12,884 research outputs found

    Algorithm 950: Ncpol2sdpa---Sparse Semidefinite Programming Relaxations for Polynomial Optimization Problems of Noncommuting Variables

    Full text link
    A hierarchy of semidefinite programming (SDP) relaxations approximates the global optimum of polynomial optimization problems of noncommuting variables. Generating the relaxation, however, is a computationally demanding task, and only problems of commuting variables have efficient generators. We develop an implementation for problems of noncommuting problems that creates the relaxation to be solved by SDPA -- a high-performance solver that runs in a distributed environment. We further exploit the inherent sparsity of optimization problems in quantum physics to reduce the complexity of the resulting relaxations. Constrained problems with a relaxation of order two may contain up to a hundred variables. The implementation is available in Python. The tool helps solve problems such as finding the ground state energy or testing quantum correlations.Comment: 17 pages, 3 figures, 1 table, 2 algorithms, the algorithm is available at http://peterwittek.github.io/ncpol2sdpa

    New Dependencies of Hierarchies in Polynomial Optimization

    Full text link
    We compare four key hierarchies for solving Constrained Polynomial Optimization Problems (CPOP): Sum of Squares (SOS), Sum of Diagonally Dominant Polynomials (SDSOS), Sum of Nonnegative Circuits (SONC), and the Sherali Adams (SA) hierarchies. We prove a collection of dependencies among these hierarchies both for general CPOPs and for optimization problems on the Boolean hypercube. Key results include for the general case that the SONC and SOS hierarchy are polynomially incomparable, while SDSOS is contained in SONC. A direct consequence is the non-existence of a Putinar-like Positivstellensatz for SDSOS. On the Boolean hypercube, we show as a main result that Schm\"udgen-like versions of the hierarchies SDSOS*, SONC*, and SA* are polynomially equivalent. Moreover, we show that SA* is contained in any Schm\"udgen-like hierarchy that provides a O(n) degree bound.Comment: 26 pages, 4 figure

    Applications of Finite Model Theory: Optimisation Problems, Hybrid Modal Logics and Games.

    Get PDF
    There exists an interesting relationships between two seemingly distinct fields: logic from the field of Model Theory, which deals with the truth of statements about discrete structures; and Computational Complexity, which deals with the classification of problems by how much of a particular computer resource is required in order to compute a solution. This relationship is known as Descriptive Complexity and it is the primary application of the tools from Model Theory when they are restricted to the finite; this restriction is commonly called Finite Model Theory. In this thesis, we investigate the extension of the results of Descriptive Complexity from classes of decision problems to classes of optimisation problems. When dealing with decision problems the natural mapping from true and false in logic to yes and no instances of a problem is used but when dealing with optimisation problems, other features of a logic need to be used. We investigate what these features are and provide results in the form of logical frameworks that can be used for describing optimisation problems in particular classes, building on the existing research into this area. Another application of Finite Model Theory that this thesis investigates is the relative expressiveness of various fragments of an extension of modal logic called hybrid modal logic. This is achieved through taking the Ehrenfeucht-Fraïssé game from Model Theory and modifying it so that it can be applied to hybrid modal logic. Then, by developing winning strategies for the players in the game, results are obtained that show strict hierarchies of expressiveness for fragments of hybrid modal logic that are generated by varying the quantifier depth and the number of proposition and nominal symbols available

    Certified Roundoff Error Bounds using Bernstein Expansions and Sparse Krivine-Stengle Representations

    Full text link
    Floating point error is an inevitable drawback of embedded systems implementation. Computing rigorous upper bounds of roundoff errors is absolutely necessary to the validation of critical software. This problem is even more challenging when addressing non-linear programs. In this paper, we propose and compare two new methods based on Bernstein expansions and sparse Krivine-Stengle representations, adapted from the field of the global optimization to compute upper bounds of roundoff errors for programs implementing polynomial functions. We release two related software package FPBern and FPKiSten, and compare them with state of the art tools. We show that these two methods achieve competitive performance, while computing accurate upper bounds by comparison with other tools.Comment: 20 pages, 2 table

    Fuchsian bispectral operators

    Get PDF
    The aim of this paper is to classify the bispectral operators of any rank with regular singular points (the infinite point is the most important one). We characterise them in several ways. Probably the most important result is that they are all Darboux transformations of powers of generalised Bessel operators (in the terminology of q-alg/9602011). For this reason they can be effectively parametrised by the points of a certain (infinite) family of algebraic manifolds as pointed out in q-alg/9602011.Comment: 32 pages, late
    corecore