41,879 research outputs found

    High dimensionality carrierless amplitude phase modulation technique for radio over fiber system

    Get PDF
    Advanced modulation formats such as carrierless amplitude phase (CAP) modulation technique is one of the solutions to increase flexibility and high bit rates to support multi-level and multi-dimensional modulations with the absence of sinusoidal carrier. Recent work are focussing on the 2D CAP-64 QAM Radio-over-Fiber (RoF) system but no extension of higher dimensions is reported. This thesis expands the area of CAP modulation technique and RoF system. The work described in this thesis is devoted to the investigation of 1.25 GSa/s sampling rate for multi-level and multi-dimensional CAP in point-to-point (P2P) and RoF system at 3 km single-mode fiber (SMF). Another advanced modulation format which is known as discrete multitone (DMT) is compared with CAP modulation in order to observe the performance in different modulation schemes. The 4QAM-DMT and 16QAM-DMT at different number of subcarriers are carried out in this propagation. Based on the results, the transmission performance in terms of BER and received optical power for RoF transmission are degraded to almost 3 dB when comparing to 3 km SMF transmission. These are caused by the wireless power loss and impairment effects. The bit rate and spectral efficiency can be increased with the increasing number of levels, and may decreased once the number of dimensions is increased due to the higher up-sampling factor. However, the additional dimensions can be used to support multiple service applications. Therefore, it can be concluded that CAP has better performance as compared to DMT in terms of higher spectral efficiency and data rate. To conclude, the results presented in this thesis exhibit high feasibility of CAP modulation in the increasing number of dimensions and levels. Thus, CAP has the potential to be utilized in multiple service allocations for different number of users

    A low cost mobile mapping system (LCMMS) for field data acquisition: a potential use to validate aerial/satellite building damage assessment

    Get PDF
    Among the major natural disasters that occurred in 2010, the Haiti earthquake was a real turning point concerning the availability, dissemination and licensing of a huge quantity of geospatial data. In a few days several map products based on the analysis of remotely sensed data-sets were delivered to users. This demonstrated the need for reliable methods to validate the increasing variety of open source data and remote sensing-derived products for crisis management, with the aim to correctly spatially reference and interconnect these data with other global digital archives. As far as building damage assessment is concerned, the need for accurate field data to overcome the limitations of both vertical and oblique view satellite and aerial images was evident. To cope with the aforementioned need, a newly developed Low-Cost Mobile Mapping System (LCMMS) was deployed in Port-au-Prince (Haiti) and tested during a five-day survey in FebruaryMarch 2010. The system allows for acquisition of movies and single georeferenced frames by means of a transportable device easily installable (or adaptable) to every type of vehicle. It is composed of four webcams with a total field of view of about 180 degrees and one Global Positioning System (GPS) receiver, with the main aim to rapidly cover large areas for effective usage in emergency situations. The main technical features of the LCMMS, the operational use in the field (and related issues) and a potential approach to be adopted for the validation of satellite/aerial building damage assessments are thoroughly described in the articl

    Topical treatment of peripheral neuropathic pain: applying the evidence

    Get PDF
    Patients with peripheral neuropathic pain (NP) may only achieve partial pain relief with currently recommended first-line oral treatments, which are also associated with systemic adverse events. Topical treatments are currently considered second- or third-line options, but a recent pharmacologic treatment algorithm has called for broader first-line use of these agents. This has highlighted a need to communicate the benefits associated with topical agents, in particular around the efficacy, targeted local action, and limited systemic availability resulting in minimal systemic adverse events and drug-drug interactions

    Dietary Polyphenols and Periodontitis—A Mini-Review of Literature

    Get PDF
    Periodontitis, which is a chronic infection and disease of the periodontium, is a significant global health burden and is linked to other chronic health conditions such as diabetes and cardiovascular diseases. Dietary polyphenols present in a wide variety of plant-based foods, herbs, and botanicals have been shown to exert antimicrobial, anti-inflammatory, and reduced osteoclast and alveolar bone loss activities in animal models of periodontitis. Polyphenol-containing beverages and foods especially green tea and its active catechin epigallocatechin-3-gallate, cranberries, pomegranates, and fruit and vegetable extracts have reported bacteriostatic/bactericidal activity against microbial species such as P. gingivalis and shown total bacterial burden in clinical studies. These polyphenols also exhibit anti-inflammatory and antioxidant effects, which have the potential to impact various biological mechanisms for reducing the initiation and progression of periodontitis. The main objective of this mini-review is to focus on the mechanisms of action of dietary polyphenols in improving the pathophysiology underlying chronic inflammatory diseases like periodontitis based on pre-clinical and clinical models

    Fine-Grained Reliability for V2V Communications around Suburban and Urban Intersections

    Full text link
    Safe transportation is a key use-case of the 5G/LTE Rel.15+ communications, where an end-to-end reliability of 0.99999 is expected for a vehicle-to-vehicle (V2V) transmission distance of 100-200 m. Since communications reliability is related to road-safety, it is crucial to verify the fulfillment of the performance, especially for accident-prone areas such as intersections. We derive closed-form expressions for the V2V transmission reliability near suburban corners and urban intersections over finite interference regions. The analysis is based on plausible street configurations, traffic scenarios, and empirically-supported channel propagation. We show the means by which the performance metric can serve as a preliminary design tool to meet a target reliability. We then apply meta distribution concepts to provide a careful dissection of V2V communications reliability. Contrary to existing work on infinite roads, when we consider finite road segments for practical deployment, fine-grained reliability per realization exhibits bimodal behavior. Either performance for a certain vehicular traffic scenario is very reliable or extremely unreliable, but nowhere in relatively proximity to the average performance. In other words, standard SINR-based average performance metrics are analytically accurate but can be insufficient from a practical viewpoint. Investigating other safety-critical point process networks at the meta distribution-level may reveal similar discrepancies.Comment: 27 pages, 6 figures, submitted to IEEE Transactions on Wireless Communication

    The two-echelon capacitated vehicle routing problem: models and math-based heuristics

    Get PDF
    Multiechelon distribution systems are quite common in supply-chain and logistics. They are used by public administrations in their transportation and traffic planning strategies, as well as by companies, to model own distribution systems. In the literature, most of the studies address issues relating to the movement of flows throughout the system from their origins to their final destinations. Another recent trend is to focus on the management of the vehicle fleets required to provide transportation among different echelons. The aim of this paper is twofold. First, it introduces the family of two-echelon vehicle routing problems (VRPs), a term that broadly covers such settings, where the delivery from one or more depots to customers is managed by routing and consolidating freight through intermediate depots. Second, it considers in detail the basic version of two-echelon VRPs, the two-echelon capacitated VRP, which is an extension of the classical VRP in which the delivery is compulsorily delivered through intermediate depots, named satellites. A mathematical model for two-echelon capacitated VRP, some valid inequalities, and two math-heuristics based on the model are presented. Computational results of up to 50 customers and four satellites show the effectiveness of the methods developed
    • 

    corecore