclusion is used to avoid conflicts, or if one needs to reuse a trait that is “too
big” for one’s application.

The method aliasing operator alias → creates a new trait by providing an
additional name for an existing method. For example, if TStream is a trait
that defines read, write and hash, then TStream alias hashFromStream → hash

is a trait that defines read, write, hash and hashFromStream. The additional
method hashFromStream has the same body as the method hash. Aliases are
used to make conflicting methods available under another name, perhaps to
meet the requirements of some other trait, or to avoid overriding. Note that
since the body of the aliased method is not changed in any way, an alias to a
recursive method is not recursive.

34

x {^ 'C'}

Composer

T1
foo {self x}
x {^ 'T1'}

T1 - x

Composer

Conflict resolution via method
redefinition in Composer

Excluding x from T1

Composer new foo -> 'C'
Composer new bar -> 'C'
Composer new x -> 'C'

Composer new foo -> 'T2'
Composer new bar -> 'T2'
Composer new x -> 'T2'

T2
bar {self x}
x {^ 'T2'}

T1
foo {self x}
x {^ 'T1'}

T2
bar {self x}
x {^ 'T2'}

Fig. A.2. Trait conflict resolution strategies: either via method redefinition or via
method exclusion.

35

