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Abstract

The aim of this paper is to classify the bispectral operators of any rank with regular singular points
(the infinite point is the most important one). We characterise them in several ways. Probably the
most important result is that they are all Darboux transformations of powers of generalised Bessel
operators (in the terminology of [4]). For this reason they can be effectively parametrised by the
points of a certain (infinite) family of algebraic manifolds as pointed out in [4]. 2002 Éditions
scientifiques et médicales Elsevier SAS. All rights reserved.

0. Introduction

The present paper is devoted to the characterisation and the classification of bispectral
operators of any rank and order with only regular singularities. Before stating our results
and placing them properly amongst the other research we would like to give few definitions
and to recall some of the fundamental results in the area.

An ordinary differential operatorL(x, ∂x) is called bispectral if it has an eigen-function
ψ(x, z), depending also on the spectral parameterz, which is at the same time an
eigenfunction of another differential operatorΛ(z, ∂z) now in the spectral parameterz.
In other words we look for operatorsL, Λ and a functionψ(x, z) satisfying equations of
the form:

Lψ = f (z)ψ, (0.1)

Λψ = θ(x)ψ. (0.2)
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Initially the study of bispectral operators has been stimulated by certain problems of
computer tomography (cf. [19,20]). Later it turned out that the bispectral operators are
connected to several actively developing areas of mathematics and physics – the HP-
hierarchy, infinite-dimensional Lie algebras and their representations, particle systems,
automorphisms of algebras of differential operators, etc. (see, e.g., [4,7,8,12,17,26,31,32],
as well as the papers in the proceedings volumeof the conference in Montréal [10]). There
are also indications for eventual connections with non-commutative algebraic geometry
[33].

In the fundamental paper [17] Duistermaat and Grünbaum raised the problem to find all
bispectral operators and completely solved it for operatorsL of order two. The complete
list is as follows. If we presentL as a Schrödinger operator

L =
(

d

dx

)2

+ u(x),

the bispectral operators, apart from the obvious Airy(u(x) = ax) and Bessel(u(x) =
cx−2) ones, are organised into two families of potentialsu(x), which can be obtained by
finitely many “rational Darboux transformations”

(1) fromu(x) = 0,
(2) fromu(x) = −(1

4)x−2.

Thus the classification scheme prompted by the paper [17] is by the order of the
operators. G. Wilson [31] introduced another classification scheme – by the rank of the
bispectral operatorL. We recall thatthe rank of the operatorL is the dimension of the
space of the joint eigenfunctions of all operators commuting withL. For example, all
the operators of the family (1) have rank 1, while those of the family (2) have rank
2, In the above cited paper [31] (see also [32]) Wilson gave a complete description
of all bispectral operators of rank 1 (and any order). In the terminology of Darboux
transformations (see [4]) all bispectral operators of rank 1 are those obtained by rational
Darboux transformations on the operators with constant coefficients, i.e. polynomials
p(∂x). Several beautiful connections of the bispectral operators with KdV- and KP-
hierarchies, algebraic curves and Calogero–Moser particle systems have also been revealed
in [17,31,32].

We will not touch upon all results in the papers [17,31] but we would like to point that
in both of them the classification is split into two, more or less independent parts. First,
there is an explicit construction of families of bispectral operators of a given class (order 2
in [17]; rank 1 in [31]) The construction can be given in terms of Darboux transformations
of “canonical” operators. The second part is to give a proof that, if an operator (in the
corresponding class) is a bispectral one, then it belongs to the constructed families.

In several other papers devoted to the bispectral problem (see [20,24,34]) the authors
deal with an analog of the first part of the problem, i.e. they construct new families of
bispectral operators. The most complete results in that direction have been obtained in [4,
7]. To the best of our knowledge, all known up to now families of bispectral operators can
be constructed by the methods of the latter papers. A challenging problem is to prove that
all the bispectral operators have already been found. A natural approach would be to divide
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the differential operators into suitable classes, e.g. – by order as in [17] or by rank and
to try to isolate the bispectral ones amongst them. But having in mind the constructions
of the fundamental papers [17,31], with their different and quite involved methods, the
complete classification seems to be a difficultand lengthy project. One may try to consider
the operators with a fixed type of singularity at infinity. Obviously, then there arises another
difficult problem – to determine what restrictions on the kinds of singularities are imposed
by the condition of bispectrality.

In the present paper we consider the class of operators with regular singularities at
infinity. In fact the main results sound much stronger. To explain them we introduce some
definitions and notations which will be used also throughout the paper. We are going to
consider operators, normalized as follows:

L =
N∑

k=0

Vk(x)∂k
x , (0.3)

where the coefficient at the highest derivativeVN = 1 and the next coefficientVN−1 = 0.
Now our assumption is that

lim Vj (x) = 0, j = 0, . . . ,N − 1 whenx → ∞. (0.4)

(It is well known that with the above normalization all coefficients ofL are rational
functions (see [17,31]) and hence (0.4) makes sense.)

Important examples of such operators are the generalized Bessel operators. As we are
going to use them throughout the paper we recall the definition. Introduce the notation
D = x∂x .

Definition 0.1. Generalized Bessel operatorsLβ are the operators

Lβ = x−N(D − β1) · · · (D − βN), (β1, . . . , βN) ∈ C
N. (0.5)

In what follows we will call the above operators by abuse of terminology (but for
simplicity) Bessel operators.

After this preparation we can formulate the result which is the core of the present paper.

Theorem 0.2. Let L be a bispectral operator (0.3)with coefficients satisfying (0.4). Then
L is a monomial Darboux transformation of a Bessel operator.

The class defined by (0.3) and (0.4) includes essentially all the bispectral operators
found in [17]: the Bessel operators and both of the families (1) and (2), the only exception
being the Airy operator. On the other hand it includes one of the most interesting classes,
found in [4]. These are the operators obtained by Darboux transformations on powers of
the Bessel operators. This class was later characterized as follows. In [5] there have been
constructed highest weight modulesMβ with highest weight vectors – the corresponding
to (0.5)τ -functionsτβ . Then in [8] it is shown that theτ -functions in the modulesMβ are
exactly theτ -functions of the operators which are monomial Darboux transformations.
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In the course of performing the proof of Theorem 0.2 we show that the assumptions
(0.3) and (0.4) for the bispectral operatorL impose further restrictions on it, which justify
partially the title.

Theorem 0.3. If the bispectral operator (0.3) satisfies (0.4), then the point x = ∞ is a
regular singular point.

The proof of this theorem is probably the most involved part of our constructions (see
Section 3). The regularity of the finite points follows indirectly from Theorem 0.2.

In Section 4 we give another characterization of the bispectral operators (0.3) with the
restriction (0.4).

Theorem 0.4. Any rank r bispectral operator L is Zr -invariant.

The result is interesting and natural by itself (cf. [4,17]) but in the present paper it is
also the next step in our final goal.

Finally in Section 6, putting together the different pieces of our construction in the
preceding sections and using the main resultsof [4,8] we obtain the following complete
characterization of the Fuchsian bispectral operators.

Theorem 0.5. The following conditions on the operator L in the form (0.3)are equivalent:

(1) L is bispectral and satisfies (0.4);
(2) L is bispectral and has only regular singular points (i.e., L is Fuchsian);
(3) L is a monomial Darboux transformation of a Bessel operator (0.5);
(4) the corresponding to L τ -function belongs to one of the modules Mβ .

In the case when the order ofL is two the equivalence between (1) and (3) contains two
of the most important (and difficult) theorems of [17], concerning the families (1) and (2)
above. In that sense the present paper represents their direct generalization.

The methods which we utilize have some resemblance to the ones used in [17]. In
particular the Darboux transformations constitute one of the main steps of our proof. But
as a whole we use different ideas. First, we work essentially with the algebraic structure of
different rings of differential or pseudo-differential operators. Essentially we do not use the
wave function as in [17]. This we achieve by using the bispectral involutions on pseudo-
differential operators in Section 2. In the same section we observe that a bispectral operator
L (with the restrictions (0.3) and (0.4)) satisfies a variant of the so-called “string equation”:

[L,Q] = NLn+1, (0.6)

whereQ is an operator built out ofL. Eq. (0.6) prepares us to use certain techniques from
differential algebra in order to study the singular point ofL at infinity. In particular we
use the methods invented by J. Dixmier [16] in his studies on the Weyl algebra. Roughly
speaking one associates with each differential operatorL a quasi-homogeneouspolynomial
pL(X,Y ) in such a way that it contains the information about the “worst” terms ofL (in
our case these are the most irregular ones). See [16] and Section 3 for more details. Then
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in the same section the analysis ofpL(X,Y ) shows that the assumption of irregularity of
the pointx = ∞ is incompatible with the string equation (0.6).

The techniques from Section 2 is used also in Section 4 to prove that the rankr of
the operatorL imposes itsZr -invariantness. Using it and the fact that the infinite point is
regular it is easy to performZr -invariant Darboux transformations onL in order to reduce
the numbern in the string equation (0.6) to 0. This automatically gives that the operator
obtained in this way is a Bessel operator.

At the end of the introduction we point out that our method treats all ranks and orders
in one scheme. We expect that some of its components can be useful in other classification
problems.

1. Preliminaries

In this section we have collected some terminology, notations and results relevant for
the study of bispectral operators. Our main concern is to introduce unique notation which
will be used throughout the paper and to make the paper self contained. There are also
few results which cannot be found formally elsewhere, but in fact are reformulations (in a
suitable for the present paper form) of statements from other sources.

1.1. In this subsection we recall some definitions, facts and notation from Sato’s theory
of KP-hierarchy [14,28,29] needed in the paper. For a complete presentation of the theory
we recommend also [15,30]. We start with the notion ofthe wave operator K(x, ∂x). This
is a pseudo-differential operator

K(x, ∂x) = 1+
∞∑

j=1

aj (x)∂−1
x , (1.1)

with coefficientsaj (x) which could be convergent or formal power (Laurent) series. In the
present paper we will consideraj most often as formal Laurent series inx−1. The wave
operator defines the (stationary) Baker–Akhiezer functionψ(x, z):

ψ(x, z) = K(x, ∂x)exz. (1.2)

From (1.1) and (1.2) it follows thatψ has the following asymptotic expansion:

ψ(x, z) = exz

(
1+

∞∑
1

aj (x)z−j

)
, z → ∞. (1.3)

Introduce also the pseudo-differential operatorP :

P(x, ∂x) = K∂xK−1. (1.4)

The following spectral property ofP , crucial in the theory of KP-hierarchy, is also very
important for the bispectral problem:

Pψ(x, z) = zψ(x, z). (1.5)
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When it happens that some power ofP , sayPN , is a differential operator, we get that
ψ(x, z) is an eigenfunction of an ordinary differential operatorL = PN :

Lψ = zNψ. (1.6)

It is possible to introduce the above objects in many different ways, starting with any of
them (and with other, not introduced above). For us it would be important also to start with
givendifferential operator L:

L(x, ∂x) = ∂N
x + VN−2(x)∂N−2 + · · · + V0(x). (1.7)

One can define the pseudo-differential operatorP as anN th root of the operatorL:

P = L1/N = ∂ + · · · , (1.8)

and the wave operatorK as:

LK = L∂N. (1.9)

An important notion, connected to an operatorL is the algebraAL of operators commuting
with L (see [11,25]). This algebra is commutative one. The wave functionψ(x, z) (defined
in (1.2)) is a common wave function for all operatorsM fromAL:

Mψ(x, z) = gM(z)ψ(x, z). (1.10)

We define also the algebraAL of all functionsgM(z) for which (1.10) holds for some
M ∈ AL. Obviously the algebrasAL andAL are isomorphic.

Following [25] we introducethe rank of the algebra AL as the greatest common divisor
of the orders of the operators inAL.

1.2. Here we shall briefly recall the definition of Bessel wave function and of monomial
Darboux transformations from it. For more details see [4]. Letβ ∈ CN be such that

N∑
i=1

βi = N(N − 1)

2
. (1.11)

Definition 1.1 ([4,18,34]). Bessel wave function is called the unique wave function
Ψβ(x, z) depending only onxz and satisfying

Lβ(x, ∂x)Ψβ(x, z) = zNΨβ(x, z), (1.12)

where the Bessel operatorLβ(x, ∂x) is given by (0.5).

Because the Bessel wave function depends only onxz, (1.12) implies

DxΨβ(x, z) = DzΨβ(x, z), (1.13)

Lβ(z, ∂z)Ψβ(x, z) = xNΨβ(x, z). (1.14)

To introduce the monomial Darboux transformations of Bessel wave functions we first
recall the definition of polynomial Darboux transformations given in [4].

Definition 1.2. We say that the wave functionΨ is aDarboux transformation of the Bessel
wave functionΨβ(x, z) iff there exist polynomialsf (z), g(z) and differential operators
P(x, ∂x), Q(x, ∂x) such that
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Ψ = 1

g(z)
P (x, ∂x)Ψβ(x, z), (1.15)

Ψβ(x, z) = 1

f (z)
Q(x, ∂x)Ψ. (1.16)

The Darboux transformation is calledpolynomial iff the operatorP(x, ∂x) from (1.15) has
the form

P(x, ∂x) = x−n
n∑

k=0

pk

(
xN

)
Dk

x, (1.17)

wherepk are rational functions,pn ≡ 1.

We will need the following two definitions of monomial Darboux transformations. Their
equivalence is proved in [4].

Definition 1.3. We say that the wave functionΨ (x, z) is amonomial Darboux transforma-
tion of the Bessel wave functionΨβ(x, z) iff it is a polynomial Darboux transformation of
Ψβ(x, z) with g(z)f (z) = zdN , d ∈ N. Further the differential operator

L = ∂M + VM−2∂
M−2 + · · · + V0

is a monomial Darboux transformation ofLβ if the wave function corresponding toL is a
monomial Darboux transformation of the wave function corresponding toLβ .

Definition 1.4. The wave functionΨ (x, z) is amonomial Darboux transformation of the
Bessel wave functionΨβ(x, z) iff (1.17) holds withg(z) = zn, n = ordP and the kernel of
the operatorP(x, ∂x) has a basis consisting of several groups of the form

∂l
y

(
k0∑

k=0

mult(βi+kN)−1∑
j=0

bkjx
βi+kNyj

)∣∣∣∣∣
y=lnx

, 0 � l � j0, (1.18)

where mult(βi + kN) := multiplicity of βi + kN in
⋃N

j=1{βj + NZ�0} andj0 = max{j |
bkj �= 0 for somek}.

From Definitions 1.2 and 1.3 one immediately obtains the following description of
monomial Darboux transformations:

Lemma 1.5. The differential operator L is a monomial Darboux transformation of the
Bessel operator Lβ iff there are differential operators P = P(x, ∂x), Q = Q(x, ∂x) and
numbers d , d ′ such that

Q(x, ∂x)P (x, ∂x) = Lβ(x, ∂x)
d, (1.19)

P(x, ∂x)Q(x, ∂x) = L(x, ∂x)
d ′

, (1.20)

where the operator P satisfies (1.17).
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We will also reformulate some results from [4]. In [4] one can find a proof of the
following statement.

Lemma 1.6. If Lβ is a Bessel operator of order N and rank r , there exists a Bessel operator
Lβ ′ of order r such that Lβ is a monomial Darboux transformation of Lβ ′ .

For the proof of this lemma see the proof of Proposition 2.4 from [4] (although the
statement there is formulated in a different way). We end this subsection by reformulating
(in a weaker form) the main result, which we need from [4].

Theorem 1.7. The monomial Darboux transformations of the Bessel operators are
bispectral operators.

1.3. Here we recall several simple properties of bispectral operators following [17,
31]. As we have already mentioned in the introduction we are going to study ordinary
differential operatorsL of arbitrary orderN which are normalised as in (0.3), i.e. with
VN = 1 andVN−1 = 0. Assuming thatL is bispectral means that we have also another
operatorΛ, a wave functionψ(x, z) and two other functionsf (z) and θ(x), such that
Eqs. (0.1) and (0.2) hold. The following lemma, due to [17], has been fundamental for all
studies of bispectral operators.

Lemma 1.8. There exists a number m, such that

(adL)m+1θ = 0. (1.21)

For its simple proof, see [17,31]. We will consider thatm is the minimal number with
this property. An important corollary of the above lemma is the following result.

Lemma 1.9. The functions f (z) and θ(x) are polynomials.

The next result is also contained in [17,31], but it is not formulated as a separate
statement. We give its short proof following [31].

Lemma 1.10. The coefficients αj in the expansion (1.1) of the wave operator K are
rational functions.

Proof. From Eq. (1.21) it follows that(
ad∂N

x

)m+1(
K−1θK

) = 0.

On the other hand the kernel of the operator(ad∂N
x )m+1 consists of all pseudo-differential

operators whose coefficients are polynomials inx of degree at mostm. This gives that

θK = KΘ, (1.22)

with a pseudo-differential operatorΘ:

Θ = Θ0 +
∞∑
1

Θj∂
−j
x . (1.23)
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whose coefficientsΘj are polynomials of degree at mostm. We haveθ = Θ0. Comparing

the coefficients at∂−j
x we find that all the coefficientsαj (x) of K are rational func-

tions. �
Remark 1.11. We notice that at least one of the coefficients ofΘj has degree exactlym,
wherem from Lemma 1.8 is minimal. This fact will be used later.

The last lemma has as an obvious consequence one of the few general results, important
in all studies of bispectral operators. Noticing that the coefficients ofL are polynomials in
the derivatives ofαj (x) we get

Lemma 1.12. The coefficients of L are rational functions.

2. Bispectral involutions and the string equation

The condition (0.4) for vanishing of the coefficientsVj (x) of a bispectral operatorL
implies further restrictions on all objects connected toL – the wave functionψ(x, z), the
wave operatorK and the coefficients ofL itself. This gives us the opportunity to define
two anti-isomorphismsb andb1 (“bispectral involutions”) between the algebras of pseudo-
differential operators with coefficients –formal Laurent series in the variablesx−1 andz−1.
In its turn using these anti-isomorphisms will allow us to continue our further constructions
in the rest of the paper by purely algebraic analysis on the differential or pseudo-differential
operators, avoiding the wave function.

2.1. Bispectral involutions

In the next lemma, following [17] we find the simplest restrictions on the coefficients of
the wave operatorK and onL.

Lemma 2.1. (i) The coefficients Vj (x), j = N −2, . . . ,0, of L vanish at ∞ at least as x−2.
(ii) The coefficients αj , j = 1, . . . , of the wave operator K vanish at least as x−1.

Proof. We are going to prove both statements simultaneously. We use the formula

LK = K∂N,

Lemmas 1.10 and 1.12. Comparing the coefficients at∂N−2 at the both sides of the above
identity we get:

VN−2 + Nα′
1 = 0.

Having in mind thatVN−2 is equal to the derivative of the rational functionα1 and that it
vanishes at∞ we see that it vanishes at least asx−2. Continuing in the same manner we
find

VN−3 + VN−2α1 + N(N − 1)

2
α′′

1 + Nα′
2 = 0.
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We see thatα′
2 is vanishing (at least asx−2) and thatVN−3 vanishes again at least asx−2,

being a sum of such terms. By induction we get thatα′
s−1, s = 1, . . . ,N − 1, vanishes at

least asx−2 and the same holds forVN−s , s = 2, . . . ,N , as it is a sum of productsVjα
(k)
m ,

whereN − 1 > j > s, m = 1, . . . ,N − 1 (hereα(k) denoteskth derivative), and also pure
derivatives ofαm. Arguing as above we get the statement of the lemma.�

Following [7] we will introduce an anti-isomorphismb between the algebraB of
pseudo-differential operatorsP(x, ∂x) in the variablex and the algebraB′ of pseudo-
differential operatorsR(z, ∂z) in the variablez. More preciselyB consists of those pseudo-
differential operators

P =
∞∑
k

pj

(
x−1)∂−j

x ,

for which there is a numbern ∈ Z (depending onP ) such thatxnpj (x
−1), j = k, k+1, . . . ,

are formal power series inx−1. The involution

b :B → B′

is defined by

b(P )exz = Pexz =
∞∑
k

z−jpj

(
∂−1
z

)
exz, for P ∈ B, (2.1)

i.e. b is just a continuation of the standard anti-isomorphism between two copies of the
Weyl algebra. In what follows we will use also the anti-isomorphism

b1 :B → B′, b1(P ) = b(AdK P). (2.2)

Obviouslyb andb1 can be considered as involutions ofB and without any ambiguity we
can denote the inverse isomorphismsb−1, b−1

1 :B′ → B by the same letters.

Remark 2.2. If we use relations (0.1) and (0.2) to define an involutionb1 on the subalgebra
of B generated byL andθ , then we have

b1(L) = b
(
K−1LK

) = b(AdK L),

b1(θ) = b
(
K−1θK

) = b(AdK θ).

This prompts definition (2.2).

Since the operatorsK and Θ are fromB we can define two operatorsS and Λ as
follows:

S(z, ∂z) = b
(
K(x, ∂x)

)
, (2.3)

Λ(z, ∂z) = b(Θ). (2.4)

Explicitely one has

S =
∞∑

j=0

z−jαj (∂z) =
∞∑

j=0

aj

(
z−1)∂−j

z , α0 = 1, (2.5)
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and also

Λ(z, ∂z) =
∞∑

j=0

z−jΘj (∂z) =
m∑

i=0

Λi

(
z−1)∂i

z, (2.6)

whereΛm �= 0 (see Remark 1.11) and the coefficientsΛi and aj should be viewed as
formal power series. We are going to see that they are polynomials inz−1.

Lemma 2.3. The coefficients aj of the operator S are polynomials in z−1.

Proof. Using that

LK = K∂N,

we can apply the involutionb and to derive:

Sb(L) = zNS.

Rewrite in details the last formula:( ∞∑
0

aj

(
z−1)∂−j

z

)(
zN + zN−2VN−2(∂z) + · · ·) = zN

( ∞∑
0

aj

(
z−1)∂−j

z

)
.

Comparing the coefficients at∂−j
z for j = 2,3, . . . and having in mind that according to

Lemma 2.1:

Vk(∂z) =
∞∑
2

Vk,s∂
−s
z , k = 0, . . . ,N − 2,

we obtain relations fora1 anda2 in the form:

−NzN−1a1 +
N−2∑

0

zkVk,2 = 0,

−2NzN−1a2 +
(

N−2∑
0

zkVk,2 + N(N − 1)zN−2

)
a1 +

N−2∑
0

zkVk,3 = 0.

We see thata1, a2 are polynomials inz−1. By induction we get that anyas satisfies an
equation of the form:

−sNzN−1as +
N−2∑

0

zkqk,s

(
z−1) = 0,

whereqk,s are already polynomials inz−1. This proves the lemma.�
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Now we are ready to show that the operatorΛ has coefficientsΛj , which are
polynomials inz−1. Denote temporarily byr the degree of the polynomialθ , i.e. if
θ(x) = θrz

r + · · ·, thenθr �= 0.

Lemma 2.4. The coefficients Λi of the operator Λ are polynomials in z−1. The degree of
θ r = m and

Λm = θm, Λm−1 = θm−1, (2.7)

Proof. Using the definition (2.4) and applying the involutionb to the relationθ(x)K =
KΘ we get:

ΛS = Sθ(∂x).

As the coefficients ofΛ are expressed as differential polynomials of the coefficientsaj , of
S we get thatΛj are also polynomials inz−1. Comparing the first two coefficients of the
above equality we get also (2.7).�
2.2. The string equation

In this subsection we are going to show that for the bispectral operatorL there exists
another operatorQ, for which the string equation (0.6) holds. This equation as well as
other properties of the operatorQ (with appropriate normalisation) would be crucial for
our constructions.

In what follows we would assume that the numberm is divisible byN . This is not a
restriction since we can always replaceΛ by ΛN . We putm = Nl.

Lemma 2.5. There is a natural number n such that:

Q = K−1x∂nN+1
x K, (2.8)

is a differential operator. The operator Q is a solution to the string equation (0.6).

Proof. Using the bispectral property one can write

(adL)m−1θ = (−1)m−1b1
((

adzN
)m−1

Λ
)
.

Each application of the operator adzN to any differential operatorP reduces its order by 1.
Using the fact that the operator

Λ = Λm∂m
z + Λm−2∂

m−2
z + · · · ,

whereΛm is a nonzero constant, we get that the operator(
adzN

)m−1
Λ = Λm

(
adzN

)m−1
∂m
z

is an operator of order 1. Now prescribing weights toz and to∂z as follows: wt(z) = 1,
wt(∂z) = −1 we obtain that the right-hand side of the above identity has weight equal to
(m − 1)N − m. This shows that the operator in the above equality has the form:(

adzN
)m−1

Λ = cz(m−1)(N−1)∂z + c1z
mN−m−N , c �= 0.



E. Horozov, T. Milanov / Bull. Sci. math. 126 (2002) 161–192 173

In this way we get that

Q1 := (adL)m−1θ = b1

(
(−1)m−1(cz(m−1)(N−1)∂z + c1z

mN−m−N
))

is a differential operator. Using the fact thatm = Nl and thatb1(z) = L1/N we obtain(
(−1)m−1Q1 − c1L

Nl−l−1) = cb1
(
z(m−1)(N−1)∂z

) = cb1
(
znN+1∂z

)
,

where we have putn = l(N − 1) − 1. Now it is obvious that

Q := b1
(
znN+1∂z

) = 1

c

(
(−1)m−1Q1 − c1L

Nl−l−1)
is a differential operator. The identity (0.6) is obtained by applying the bispectral involution
to [

znN+1∂z, z
N

] = NzN(n+1). �
Corollary 2.6. For any positive integer i the following formula holds:

(adL)i
(
Qi

) = i!NiLi(n+1). (2.9)

Proof. Assume that (2.9) is true for 1,2, . . . , i. Then

(adL)i+1(Qi
) = 0

Since adL is a differentiation in the ring of differential operators with rational coefficients
we can use the Leibnitz’s rule:

(adL)i+1(Qi+1) = (adL)i+1(Qi · Q) =
i+1∑
j=0

(
i + 1

j

)
(adL)i+1−j

(
Qi

)
(adL)j (Q).

The only nonzero term in the above sum is the one forj = 1, hence

(adL)i+1(Qi+1) = (i + 1)N.(adL)i
(
Qi

)
Ln+1.

Now (2.9) follows by induction oni. �

3. The infinite point

The present section is divided into three subsections, corresponding to the basic results,
which we shortly describe. In the first subsection we present the operatorQ as a polynomial
in L with coefficients – operators of lower order. The second result is a proof that the point
∞ is a regular singular point for the operatorL (Theorem 0.3). In the last subsection we
give an estimate of the degreen (of the string equation) in terms of the roots of the indicial
equation at∞. All results will be used in performing Darboux transformations. Now we
will fix the situation in which we are going to work.

Definition 3.1. By O we denote the set of all functions that are holomorphic at∞. If we
write a functionV (x) fromO as:

V (x) = x−ν

(
a0 + a1

1

x
+ a2

1

x2
+ · · ·

)
, a0 �= 0, ν � 0.
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then the number

ord(V ) := −ν

will be called order ofV at∞ and will be denoted by ord(V ).

We introduce also the ringO[∂] of all differential operators with coefficients fromO.
Obviously the bispectral operatorL is fromO[∂]. The only properties ofL andQ relevant
for our purposes in the present section are summed up in terms of the wave operator as
follows:

Definition 3.2. We say that the operatorL ∈ O[∂] solves the string equation iff the
following conditions are satisfied:

(1) There is a wave operatorK = 1 + α1∂
−1 + · · · with coefficients fromO for which

LK = K∂N and ord(αi) � −1.
(2) There is an integern � 0 such thatQ = Kx∂nN+1

x K−1.

We will call the pair(L,Q) a string pair. The minimal numbern in (2) will be called the
string number ofL.

3.1. Q as a polynomial in L

For convenience denote byR the differential extension ofC[x] by adjoining the
differential indeterminatesy1, y2, . . . (see [23] for details). We endow the differential ring
R with graduation which will be useful in the sequel: for a monomialτ = xn0y

(ni)
i1

· · ·y(ns)
is

set wt(τ ) = n0 − (n1 + i1) − · · · − (ns + is). This weight providesR, with the structure of
aZ-graded ring:

R =
⊕
n∈Z

Rn,

whereRn is spanned overC by all monomialsτ ∈R for which wt(τ ) = n. This graduation
can be extended in a natural way to graduation of the ring of all pseudo-differential
operators with coefficients from the ringR, by prescribing to the symbol of differentiation
∂ weight wt(∂) = −1. For convenience the last mentioned ring will be denoted by PsdR.
In this way a pseudo-differential operator

P =
∑
j�m

aj∂
j , aj ∈ R,

is homogeneous of weightn if for every j the coefficientaj is a homogeneous element
from Rn+j . If P is homogeneous then by wt(P ) we will denote it’s weight. We will need
two lemmas. The proof of the first one being trivial will be omitted.

Lemma 3.3. (i) Assume that P = ∂N + · · · is a homogeneous pseudo-differential operator
from PsdR. Then P is invertible in PsdR, and P−1 is homogeneous with weight −N .
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(ii) For every two homogeneous operators P1 and P2 from PsdR with weights
respectively n1 and n2 their product P1.P2 is also homogeneous and its weight is n1 + n2.

Lemma 3.4. Assume that Ly = ∂N + · · · and Qy are arbitrary homogeneous pseudo-
differential operators from PsdR. Then one can find an integer number n and homoge-
neous differential operators q̃0, q̃1, . . . from R[∂] of orders � N − 1 such that:

Qy = q̃0L
n
y + q̃1L

n−1
y + · · · . (3.1)

More precisely, for any i = 0,1, . . . , such that q̃i �= 0 the weight of q̃i is: wt(Qy) −
(n − i)wt(Ly).

Proof. For givenQy we will show thatq̃0 andn can be determined uniquely and that they
satisfy the properties stated in the lemma. Afterq̃0 is determined we move the term̃q0L

n

to the left-hand side of (3.1) and then in the same manner we can determineq̃1. Now it is
clear that allq̃i can be found successively and the lemma will be proved.

Denote bym the order ofQy and dividem by N : m = nN + r, 0� r � N −1. Multiply
both sides of (3.1) byL−n and compare the differential parts of the two pseudo-differential
operators:

q̃0 = (
QyL−n

)
+.

Combining this equality with Lemma 3.3 we obtain the statement of the lemma.�
Denote by PsdO the ring of all pseudo-differential operators with coefficients fromO.

To use the result of Lemma 3.4 we need a ring homomorphism

π : PsdR → PsdO

defined as follows: take the unique differential homomorphism betweenR andO that
mapsyj into ai , i = 1,2, . . . , whereαi are the coefficients of the wave operatorK and
then extend this homomorphism to homomorphism between PsdR and PsdO by leaving
∂ fixed. Now from the representation in Lemma 3.4 we can derive a similar one for the
operatorsL andQ.

Lemma 3.5. Let L and Q form a string pair and n is the corresponding string number.
Then one can find differential polynomials q̃0, q̃1, . . . , q̃n from PsdR, such that if we set
qi = π(q̃i ) then:

Q = q0L
n + q1L

n−1 + · · · + qn. (3.2)

The operators q̃i are homogeneous. More precisely: q̃0 = x∂x and if q̃i �= 0, then

wt(q̃i) = −iN.

The differential operator qn is not zero.

Proof. Introduce the pseudo-differential operator

Ky = 1+ y1∂
−1 + · · · ∈ PsdR.
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It is easy to check thatLy = Ky∂N
x K−1

y and Qy = Kyx∂Nn+1
x K−1

y are homogeneous
elements from PsdR with weights respectively: wt(Ly) = −N and wt(Qy) = −nN . The
definition ofR was given in such a way thatπ(Ly) = L andπ(Qy) = Q. Applying Lemma
3.4 withLy , Qy we get:

Qy = q̃0L
n
y + q̃1L

n−1
y + · · · ,

where each̃qi is homogeneous with weight wt(q̃i) = wt(Qy) − (n + i)wt(Ly) = −iN .
Map both sides of the last equality byπ :

Q = π(q̃0)L
n + · · · + π(q̃n) + π

(
q̃n+1L

−1
y + · · ·).

Comparing the strictly pseudo-differential parts of the operators at the two sides of the
above equality we see that:

π
(
q̃n+1L

−1
y + · · ·) = 0.

The inequalityqn �= 0 holds becausen was chosen to be the minimal number with the
property thatKx∂nN+1K−1 is a differential operator. �
3.2. x = ∞ is a regular singular point

Here we give the proof of Theorem 0.3, i.e. that the infinite point is regular forL.
Take the smallestn for whichQ = Kx∂Nn+1

x K−1 is a differential operator. The idea is to
assume thatx = ∞ is irregular forL and then to assign weights tox and∂x in such a way
that the most irregular terms ofL at∞ have the highest weight. This weights will enable us
to associate with each differential operator fromO[∂] a (ρ,σ )-homogeneous polynomial
in Y with coefficients Laurent polynomials inX. Following [16] and using (0.6) we will
get contradiction.

We denote the ring of Laurent polynomials byL. The definition ofρ andσ is prompted
by the theory of irregular points (see, e.g., [3]). Introduce the rational number:

r = max

(
1,2+ ordV2

2
, . . . ,2+ ordVn

N

)
(called principal level). It can be expressed asr1/r2, wherer1 andr2 are relatively prime.
Well known fact is thatx = ∞ is regular if and only ifr = 1. Our assumption that∞ is
irregular point yieldsr > 1. The integersρ = r2 andσ = r1 − 2r2 represent the weights of
x and∂x respectively. They satisfy the inequality:

ρ + σ > 0.

The next definitions are modifications of corresponding ones given by J. Dixmier [16]. In
the first definition we endow the ringO[∂] (of differential operators with homomorphic at
∞ coefficients) withZ-graded structure.

Definition 3.6. Assume thatL = V0∂
n + V1∂

n−1 + · · · + Vn is an arbitrary element ofD.
For each termV (x)∂i

x define its weight

vρ,σ

(
V (x)∂i

x

) = ρ(ordV ) + σ i.
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Then the number

vρ,σ (L) := max
0�i�n

vρ,σ

(
Vi∂

n−i
)

will be called(ρ,σ )-order ofL.

The second definition associates to each differential operator fromO[∂] a (ρ,σ )-
homogeneous polynomial fromL[Y ].

Definition 3.7. Assume the notation of the previous definition and denote byI (L) the set
{i ∈ {0,1, . . . , n} | vρ,σ (Vi∂

n−i ) = vρ,σ (L)}. The polynomialp ∈L[Y ] defined as:

p =
∑
i∈I

aiX
ordVi Y n−i , (3.3)

whereai ∈ C are uniquely determined from the expansion

Vi = aix
ordVi + (lower order terms),

will be called polynomial associated withL.

The following two lemmas are also taken from [16]. Although the situation there is
slightly different the proofs are essentially the same. We are going to prove only the first
one. The second can be proven in a similar way.

Lemma 3.8. Assume L1,L2 ∈ O[∂] and ρ + σ > 0. The polynomial associated to the
product L1L2 is the product of the polynomials associated with L1 and L2 respectively.
The (ρ,σ )-order of this operator is: vρ,σ (L1,L2) = vρ,σ (L1) + vρ,σ (L2).

Proof. Setξ = ∂x . Then for the product of two differential operators we have:

L1L2 =
∞∑

k=0

: ∂kL1

∂ξk

∂kL2

∂k
x

: (3.4)

where: : is the normal ordering which always puts the differentiation on the right. Write
L1 = a0ξ

N1 + · · · + aN1, L2 = b0ξ
N2 + · · · + bN2. From the definition of: : we have that

: L1L2 : =
∑

0�i�N1, 0�j�N2

aibj ξ
N1+N2−i−j .

Each term in this sum satisfies the inequalityvρ,σ (aibj ξ
N1+N2−i−j ) � vρ,σ (L1) +

vρ,σ (L2). The equality is possible only wheni ∈ I (L1) andj ∈ I (L2). On the other hand
the coefficient in front of the highest degree ofξ in:∑

i∈I (L1), j∈I (L2)

aibj ξ
N1+N2−i−j

is ai1bi2 �= 0, wherei1 andi2 are the minimal numbers fromI (L1) andI (L2) respectively.
Thus this sum (which in fact is equal to the product of the(ρ,σ )-polynomials associated
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with L1 and L2) is not zero. The conclusion of this observations is that the(ρ,σ )-
polynomial associated with: L1L2 : is the product of the polynomials associated with
L1 and L2 and alsovρ,σ (: L1L2 :) = vρ,σ (L1) + vρ,σ (L2). To finish the proof it is
enough to use formula (3.4) and the obvious fact thatvρ,σ (∂k

ξ L1) � vρ,σ (L1) − kσ and

vρ,σ (∂k
xL2) � vρ,σ (L2) − kρ. �

Lemma 3.9. Consider again two operators L1,L2 ∈ O[∂] and denote by f1, f2 the
polynomials associated with them and by n1 and n2 their (ρ,σ )-orders. If the fraction
f

n2
1 /f

n1
2 is not a constant and ρ + σ > 0, then the polynomial associated with [L1,L2] is:

∂f1

∂Y

∂f2

∂X
− ∂f1

∂X

∂f2

∂Y
. (3.5)

For the (ρ,σ )-order we have a formula: vρ,σ ([L1,L2]) = n1 + n2 − ρ − σ .

In order to apply these lemmas to the string equation (0.6) we have to find the
polynomialsf and g associated withL and Q and their(ρ,σ )-ordersv and w. This
requires few auxiliary results, stated in the following two lemmas.

Lemma 3.10. (i) The (ρ,σ )-order of L is v = Nσ and the polynomial associated with L

is:

f = YN + (at least one term).

(ii) The (ρ,σ )-order of Q is w = (nN + 1)σ + ρ and the polynomial associated with
Q has the form:

q = XYf n + a1(X,Y )f n−1 + · · · + an(X,Y ).

Proof. (i) Since vρ,σ (∂N) = Nσ the only thing we have to check is that ord(Vi)ρ +
(N − i)σ � Nσ for i = 2,3, . . . ,N and that equality is reached for at least onei. But
this is obvious from the definition ofρ andσ .

(ii) The polynomialg has the form:

g(X,Y ) = a0(X,Y )f n + a1(X,Y )f n−1 + · · · + an(X,Y )

for someai ∈ L[Y ]. Lemma 3.5 gives thatai , i = 1,2, . . . , n, can have only negative
degrees ofX. But then the coefficient at the highest degree ofY in the polynomialgv

is not a constant, while the corresponding one inf w is 1. Thus the fractionf w/gv is not a
constant. Now from Lemma 3.9 the polynomialh associated with[L,Q] is:

h = ∂f

∂Y

∂g

∂X
− ∂f

∂X

∂g

∂Y

andvρ,σ (h) = vρ,σ (f ) + vρ,σ (g) − ρ − σ = v + w − ρ − σ . On the other hand the string
equation (0.6) yields:vρ,σ (h) = (n+1)v. From the last two relation we derive the formula
for w. To finish the proof it is enough to notice thatvρ,σ (q0L

n) = (Nn + 1)σ + ρ. �
Lemma 3.11. Under the above notations g = XYf n.
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Proof. If h is the polynomial associated with[L,Q] then using Lemma 3.9 we have the
following series of equalities:

ρXh = ρX

(
∂f

∂Y

∂g

∂X
− ∂f

∂X

∂g

∂Y

)
= ∂f

∂Y
(wg − σY∂Y g) − (vf − σY∂Y f )

∂g

∂Y
= wg

∂f

∂Y
− vf

∂g

∂Y

= f −w+1gv+1∂Y

(
f w

gv

)
,

where we have used that for a(ρ,σ )-homogeneous polynomialf of (ρ,σ )-degreev the
following identity holds:

ρX∂Xf + σY∂Y f = vf.

Now the relation (0.6) leads to:

NρX.f n+1 = f −w+1gv+1∂Y

(
f w

gv

)
. (3.6)

View f and g as elements inK[Y ], whereK is an algebraic extension of the field of
fractions of the ringL containing all the roots of the polynomialsf (Y ) andg(Y ). Take
α(X) to be a zero off of orderν � 1. Denote also byµ the order ofα(X) as a zero ofg.
Then comparing the orders of the terms at the both sides in formula (3.6) we obtain

ν(n + 1) + (w − 1)ν − (v + 1)µ = ordY−α(X) ∂Y

(
f w

gv

)
. (3.7)

We will treat the following 2 cases separately:
Case 1. If wν �= vµ, then the right side of (3.7) iswν − vµ − 1, henceµ = nν + 1.
Case 2. If wν = vµ, then using the formulas forv andw we find

µ = w

v
ν = (nN + 1)σ + ρ

Nσ
ν =

(
n + ρ + σ

Nσ

)
ν > nν.

In both casesµ > nν, which means thatg
f n is a polynomial inY . Now from Lemma

3.10f n divides the polynomiala1f
n−1 + · · · + an whose degree inY does not exceed

N −1+N(n−1) < nN . But the degree off n is exactlynN ⇒ a1f
n−1+· · ·+an = 0. �

Now we are ready to give the proof of Theorem 0.3.

Proof of Theorem 0.3. Put w = nv + ρ + σ and g = XYf n in (3.6) and after
simplifications we get a differential equation forf :

Y∂Y

(
f ρ+σ

) = (ρ + σ)Nf ρ+σ .

An immediate consequence of this equation is thatf = c(X)YN . But the choice ofρ and
σ was done in such a way thatf = YN + (at least one term). This contradiction proves the
theorem. �
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The regularity ofL imposes the following restrictions on the coefficients of the wave
operatorK.

Corollary 3.12. Let L be an operator solving the string equation and K = 1+α1∂
−1 +· · ·

is the wave operator defining the corresponding string pair. Then the order of the coefficient
αi , i = 1,2, . . . , does not exceed the number −i , i.e.

αi(x) ∈ 1

xi
O.

3.3. An estimate for n

Here we want to estimate the numbern from the string equation in terms of the roots
of the indicial equation forL at ∞. For us it would be convenient to write the indicial
equation, using again the idea of the weights. But in order to have an analogue of Lemma
3.8 we have slightly to change the procedure of association polynomials to the elements of
O[∂]. The next definition describes this process.

Definition 3.13. Write everyL ∈ O[∂] as

L = V0D
N + · · · + VN−1D + VN,

whereD = x∂x and assume also that:

Vi = aix
νi + (lower order terms).

The number

wt(L) := max
0�i�N

ord(Vi)

will be called weight ofL. The polynomial associated withL is fromC[D] and is defined
as follows:

p(L) :=
∑

i: ord(Vi)=wt(L)

aiD
N−i .

In particular if the pointx = ∞ is regular thenp(λ) = 0 is explicitly the indicial equation
(see [21]).

In terms of the above definition we can give the following corollary from Lemma 3.5
and Corollary 3.12.

Corollary 3.14. Assume that (L,Q) is a string pair and n is the corresponding string
number. Divide Q by L to derive

Q = Q1L + q,

where q is a differential operator of order not exceeding N − 1. The weight of q satisfies
the inequality: wt(q) � −nN .
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Obviouslyp(D)xi = xip(D + i) for every polynomialp ∈ C[D]. This observation is
enough to make the following conclusion:

Lemma 3.15. Assume that L1,L2 ∈ D are two arbitrary differential operators and denote
by f1 and f2 the polynomials associated with them. Then the polynomial associated with
the product L1L2 is:

f1
(
D + wt(L2)

)
f2(D).

The weight of the product is a sum of the weights of the two operators.

Now we will assume thatL is an operator solving the string equation. Denote by
λ1, λ2, . . . , λN the roots of the indicial equation ofL at ∞. The following very important
fact, used in performing Darboux transformations, is the content of the next proposition.

Proposition 3.16. Assume that L is a differential operator that solves the string equation.
Then we can find numbers i and j such that:

n � 1

N
|λi − λj |.

Proof. Let (L,Q) be a string pair. As in Corollary 3.14 divideQ by L

Q = Q1L + q.

Using thatQ satisfies the string equation (0.6) we get

Lq = L1L (3.8)

for someL1 ∈O[∂].
Denote byf , g andh the polynomials associated withL, q andL1 respectively. For us

the weight ofq will be very important and will be denoted byw.
Lemma 3.15 combined with (3.8) gives:

f (D + w)g(D) = h(D − N)f (D).

As a result we found that:f (λi + w)g(λi ) = 0 for i = 1,2, . . . ,N . Using the inequality:
degg � N − 1 one can findλi for whichg(λi) �= 0, hencef (λi +w) = 0, i.e.λj = λi +w

for someλj . Applying Corollary 3.14 we get that tow � −nN . This gives that

nN � |w| = |λi − λj |. �

4. Zr -invariantness of bispectral operators

Let AL be the ring of all differential operators commuting withL. We want to prove
that if the rank ofL is r thenL is aZr -invariant operator. The next lemma shows that it is
enough to prove thatΛ(z, ∂z) is Zr -invariant.

Lemma 4.1. If Λ is Zr -invariant then L is also Zr -invariant.
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Proof. It is enough to prove that the wave operatorK is Zr -invariant. Assume thatΛ is
Zr -invariant. Then obviouslyΘ = b(Λ) is alsoZr -invariant.

Now by induction oni we will see that the termαi∂
−i is Zr -invariant. Compare the

coefficients in front of∂−j in the relation:

θ
(
1+ α1∂

−1 + · · ·) = (
1+ α1∂

−1 + · · ·)(Θ0 + Θ1∂
−1 + · · ·).

Comparing the coefficients in front of∂0 and∂−1 one deduces thatΘ = Θ0 is Zr -invariant
and thatΘ1 = 0. Next assume thatα1∂

−1, α2∂
−2, . . . , αi∂

−i areZr -invariant and compare
the coefficients in front of∂−i−2:

θαi+2 =
i+2∑
s=2

αi+2−s

(
Θs +

(
s − i − 2

1

)
Θ ′

s−1 + · · · +
(

s − i − 2

s

)
Θ

(s)
0

)
+ αi+2θ + αi+1(Θ1 − Θ ′

0).

The last formula together with the fact thatΘ is aZr -invariant pseudo-differential operator
and the inductive assumption give thatαi+1∂

−i−1 is Zr -invariant. �
The next lemma shows that the algebraAL consists ofZr -invariant polynomials.

Lemma 4.2. Let L be an operator of rank r . Then AL is a subalgebra of C[zr ].

Proof. Let P ∈ AL. Putb1(P ) = f (z) ∈ AL. From Lemma 1.9 we know thatf (z) is a
polynomial. Also the degree off (z) is a number divisible byr. Assume thatf /∈ C[zr ]
and also that the coefficient in front of the highest degree is 1. We can representf as:

f = f0 + f1,

wheref0 ∈ C[zr ] is formed from all terms off whose degrees are divisible byr and
f1 = f − f0. The polynomialf0 will be called the invariant part off andf1 the non-
invariant part off . Denote byn0 andn1 the degrees off0 andf1 respectively. Obviously
n0 > n1 andn1 is not divisible byr. The idea is to construct new polynomialf̃ from A in
such a way that the differencẽn0 − ñ1 between the degrees of the invariant and the non-
invariant part off̃ is smaller. After finitely many steps we will end up with a polynomial
for which this difference is negative, which will be a contradiction.

The polynomialf̃ can be constructed as follows: letn0 = kr andN = pr set f̃ :=
f p − zkN . Denote byf̃0 and f̃1 the invariant and the non-invariant parts off̃ and letñ0
andñ1 be their degrees. Write the following chain of equalities:

f̃ = f p − zNk = (f0 + f1)
p − zNk = f

p

0 − zkN +
(

p

1

)
f

p−1
0 f1 + · · · .

Sincepn0 = kN andf0 is a polynomial inzr we can conclude that̃n0 � pn0 − r. The
above expansion together withn0 > n1 gives thatñ1 = n0(p − 1) + n1. Now we can prove
that the new difference is smaller:

ñ0 − ñ1 � pn0 − r − ñ1 = pn0 − r − (p − 1)n0 − n1 = n0 − n1 − r. �
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Proof of Theorem 0.4. It remains to prove theZr -invaxiantness ofΛ. Write Λ in the
form:

Λ(z, ∂z) =
r−1∑
i=0

ziΛi

(
zr , z∂z

)
, (4.1)

where

Λi

(
zr , z∂z

) =
ni∑

j=0

Λi,j

(
zr

)(
znN+1∂z

)ni−j
.

All Λi,j are Laurent polynomials andni is chosen in such a way thatΛi,0�=0, whenΛi �= 0.
We have to prove that allΛi , i = 1,2, . . . , r − 1, are 0. Thus assume that at least one
Λi �= 0. After applying the bispectral involutionb1 on (4.1) we will get the following
relation:

θ =
n0∑

j=0

Qn0−jΛ0,j

(
Lr/N

) + · · · +
nr−1∑
j=0

Qnr−1−jΛr−1,j

(
Lr/N

)
L(r−1)/N. (4.2)

The idea is to construct an operator fromAL whose image under the bispectral
involution is not fromC[zr ]. This will be contradiction with Lemma 4.2. We split the
construction of such an operator into two cases:

Case 1. n0 � max{n1, n2, . . . , nr−1}.
Denote byρ the maximal value of the numbersn0, n1, . . . , nr−1 and byI the set of all

indecesi for whichni = ρ. Due to Lemma 2.1

(adL)ρ
(
Qρ

) = (ρ)!NρLρ(n+1),

hence one obtains the following relation:

(adL)ρ(θ) = (ρ)!NρLρ(n+1)
∑
i∈I

Λi,0
(
Lr/N

)
Li/N . (4.3)

Since the operator at the right-hand side commutes withL, it follows that the differential
operator at the left-hand side is fromAL. After applying the bispectral involution to (4.3)
we get that:

zρ(n+1)N
∑
i∈I

Λi,0
(
zr

)
zi

is an element fromAL. This element is not polynomial inzr because the setI includes at
least one indexi ∈ {1,2, . . . , r − 1}.

Case 2. n0 > max{n1, n2, . . . , nr−1}.
Now (4.2) can be written in the form:

θ − Qn0Λ0,0
(
Lr/N

) =
n0−1∑
j=0

Qn0−jΛ0,j

(
Lr/N

) +
n1∑

j=0

Qn1−jΛ1,j

(
Lr/N

)
L1/N

+ · · · +
nr−1∑
j=0

Qnr−1−jΛr−1,j

(
Lr/N

)
L(r−1)/N. (4.4)
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Applying (adL)n0 to the above equality we see (using Lemma 2.1) that it annihilates the
operator at the right-hand side. Hence the operator

(adL)n0
(
Qn0Λ0,0

(
Lr/N

)) = (adL)n0(θ)

must be differential. Denote byN1 the numbern0(n+1). Using again Lemma 2.1, i.e. that

(adL)n0
(
Qn0

) = n0!Nn0Ln0(n+1)

we see that after multiplying from the right both sides of (4.4) byLN1 the operator on
the left-hand side will become differential. Denote this new operator byP . We re-denote
Λi,jL

N1 by Λi,j to avoid complicated notation. Thus the new relation has the form:

P =
n0−1∑
j=0

Qn0−jβ0,j

(
Lr/N

) +
n1∑

j=0

Qn1−j β1,j

(
Lr/N

)
L1/N

+ · · · +
nr−1∑
j=0

Qnr−1−jβr−1,j

(
Lr/N

)
L(r−1)/N . (4.5)

We can repeat this procedure until no is reduced to a number smaller or equal to
max{n1, n2, . . . , nr−1}. Then one proceeds as in case 1.�

5. Darboux transformations

In this section we will gradually simplify the operatorL by successive applications
of Darboux transformations. Our goal is to obtain after a finite number of steps a Bessel
operator.

According to Theorem 0.3 the pointx = ∞ is a regular singular point for the operator
L. Assume also thatL is a rankr differential operator. From Theorem 0.4 we know that in
this caseL is Zr -invariant operator. Thus if we representL as

L = ∂N + V1∂
n−1 + · · · + VN−1∂ + VN

coefficientsVi can be expanded as

Vi = 1

xi

∞∑
k=0

Vi,kx
−rk. (5.1)

In what follows we need to split the setM = {λ1, λ2, . . . , λN } of roots of the indicial
equation at∞ for L into subsets of equivalent moduloZ numbers.

For an arbitrary setMi denote byλ the number inMi with minimal real part. The next
lemma is a version of a classical result (see, e.g., [21]) and shows how one can pick an
Zr -invariant function from KerL.

Lemma 5.1. If λ is the minimal number of a set Mi , then there is a function φλ from KerL
which can be expanded around ∞ as:

φλ(x) = xλ

∞∑
k=0

ckx
−kr , c0 = 1. (5.2)
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We omit the proof as it repeats the classical one.
Given a functionφλ we construct a first order operator by setting

Pλ = ∂x − φ′
λ

φλ

.

Then the operatorL can be factorised asL = QλPλ and after we perform the Darboux
transformation

L = QλPλ → L̃ = PλQλ (5.3)

the new operator̃L will have the following properties:

Proposition 5.2. Assume that the operator L solves the string equation with a Zr -invariant
wave operator K = 1+ α1∂

−1 + · · · , ord(αi) � −i . Then
(i) every operator which is obtained by a Darboux transformation described above also

solves the string equation;
(ii) if {λ1, λ2, . . . , λN } are the roots of the indicial equation at ∞ of L and λ = λi0 is

the number with minimal real part from some Mi then the roots of the indicial equation at
∞ of L̃ are λ̃k = λk − 1 for k �= i0 and λ̃i0 = λi0 + (N − 1).

Proof. Put

K̃ = PλK∂−1. (5.4)

Now we will check that̃L, K̃ also satisfy the conditions of the lemma. Let’s check the first
condition of Definition 3.2.

L̃K̃ = PλQλPλK∂−1 = PλLK∂−1 = PλK∂N∂−1 = K̃∂N.

Further denote bỹQ = PλQQλ and note that the following sequence of equalities holds:

Q̃K̃ = PλQQλPλK∂−1 = PλQLK∂−1.

Using the equalitiesLK = K∂N andQK = Kx∂nN+1 the last relations give

Q̃K̃ = PλKx∂nN+1∂N−1 = K̃∂x∂N(n+1) = K̃x∂(n+1)N+1 + K̃∂(n+1)N .

Now it is clear that̃Kx∂(n+1)N+1K̃−1 = Q̃ − L̃n+1 is a differential operator.
Denote byg the polynomial associated withPλ and byh the one associated withQλ.

Obviouslyg(D) = D − λ and it has weight−1. Then using Lemma 3.15 we get:

h(D − 1)g(D) = (D − λ1)(D − λ2) · · · (D − λN),

g
(
D − (N − 1)

)
h(D) = (D − λ̃1)(D − λ̃2) · · · (D − λ̃N ).

From these equalities we get the second assertion in the lemma.�
After this proposition we are close to our final goal.

Proposition 5.3. Let L be a bispectral operator with coefficients satisfying (0.4). Then
by finitely many Zr -invariant Darboux transformations we can transform it into a Bessel
operator.
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Proof. We will perform Darboux transformations in the following way: start withL0 = L.
Choose an indexi, if there is any, for which the difference between numbers inMi with
maximal real part and with minimal real part exceedsN . Denote byλ the number inMi

with the minimal real part, setP1 = Pλ and factoriseL asL = R1P1 then the Darboux
transformation will be

L0 = L = R1P1 → L1 := P1R1.

According to Proposition 5.2 the setsM0
j := Mj will be transformed into setsM1

j for
which the difference between the numbers with maximal and minimal real parts are the
same fori �= j . Wheni = j there are two cases:

Case 1. There is exactly one number inMi with minimal real part. The differences
between the numbers inMi are integer. Thus there is a well defined ordering:λ � µ, iff
λ − µ � 0, in factλ − µ = Reλ − Reµ. Having in mind this remark the elements ofMi

can be ordered as

λ < µ1 � · · · � µs.

Now the assumption aboutMi means

λ + (N − 1) � µs − 1.

Due to Proposition 5.2 in the new setM1
i the following inequalities must hold: minM1

i � λ,
maxM1

i = µs − 1. Hence, the difference between the maximal and the minimal number is
reduced at least by 1.

Case 2. In Mi there is at least two numbers with minimal real part. Then the above
Darboux transformation decreases the number of the roots with minimal real part at least
by 1.

After finitely many Darboux transformations we obtain an operatorLm such that ifMm

is the set of roots of the indicial equation at∞ andMm
j are the corresponding subsets

moduloZ for Mm, then

maxMm
j − minMm

j < N. (5.5)

But again from Proposition 5.2 it follows that there is an operator

Km = 1+ a1∂
−1 + · · · ,

such thatLmKm = Km∂N and there is an integern � 0 for which

Qm = Kmx∂nN+1K−1
m (5.6)

is differential. The minimaln with this property, according to Proposition 3.16 satisfies the
inequality:

n � 1

N

(
maxMm

j − minMm
j

)
.

Using (5.5) we see thatn must be zero. Put in (5.6)n = 0 and compare the differential
parts of the operators at both sides to conclude that

Qm = x∂x.
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Now comparing the coefficients at∂j at both sides of the string equation (0.6) withn = 0
we obtain the equation

−xV ′
j + jVj = NVj .

Integrating it, we obtain that

Vj = vj x
−N+j , vj ∈ C.

This shows thatLm is a Bessel operator.�
Proof of Theorem 0.2. It remains to show that the chaine of the above Darboux
transformations can be replaced by one monomial. First we represent the chain by
following graph:

L0 = R1P1 → L1 = P1R1 = R2P2 → L2 = P2R2 = R3P3 → ·· · → Lm = PmRm.

If we setA = R1R2 · · ·Rm andB = PmPm−1 · · ·P1 then obviously:

Lm = Lm
0 = R1P1R1P1 · · ·R1P1 = R1L

m−1
1 P1 = AB

and for the Bessel operatorLβ ′ := Lm

Lm
β ′ = PmRmPmRm · · ·PmRm = PmLm−1

m−1Rm = BA. (5.7)

The Darboux transformations do not change the rank of the operator. Thus the rank ofLβ ′
is r. If r < N then according to Lemma 1.6 there is a monomial Darboux transformation
which transformsLβ ′ into Lβ , whereLβ is some Bessel operator of orderr and rank
r. But the monomial Darboux transformations connecting Bessel operators are transitive.
Thus there is a monomial Darboux transformation connectingL andLβ . The only thing
that we have to prove is that the operatorsA andB from (5.7) have rational coefficients.To
prove this we need the following lemma.�
Lemma 5.4. Assume that P ∈ O[∂] is an operator with holomorphic at ∞ coefficients. If
P divides from the right some power Ld

β of a Bessel operator

Lβ = x−N(D − β1) · · · (D − βN), D = x∂x,

then the coefficients of P are rational.

Proof. Let n be the order ofP and

γ = βd = (
β1, β1 + N, . . . , β1 + (d − 1)N, . . . , βN ,βN + N, . . . ,

βN + (d − 1)N
)
.

First we prove that KerP has a basis of elementsfi , i = 1,2, . . . , n, of the form:

fi = xγi

ri∑
j=0

pij (x)(lnx)j , piri �= 0, (5.8)
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wherepij are polynomials. In general everyf ∈ KerP can be written as:

f =
s∑

i=1

fi (5.9)

with fi having of the form given by (5.8) andγi − γj /∈ Z for i �= j . The analytical
continuation around the infinite point defines the monodromy map:

M∞ : KerP → KerP.

If an elementf = ∑s
i=1 fi as in (5.9) and (5.8) is in KerP , then

M∞(f ) =
s∑

i=1

exp
(
2π

√−1γi

)
xγi

ri∑
j=0

pij (x)
(
lnx + 2π

√−1
)j

is also in KerP .
Let s be the minimal number for which there is an elementf as in (5.10), where none

of the termsfi is in KerP . From all such operators from KerP with minimal s take one
for which the number:

min{ri | i = 1,2, . . . , s}
is minimal. We can assume thatrs = min{ri | i = 1,2, . . . , s}. Then in the following
element from KerP :

f − exp
(−2πγs

√−1
)
M∞(f ) =

s∑
i=1

f̃i = xγ̃i

r̃i∑
j=0

p̃ij (x)(lnx)j

either the termf̃s vanishes (whenrs = 0) or the number̃rs = rs − 1 is less thanrs . In both
cases this is a contradiction with the choice off .

Having in mind the basis from (5.8) the action of the operatorP can be written as (see
[21]):

Pφ = Wr(f1, f2, . . . , fn,φ)

Wr(f1, f2, . . . , fn)
. (5.10)

Note that each derivativef (k)
i has the formf

(k)
i = xγiFik(x, lnx), whereFik(X,Y ) ∈L[Y ]

is a polynomial inY with coefficients – Laurent polynomials inX. Hence formula (5.10)
gives:

Pφ = xγ1+γ2+···+γs
∑n

i=0 Fi(x, lnx)∂iφ

xγ1+γ2+···+γsFn(x, lnx)
,

whereFi ∈ L[Y ]. Thus the coefficientci in front of ∂i is

ci = Fi(x, lnx)

Fn(x, lnx)
.

Sinceci ∈O the monodromy mapM∞ preservesci . Hence

Fi(x, lnx + 2π
√−1l)

Fn(x, lnx + 2π
√−1l)

= Fi(x, lnx)

Fn(x, lnx)
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for every integerl and also for everyl ∈ C since the above equality is equivalent to an
equality between polynomials. Using thatx and lnx are algebraically independent we get:

Fi(X,Y + l)

Fn(X,Y + l)
= Fi(X,Y )

Fn(X,Y )

which on the other hand is equivalent to

Fi(X,Y + l)

Fi(X,Y )
= Fn(X,Y + l)

Fn(X,Y )
.

Take the derivative with respect tol and setl = 0. Then one sees thatFi(X,Y ) =
c(X)Fn(X,Y ). After putting firstY = lnx, X = x and thenY = 0, X = x it follows that

ci(x) = Fi(x, lnx)

Fn(x, lnx)
= c(x) = Fi(x,0)

Fn(x,0)

is a rational function. �

6. Proof of the characterisation theorem

Essentially the proof of Theorem 0.5 has already been performed in the previous
sections, as well as in [4,8]. Below we sketch a plan how to pick the pieces of the proof
from these sources.

Proof of Theorem 0.5. The implication (1)→ (3) is the content of Theorem 0.2. Next we
consider (3)→ (2). Here we use the Definition 1.4 for monomial Darboux transformations.
If Lβ is a Bessel operator then one factorisesLm

β as

Lm
β = QP, (6.1)

where the operatorP acts onψ in the following way:

P = Wr(f1, f2, . . . , fn,ψ)

Wr(f1, f2, . . . , fn)
(6.2)

and the functionsf1, . . . , fn have the structure prescribed in Definition 1.4. Having in mind
the type of the kernel it is obvious that the operatorP has only regular singularities. But
then the same is true for the operatorQ whose coefficients axe computed by induction
from the (6.1). Then the same is true for the productPQ. At the end by the main result in
[4] the latter operator is bispectral.

The implication (2)→ (1) is trivial. The equivalence of (3) and (4) is the content of [8].
We briefly describe it.

First, we recall the definition ofW1+∞, its subalgebrasW1+∞(N) and their bosonic
representations introduced in [4]. The algebraw∞ of the additional symmetries of the KP-
hierarchy is isomorphic to the Lie algebra of regular polynomial differential operators on
the circle

D = span
{
zα∂β

z | α,β ∈ Z, β � 0
}
.
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Its unique central extension [22] will be denoted byW1+∞. This algebra gives the action
of the additional symmetries on tau-functions (see [2,27]). Denote byc the central element
of W1+∞ and byW(A) the image ofA ∈D under the natural embeddingD ↪→ W1+∞ (as
vector spaces). The algebraW1+∞ has a basis

c, J l
k = W

(−zl+k∂l
z

)
, l, k ∈ Z, l � 0.

The commutation relations ofW1+∞ can be written most conveniently in terms of
generating series [22][

W
(
zkexDz

)
,W

(
zmeyDz

)]
= (

exm − eyk
)
W

(
zk+me(x+y)Dz

) + δk,−m
exm − eyk

1− ex+y
c, (6.3)

whereDz = z∂z.
From the theory of KP-hierarchy it is well known that each operatorL or its wave

function (1.2) defines or can be defined by the so-calledtau-function, which is a function
τ (t1, . . . , tn, . . .) in infinite number of variablestn, n = 1, . . . . We denote the tau-functions
of the Bessel operatorsLβ by τβ . In [5] a family of highest weight modulesMβ over
W1+∞ has been constructed, using as a highest weight vectorτβ . We briefly describe them.

Introduce the subalgebraW1+∞(N) of W1+∞ spanned byc andJ l
kN , l, k ∈ Z, l � 0. It

is a simple fact thatW1+∞(N) is isomorphic toW1+∞ (see [22]). Now put

Mβ = span
{
J

l1
k1N

· · ·J lp
kpNτβ | k1 � · · · � kp < 0

}
. (6.4)

The main result of [8] can be summed up as:

Theorem 6.1. If an element in a module Mβ is a tau-function then the corresponding
operator L is a monomial Darboux transformation of some Bessel operator Lβ ′ (with
eventually different β ′). If an operator L is a monomial Darboux transformation of a Bessel
operator Lβ then the corresponding tau-function belongs to the module Mβ .

Obviously the above cited theorem gives the equivalence between (3) and (4).�
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