84 research outputs found

    Leicester Energy Study

    Get PDF
    The purpose of this project was to determine the feasibility of various alternative energy sources for the Town of Leicester, MA. With the lowest payback period and maintenance costs, ample available roof space, and optimal solar potential at the Leicester Public Schools, a solar electric system is the best option for the Town of Leicester. We recommend the purchase and installation of three solar electric systems: a 100 kW system to be located on the High School roof, a 50 kW system on the Middle School roof, and a 50 kW system on the Memorial School roof. This would cost the town 508,750afterrebates,whichwouldbepaidbackinabout8.8years.Thenetsavingsofthesystemwillbealmost508,750 after rebates, which would be paid back in about 8.8 years. The net savings of the system will be almost 2.8 million over 30 years, assuming a 6% annual increase in electricity cost

    Goddard Visiting Scientist Program for the Space and Earth Sciences Directorate

    Get PDF
    A visiting scientist program was conducted in the space and earth sciences at GSFC. Research was performed in the following areas: astronomical observations; broadband x-ray spectral variability; ground-based spectroscopic and photometric studies; Seyfert galaxies; active galactic nuclei (AGN); massive stellar black holes; the differential microwave radiometer (DMR) onboard the cosmic background explorer (COBE); atmospheric models; and airborne and ground based radar observations. The specific research efforts are detailed by tasks

    High Energy Astrophysics Research and Programmatic Support

    Get PDF
    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others

    Army Officer Corps Science, Technology, Engineering and Mathematics (STEM) Foundation Gaps Place Countering Weapons of Mass Destruction (CWMD) Operations at Risk – Part 1

    Get PDF
    This is the first of three articles from the authors describing the risk to Joint Operations incurred by an Army that is vulnerable to the STEM challenges faced in a great power competition involving CWMD operations. In this article, we describe the problem. In articles two and three of the series, we will elaborate on the problem utilizing the Joint Publication 3-0 as our guide and recommend solutions to address this gap

    New Game Physics - Added Value for Transdisciplinary Teams

    Get PDF
    This study focused on game physics, an area of computer game design where physics is applied in interactive computer software. The purpose of the research was a fresh analysis of game physics in order to prove that its current usage is limited and requires advancement. The investigations presented in this dissertation establish constructive principles to advance game physics design. The main premise was that transdisciplinary approaches provide significant value. The resulting designs reflected combined goals of game developers, artists and physicists and provide novel ways to incorporate physics into games. The applicability and user impact of such new game physics across several target audiences was thoroughly examined. In order to explore the transdisciplinary nature of the premise, valid evidence was gathered using a broad range of theoretical and practical methodologies. The research established a clear definition of game physics within the context of historical, technological, practical, scientific, and artistic considerations. Game analysis, literature reviews and seminal surveys of game players, game developers and scientists were conducted. A heuristic categorization of game types was defined to create an extensive database of computer games and carry out a statistical analysis of game physics usage. Results were then combined to define core principles for the design of unconventional new game physics elements. Software implementations of several elements were developed to examine the practical feasibility of the proposed principles. This research prototype was exposed to practitioners (artists, game developers and scientists) in field studies, documented on video and subsequently analyzed to evaluate the effectiveness of the elements on the audiences. The findings from this research demonstrated that standard game physics is a common but limited design element in computer games. It was discovered that the entertainment driven design goals of game developers interfere with the needs of educators and scientists. Game reviews exemplified the exaggerated and incorrect physics present in many commercial computer games. This “pseudo physics” was shown to have potentially undesired effects on game players. Art reviews also indicated that game physics technology remains largely inaccessible to artists. The principal conclusion drawn from this study was that the proposed new game physics advances game design and creates value by expanding the choices available to game developers and designers, enabling artists to create more scientifically robust artworks, and encouraging scientists to consider games as a viable tool for education and research. The practical portion generated tangible evidence that the isolated “silos” of engineering, art and science can be bridged when game physics is designed in a transdisciplinary way. This dissertation recommends that scientific and artistic perspectives should always be considered when game physics is used in computer-based media, because significant value for a broad range of practitioners in succinctly different fields can be achieved. The study has thereby established a state of the art research into game physics, which not only offers other researchers constructive principles for future investigations, but also provides much-needed new material to address the observed discrepancies in game theory and digital media design

    Enhancing Science Laboratories with Technology

    Get PDF
    Technology when used correctly can be a very powerful tool for education. Its multimedia features combined with a good user interface can increase the quality of learning, engage students and provide new mediums to deliver information. We created a multimedia capable user friendly iPad application that we tested in a real learning environment and determined that, although improvements can be made, our beta software showed that using technology like a tablet can make a positive impact in the learning environment

    An aesthetic for sustainable interactions in product-service systems?

    Get PDF
    Copyright @ 2012 Greenleaf PublishingEco-efficient Product-Service System (PSS) innovations represent a promising approach to sustainability. However the application of this concept is still very limited because its implementation and diffusion is hindered by several barriers (cultural, corporate and regulative ones). The paper investigates the barriers that affect the attractiveness and acceptation of eco-efficient PSS alternatives, and opens the debate on the aesthetic of eco-efficient PSS, and the way in which aesthetic could enhance some specific inner qualities of this kinds of innovations. Integrating insights from semiotics, the paper outlines some first research hypothesis on how the aesthetic elements of an eco-efficient PSS could facilitate user attraction, acceptation and satisfaction

    PRECISION MEASUREMENTS OF THE NEUTRON ELECTRIC FORM FACTOR AT HIGH MOMENTUM TRANSFERS

    Get PDF
    The neutron, although electrically neutral, is composed of elementary charged particles and as a result, possesses a charge distribution within. The charge distribution can be studied by measuring a quantity called the neutron electric form factor, GnE. Experiment E02-013 at Jefferson Lab’s Hall A measured GnE at high four-momentum transfer values of Q2 = 1.2, 1.7, 2.5 and 3.4 (GeV/c)2 in double polarized semi-exclusive 3He(e, e\u27n) scattering in quasi-elestic kinematics by measuring the transverse asymmetry AT of the cross section. The neutron electric form factor is essential to know for a variety of reasons. Results from the recent Jefferson Lab experiment on the proton revealed interesting features at these momentum transfers, whereas no accurate data for the neutron is available. Also the recent development in Generalized Parton Distributions (GPDs) necessitates the need for precise values for GnE in Q2 range between 1 and 10 (GeV/c)2; they appear as limiting conditions for certain GPD functions, for example, to constrain spin-flip GPDs. The experiment used the polarized 3He target and the polarized CEBAF electron beam at energies of about 1.52, 2.08, 2.64 and 3.29 GeV. The electrons were detected in the BigBite spectrometer and the neutrons in a large array of scintillators in coincidence with the electrons. In this dissertation, we report a preliminary result, GnE = 0.03457 ± 0.007239 at Q2 = 1.7 (GeV/c)2

    Applied Cognitive Sciences

    Get PDF
    Cognitive science is an interdisciplinary field in the study of the mind and intelligence. The term cognition refers to a variety of mental processes, including perception, problem solving, learning, decision making, language use, and emotional experience. The basis of the cognitive sciences is the contribution of philosophy and computing to the study of cognition. Computing is very important in the study of cognition because computer-aided research helps to develop mental processes, and computers are used to test scientific hypotheses about mental organization and functioning. This book provides a platform for reviewing these disciplines and presenting cognitive research as a separate discipline
    • 

    corecore