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Abstract

The aim of this paper is to classify the bispectral operators of any rank with regular singular points
(the infinite point is the most important one). We characterise them in several ways. Probably the
most important result is that they are all Darboux transformations of powers of generalised Bessel
operators (in the terminology of [4]). For this reason they can be effectively parametrised by the
points of a certain (infinite) family of algebraic manifolds as pointed out in [4R002 Editions
scientifiques et médicales Elsevier SAS. All rights reserved.

0. Introduction

The present paper is devoted to the characterisation and the classification of bispectral
operators of any rank and order with only regular singularities. Before stating our results
and placing them properly amngst the other research we would like to give few definitions
and to recall some of the fundamental results in the area.

An ordinary differential operatak (x, d,) is called bispectral if it has an eigen-function
¥(x,z), depending also on the spectral parametewhich is at the same time an
eigenfunction of another differential operatdiz, 9,) now in the spectral parameter
In other words we look for operatofs A and a functiony (x, z) satisfying equations of

the form:
Ly = f()y, (0.1)
Ay =0(x)y. (0.2)
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Initially the study of bispectral operators has been stimulated by certain problems of
computer tomography (cf. [19,20]). Later it turned out that the bispectral operators are
connected to several actively developing areas of mathematics and physics — the HP-
hierarchy, infinite-dimensiond.ie algebras and their representations, particle systems,
automorphisms of algebras of differential optera, etc. (see, e.g., [4,7,8,12,17,26,31,32],
as well as the papers in the proceedings voloirtbe conference in Montréal [10]). There
are also indications for eventual connections with non-commutative algebraic geometry
[33].

In the fundamental paper [17] Duistermaat and Grinbaum raised the problem to find all
bispectral operators and completely solved it for operatoo$ order two. The complete
list is as follows. If we present as a Schrodinger operator

d 2
L= <a> + u(x),

the bispectral operators, apart from the obvious Aiyx) = ax) and Besselu(x) =
cx~2) ones, are organised into two families of potentials), which can be obtained by
finitely many “rational Darboux transformations”

(1) fromu(x) =0,
(2) fromu(x) = —(3)x~2

Thus the classification scheme prompted by the paper [17] is by the order of the
operators. G. Wilson [31] introduced another classification scheme — by the rank of the
bispectral operatof.. We recall thatthe rank of the operatotrl. is the dimension of the
space of the joint eigenfunctions of all operators commuting MitH-or example, all
the operators of the family (1) have rank 1, while those of the family (2) have rank
2, In the above cited paper [31] (see also [32]) Wilson gave a complete description
of all bispectral operators of rank 1 (and any order). In the terminology of Darboux
transformations (see [4]) all bispectral operators of rank 1 are those obtained by rational
Darboux transformations on the operators with constant coefficients, i.e. polynomials
p(dy). Several beautiful connections of the bispectral operators with KdV- and KP-
hierarchies, algebraic curves and Calogerosbt particle systems have also been revealed
in[17,31,32].

We will not touch upon all results in the papers [17,31] but we would like to point that
in both of them the classification is split into two, more or less independent parts. First,
there is an explicit construction of families of bispectral operators of a given class (order 2
in [17]; rank 1 in [31]) The construction can be given in terms of Darboux transformations
of “canonical” operators. The second part is to give a proof that, if an operator (in the
corresponding class) is a bispectral omet it belongs to the constructed families.

In several other papers devoted to the bispectral problem (see [20,24,34]) the authors
deal with an analog of the first part of the problem, i.e. they construct new families of
bispectral operators. The most complete results in that direction have been obtained in [4,
7]. To the best of our knowledge, all known up to now families of bispectral operators can
be constructed by the methods of the latter papers. A challenging problem is to prove that
all the bispectral operators have already been found. A natural approach would be to divide
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the differential operators into suitable classes, e.g. — by order as in [17] or by rank and
to try to isolate the bispectral ones amongst them. But having in mind the constructions
of the fundamental papers [17,31], with their different and quite involved methods, the
complete classification seems to be a diffiantl lengthy project. One may try to consider
the operators with a fixed type of singularity at infinity. Obviously, then there arises another
difficult problem — to determine what resttions on the kinds of singularities are imposed

by the condition of bispectrality.

In the present paper we consider the class of operators with regular singularities at
infinity. In fact the main results sound much stronger. To explain them we introduce some
definitions and notations which will be used also throughout the paper. We are going to
consider operators, normalized as follows:

N
L=Y Vi(x)d}, (0.3)
k=0

where the coefficient at the highest derivatig = 1 and the next coefficierity_1 = 0.
Now our assumption is that

limV;(x)=0, j=0,...,N—1whenx— oco. (0.4)

(It is well known that with the above normalization all coefficients Iofare rational
functions (see [17,31]) and hence (0.4) makes sense.)

Important examples of such operators are the generalized Bessel operators. As we are
going to use them throughout the paper we rettad definition. Introduce the notation
D = x0,.

Definition 0.1. Generalized Bessel operatdrg are the operators
Lg=x""(D—=pB1)---(D=Bn), (B1,....Bxn) €eC". (0.5)

In what follows we will call the above operators by abuse of terminology (but for
simplicity) Bessel operators.
After this preparation we can formulate the result which is the core of the present paper.

Theorem 0.2. Let L be a bispectral operator (0.3)with coefficients satisfying (0.4). Then
L isa monomial Darboux transformation of a Bessel operator.

The class defined by (0.3) and (0.4) includes essentially all the bispectral operators
found in [17]: the Bessel operators and both of the families (1) and (2), the only exception
being the Airy operator. On the other hand it includes one of the most interesting classes,
found in [4]. These are the operators obtained by Darboux transformations on powers of
the Bessel operators. This class was laterrabterized as follows. In [5] there have been
constructed highest weight modulégg with highest weight vectors — the corresponding
to (0.5)z-functionstg. Then in [8] it is shown that the-functions in the modules 1z are
exactly ther-functions of the operators which are monomial Darboux transformations.



164 E. Horozov, T. Milanov / Bull. Sci. math. 126 (2002) 161-192

In the course of performing the proof of Theorem 0.2 we show that the assumptions
(0.3) and (0.4) for the bispectral operafoimpose further restrictions on it, which justify
partially the title.

Theorem 0.3. If the bispectral operator (0.3) satisfies (0.4), then the point x = co isa
regular singular point.

The proof of this theorem is probably the most involved part of our constructions (see
Section 3). The regularity of the finite points follows indirectly from Theorem 0.2.

In Section 4 we give another characterization of the bispectral operators (0.3) with the
restriction (0.4).

Theorem 0.4. Any rank r bispectral operator L isZ,-invariant.

The result is interesting and natural by itself (cf. [4,17]) but in the present paper it is
also the next step in our final goal.

Finally in Section 6, putting together the different pieces of our construction in the
preceding sections and using the main resoftg!,8] we obtain the following complete
characterization of the Fuchsian bispectral operators.

Theorem 0.5. The following conditions on the operator L in the form (0.3)are equivalent:

(1) L isbispectral and satisfies (0.4);

(2) L ishispectral and hasonly regular singular points(i.e., L is Fuchsian);
(3) L isamonomial Darboux transformation of a Bessel operator (0.5);

(4) the corresponding to L t-function belongsto one of the modules Mg.

In the case when the order bfis two the equivalence between (1) and (3) contains two
of the most important (and difficult) theorems of [17], concerning the families (1) and (2)
above. In that sense the present paperasgnts their direct generalization.

The methods which we utilize have some resemblance to the ones used in [17]. In
particular the Darboux transformationsrstitute one of the main steps of our proof. But
as a whole we use different ideas. First, we work essentially with the algebraic structure of
different rings of differential or pseudo-differential operators. Essentially we do not use the
wave function as in [17]. This we achieve by using the bispectral involutions on pseudo-
differential operators in Section 2. In the same section we observe that a bispectral operator
L (with the restrictions (0.3) and (0.4)) satisfies a variant of the so-called “string equation”:

[L,Q]=NL"", (0.6)

whereQ is an operator built out of.. Eq. (0.6) prepares us to use certain technigues from
differential algebra in order to study the singular pointZoft infinity. In particular we

use the methods invented by J. Dixmier [16] in his studies on the Weyl algebra. Roughly
speaking one associates with each differential opefatoquasi-homogeneous polynomial
pr(X,Y) in such a way that it contains the information about the “worst” terms ¢ih

our case these are the most irregular ones). See [16] and Section 3 for more details. Then
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in the same section the analysis;of (X, Y) shows that the assumption of irregularity of
the pointx = oo is incompatible with the string equation (0.6).

The techniques from Section 2 is used also in Section 4 to prove that the- raink
the operatol. imposes itZZ,-invariantness. Using it and the fact that the infinite point is
regular it is easy to perfori#, -invariant Darboux transformations dnin order to reduce
the numbem in the string equation (0.6) to 0. This automatically gives that the operator
obtained in this way is a Bessel operator.

At the end of the introduction we point out that our method treats all ranks and orders
in one scheme. We expect that some of its components can be useful in other classification
problems.

1. Preliminaries

In this section we have collected some terminology, notations and results relevant for
the study of bispectral operators. Our main concern is to introduce unique notation which
will be used throughout the paper and to make the paper self contained. There are also
few results which cannot be found formally elsewhere, but in fact are reformulations (in a
suitable for the present paper form) of statements from other sources.

1.1. In this subsection we recall some definitions, facts and notation from Sato’s theory
of KP-hierarchy [14,28,29] needed in the paper. For a complete presentation of the theory
we recommend also [15,30]. We start with the notiomthefwave operator K (x, d;). This
is a pseudo-differential operator

K(x, 00 =14 a;(x)d;", (1.1)
j=1

with coefficientsz; (x) which could be convergent or formal power (Laurent) series. In the
present paper we will consider;, most often as formal Laurent seriesan®. The wave
operator defines the (statioyg Baker—Akhiezer functiony (x, z):

Y(x,2) = K(x, )€™ (1.2)

From (1.1) and (1.2) it follows that has the following asymptotic expansion:
° .
W(x,z)ze“<1+ Zaj(x)z_f), 7 — 00. (1.3)
1

Introduce also the pseudo-differential operakor
P(x,8,) =Ko, KL (1.4)

The following spectral property oP, crucial in the theory of KP-hierarchy, is also very
important for the bispectral problem:

Py (x,2) =z¢(x,2). (1.5)
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When it happens that some power Bf say PV, is a differential operator, we get that
¥ (x, z) is an eigenfunction of an ordinary differential operatoe PV:

Ly =Ny, (1.6)
It is possible to introduce the above objects in many different ways, starting with any of

them (and with other, not introduced above). For us it would be important also to start with
givendifferential operator L:

L(x,8) =Y + Vy_2(x)dV 24+ 4 Vp(x). 1.7)
One can define the pseudo-differential operdas anNth root of the operatof.:

P=LYN=p+... (1.8)
and the wave operatdf as:

LK =LaV. (1.9)

An important notion, connected to an operatds the algebrad; of operators commuting
with L (see [11,25]). This algebra is commutative one. The wave fungtianz) (defined
in (1.2)) is a common wave function for all operata#sfrom Ay :

My (x,2) =gm @Y (x,2). (1.10)

We define also the algebtd; of all functionsgy,(z) for which (1.10) holds for some
M € Ap. Obviously the algebrad; and.A; are isomorphic.

Following [25] we introducéhe rank of the algebra .A;, as the greatest common divisor
of the orders of the operators iy .

1.2. Here we shall briefly recall the definitiori Bessel wave function and of monomial
Darboux transformations from it. For more details see [4].£etC" be such that

N(N -1
Zﬂ,—( ), (111)

Definition 1.1 ([4,18,34]). Bessel wave function is called the unique wave function
Yg(x, z) depending only onz and satisfying

Lg(x,d:)Ws(x,2) =z Wg(x, 2), (1.12)
where the Bessel operatbg (x, d;) is given by (0.5).

Because the Bessel wave function depends onlyzii1.12) implies
Dy Wg(x,z) = D;Wp(x, 2), (1.13)
Lg(z, 9)Wp(x,2) =xVWs(x, 2). (1.14)

To introduce the monomial Darboux transformations of Bessel wave functions we first
recall the definition of polynomial Darboux transformations given in [4].

Definition 1.2. We say that the wave functioh is aDarboux transformation of the Bessel
wave function®g(x, z) iff there exist polynomialsf (z), g(z) and differential operators
P(x, dx), O(x, dy) such that
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1

‘I’ZEP(Xvax)‘I/ﬁ(X,Z), (1.15)
1

Yp(x,z) = %Q(x,ax)llf. (1.16)

The Darboux transformation is call@dlynomial iff the operatorP (x, d,) from (1.15) has
the form

P(x.d,)=x""Y pi(x")DE, (1.17)
k=0

wherepy are rational functiongy, = 1.

We will need the following two definitions of monomial Darboux transformations. Their
equivalence is proved in [4].

Definition 1.3. We say that the wave functioki(x, z) is amonomial Darboux transforma-
tion of the Bessel wave functiodiz (x, ) iff it is a polynomial Darboux transformation of
WYg(x,z) with g(z) f(z) = 24N d e N. Further the differential operator

L=+ Vy_20M24 ...+ Vg

is a monomial Darboux transformation b if the wave function corresponding fois a
monomial Darboux transformation of the wave function correspondirdgsto

Definition 1.4. The wave function (x, z) is amonomial Darboux transformation of the
Bessel wave functio#g (x, z) iff (1.17) holds withg(z) = z", n = ord P and the kernel of
the operato? (x, d,) has a basis consisting of several groups of the form

ko mult(8i+kN)—1
i+k j
(3 n )
k=0  j=0

where mulgs; + kN) := multiplicity of 8; + kN in U?’:l{ﬁj + NZ>o0} and jo = maxj |
bij # 0 for somek}.

y=Inx

From Definitions 1.2 and 1.3 one immediately obtains the following description of
monomial Darboux transformations:

Lemma 1.5. The differential operator L is a monomial Darboux transformation of the
Bessel operator Ly iff there are differential operators P = P(x, d,), QO = Q(x, d,) and
numbers d, d’ such that

O(x, 3x) P(x, 8x) = Lg(x, 8,)°, (1.19)
P(x,8)0(x, d,) = L(x, 9,)¢, (1.20)
where the operator P satisfies (1.17)
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We will also reformulate some results from [4]. In [4] one can find a proof of the
following statement.

Lemmal.6.1f Lg isaBessel operator of order N andrank r, there exists a Bessel operator
Lg of order r such that Lg isa monomial Darboux transformation of Lg.

For the proof of this lemma see the proof of Proposition 2.4 from [4] (although the
statement there is formulated in a different way). We end this subsection by reformulating
(in a weaker form) the main result, which we need from [4].

Theorem 1.7. The monomial Darboux transformations of the Bessel operators are
bispectral operators.

1.3. Here we recall several simple propertieshispectral operators following [17,
31]. As we have already mentioned in the introduction we are going to study ordinary
differential operatord. of arbitrary orderN which are normalised as in (0.3), i.e. with
Vy =1 andVy_1 = 0. Assuming that_ is bispectral means that we have also another
operatorA, a wave functiony (x, z) and two other functiong (z) and6(x), such that
Egs. (0.1) and (0.2) hold. The following lemma, due to [17], has been fundamental for all
studies of bispectral operators.

Lemma 1.8. There exists a number m, such that
(adL)"*10 = 0. (1.21)

For its simple proof, see [17,31]. We will consider tivais the minimal number with
this property. An important corollary of the above lemma is the following result.

Lemma 1.9. The functions f(z) and 6 (x) are polynomials.

The next result is also contained in [17,31], but it is not formulated as a separate
statement. We give its short proof following [31].

Lemma 1.10. The coefficients «; in the expansion (1.1) of the wave operator K are
rational functions.
Proof. From Eq. (1.21) it follows that

(adaM)" (koK) =0.
On the other hand the kernel of the operr:(151112))€\’)"”rl consists of all pseudo-differential
operators whose coefficients are polynomials iof degree at most:. This gives that

0K = K06, (1.22)

with a pseudo-differential operatér:

o0
O=60+Y 0d . (1.23)
1
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whose coefficient®; are polynomials of degree at mast We haved = ©g. Comparing

the coefficients ab,’ we find that all the coefficients; (x) of K are rational func-
tions. O

Remark 1.11. We notice that at least one of the coefficientschf has degree exactly,
wherem from Lemma 1.8 is minimal. This fact will be used later.

The last lemma has as an obvious consegeene of the few general results, important
in all studies of bispectral operators. Noticing that the coefficienfs afe polynomials in
the derivatives oft; (x) we get

Lemma 1.12. The coefficients of L arerational functions.

2. Bigpectral involutionsand the string equation

The condition (0.4) for vanishing of the coefficierifg(x) of a bispectral operatak
implies further restrictions on all objects connected.te the wave function/ (x, z), the
wave operatok and the coefficients of. itself. This gives us the opportunity to define
two anti-isomorphisma andb1 (“bispectral involutions”) between the algebras of pseudo-
differential operators with coefficientfermal Laurent series in the variables! andz 1.
In its turn using these anti-isomorphisms will allow us to continue our further constructions
in the rest of the paper by purely algebraic analysis on the differential or pseudo-differential
operators, avoiding the wave function.

2.1. Bispectral involutions

In the next lemma, following [17] we find the simplest restrictions on the coefficients of
the wave operatok and onL.

Lemma2.1. (i) Thecoefficients V; (x), j = N — 2, ..., 0, of L vanish at co at least asx 2.
(ii) The coefficientsa;, j =1, .. ., of the wave operator K vanish at least as x 1.

Proof. We are going to prove both statements simultaneously. We use the formula
LK =KV,

Lemmas 1.10 and 1.12. Comparing the coefficients“at? at the both sides of the above
identity we get:

VN_2+ NOléL =0.

Having in mind thatVy_» is equal to the derivative of the rational functiop and that it
vanishes ato we see that it vanishes at least@s. Continuing in the same manner we
find

NIN-1) ,

Vy_3+ VN_oa1+ > o] + Nap =0.
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We see that,, is vanishing (at least as2) and thatVy_3 vanishes again at least 852,
being a sum of such terms. By induction we get #at,, s =1,..., N — 1, vanishes at

least asc—2 and the same holds fafy_,, s =2, ..., N, as it is a sum of producﬁéja,(,f),

whereN —1> j>s,m=1,...,N —1 (herea® denoteskth derivative), and also pure
derivatives oy, . Arguing as above we get the statement of the lemnta.

Following [7] we will introduce an anti-isomorphisth between the algebr8 of
pseudo-differential operatorB(x, d,) in the variablex and the algebrd’ of pseudo-
differential operator®(z, 9,) in the variable;. More precisely3 consists of those pseudo-
differential operators

o
pP= ij(x_l)ax_’,
k
for which there is a number e Z (depending orP) such that” p; (Y, j=kk+1,...,
are formal power series in~L. The involution

b:B—B
is defined by

o0
b(P)e® =Pe“ =Y "z Ip;(971)e, forPeB, (2.1)
k

i.e. b is just a continuation of the standard anti-isomorphism between two copies of the
Weyl algebra. In what follows we will use also the anti-isomorphism

b1:B— B, bi(P)=>b(Adg P). (2.2)
Obviouslyb andb; can be considered as involutions/®fand without any ambiguity we
can denote the inverse isomorphishng, bl‘1 : B' — B by the same letters.

Remark 2.2. If we use relations (0.1) and (0.2) to define an involuigion the subalgebra
of B generated by. and9, then we have

b1(L) =b(K LK) =b(Adk L),

b1(0) =b(K 1K) = b(Adk 6).
This prompts definition (2.2).

Since the operatork and ® are from5 we can define two operators and A as

follows:

S(z,0;) =b(K (x,0y)). (2.3)

A(z,9;) = b(O). (2.4)
Explicitely one has

o0 o0
S=Y ;@)= a;j(z"ho:), a=1, (2.5)
j=0 j=0
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and also
A(z,d )—ZZ_JO (0, )_ZA (z7hai, (2.6)

where A,, # 0 (see Remark 1.11) and the coefficients anda; should be viewed as
formal power series. We are going to see that they are polynomiatgin

Lemma 2.3. The coefficients a; of the operator S are polynomialsin z 1.

Proof. Using that
LK =KaV,

we can apply the involutioh and to derive:
Sh(L)=z"$

Rewrite in details the last formula:
OO .
(Za, ) (N + 2V 2Vy_2(3,) + - ')ZZN<Z(1]'(Z_1)3Z_])‘
0

Comparing the coefficients ag‘f for j =2,3,... and having in mind that according to
Lemma 2.1:

o0
Ve(@) =Y Visd*. k=0,....N-2
2

we obtain relations fos#t; andaz in the form:

N—2
~N"ar+ Y via=0,
0

N—2 N—2
—2NzV1ap + (Z *Vi2+ NN — 1)ZN_2>01 + Y #z=0.
0 0

We see thati1, a» are polynomials i, 1. By induction we get that any; satisfies an
equation of the form:

N-2
—sNzV1a, + Z Fars (z_l) =0,
0

whereg;. s are already polynomials igr 2. This proves the lemma.O
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Now we are ready to show that the operatérhas coefficientsA;, which are
polynomials inz~1. Denote temporarily by the degree of the polynomial, i.e. if
0(x)=6,z" +---, thend, #0.

L emma 2.4. The coefficients A; of the operator A are polynomialsin z~1. The degree of
0 r=mand

A =0, Ap—1="0n-1, (27)
Proof. Using the definition (2.4) and applying the involutiérto the relatiord (x)K =
KO we get:

AS = S6(dy).

As the coefficients oA are expressed as differential polynomials of the coefficientsf
S we get thatA ; are also polynomials in~1. Comparing the first two coefficients of the
above equality we get also (2.7)0

2.2. The string equation

In this subsection we are going to show that for the bispectral opetatioere exists
another operato@, for which the string equation (0.6) holds. This equation as well as
other properties of the operatdr (with appropriate normalisation) would be crucial for
our constructions.

In what follows we would assume that the numbeis divisible by N. This is not a
restriction since we can always replageby A" . We putm = NI.

Lemma 2.5. Thereis a natural number n such that:
0 =K xorVtik, (2.8)

isa differential operator. The operator Q isa solution to the string equation (0.6).

Proof. Using the bispectral property one can write
(adL)" 16 = (—1)" by ((adz)" " 4).

Each application of the operator &l to any differential operataP reduces its order by 1.
Using the fact that the operator

A= 20 + Ap 200 P+,
whereA,, is a nonzero constant, we get that the operator
(adz")" " A = A, (adeV)" " tor

is an operator of order 1. Now prescribing weightg tand tod, as follows: wtz) = 1,
wt(d,) = —1 we obtain that the right-hand side of the above identity has weight equal to
(m — 1)N — m. This shows that the operator in the above equality has the form:

(adZN)m_lA :Cz(m_l)(N_l)az +C1ZmN—m—N’ 675 0.
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In this way we get that
Ql = (adL)m—le — b]_<(—1)m_1(CZ(m_l)(N_l)az + ClZmN_m_N)>

is a differential operator. Using the fact that= NI and that»1(z) = LYV we obtain
((_1)m—1Ql _ ClLN[—[—l) — Cbl(z(m—l)(N—l)aZ) — Cbl(Z”NJ’_laz),
where we have put =/(N — 1) — 1. Now it is obvious that
1
Q = bl(ZnN+1az) — _((_1)m—lQ1 _ ClLNI—l—l)
C
is a differential operator. The identity (0.6) is obtained by applying the bispectral involution
to

I:Z}’Zl\/-‘r:l.az7 ZN] — NZN(H+1). 0

Corollary 2.6. For any positiveinteger i the following formula holds:
(@dL)'(Q") = i!N' LI+, (2.9)

Proof. Assume that (2.9) is true for, 2, ...,i. Then
(adL)l-‘rl(Ql) — 0
Since ad. is a differentiation in the ring of differential operators with rational coefficients
we can use the Leibnitz’s rule:
) ) ) ) i+l i o .
(@dL) Q') = (adL) Q" - Q) =) ( . )(adL)’“—f (Q')(@dL)/ (Q).
; J
j=0
The only nonzero term in the above sum is the onegjferl, hence
(@dL) (™) = (i + DN .(adL) (Q") L" 2.
Now (2.9) follows by induction oi. O

3. Theinfinite point

The present section is divided into three subsections, corresponding to the basic results,
which we shortly describe. In the first subsection we present the op@a®ea polynomial
in L with coefficients — operators of lower order. The second result is a proof that the point
oo is a regular singular point for the operator{Theorem 0.3). In the last subsection we
give an estimate of the degredof the string equation) in terms of the roots of the indicial
equation ato. All results will be used in performing Darboux transformations. Now we
will fix the situation in which we are going to work.

Definition 3.1. By O we denote the set of all functions that are holomorphisatif we
write a functionV (x) from O as:

1 1
V(x)=x_”<ao+a1—+az—2+-~->, ap#0, v=0.
X X
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then the number
ord(V) :=—v

will be called order of at oo and will be denoted by o(d).

We introduce also the rin@[0d] of all differential operators with coefficients frof.
Obviously the bispectral operatfris from O[d]. The only properties of. andQ relevant
for our purposes in the present section are summed up in terms of the wave operator as
follows:

Definition 3.2. We say that the operatdt € O[d] solves the string equation iff the
following conditions are satisfied:

(1) There is a wave operatd = 1+ a19~1 + - - - with coefficients from® for which
LK = K3V and orde;) < —1.
(2) Thereis an integer > 0 such thaQ = Kx3"V+1x 1,

We will call the pair(L, Q) a string pair. The minimal numbaearin (2) will be called the
string number of_.

3.1. Q asapolynomial in L

For convenience denote bRt the differential extension off[x] by adjoining the
differential indeterminatess, y», ... (see [23] for details). We endow the differential ring
R with graduation which will be useful in the sequel: for a monomial x”Oyl.(f") fa yl.(f”
setwit) =no— (n1+i1) —--- — (ny +iy). This weight provide$, with the structure of

aZ-graded ring:

R:@Rn,

nez

whereR,, is spanned ovel by all monomials € R for which wi(z) = n. This graduation

can be extended in a natural way to graduation of the ring of all pseudo-differential
operators with coefficients from the ririg), by prescribing to the symbol of differentiation

o weight wi(d) = —1. For convenience the last mentioned ring will be denoted byRPsd

In this way a pseudo-differential operator

P=Yajd. ajeR,
j<m

is homogeneous of weight if for every j the coefficientz; is a homogeneous element
from R, ;. If P is homogeneous then by (i) we will denote it's weight. We will need
two lemmas. The proof of the first one being trivial will be omitted.

Lemma 3.3. (i) Assumethat P = 3" + - - - is a homogeneous pseudo-differential operator
from PsdR. Then P isinvertiblein PsdR, and P~ is homogeneouswith weight — N .
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(i) For every two homogeneous operators P, and P, from PsdR with weights
respectively n1 and n» their product P;. P> isalso homogeneousand itsweight isn1 + no.

Lemma 3.4. Assume that L, = 3" + .- and Q, are arbitrary homogeneous pseudo-
differential operators from PsdR. Then one can find an integer number n and homoge-
neous differential operators go, g1, ... fromR[d] of orders < N — 1 such that:

Qy =GoL} + L)+ (3.1)

More precisely, for any i = 0,1, ..., such that g; # O the weight of g; is: wt(Q,) —
(n —i)Wt(Ly).

Proof. For givenQ, we will show thatgo andn can be determined uniquely and that they
satisfy the properties stated in the lemma. Affgis determined we move the terggL”
to the left-hand side of (3.1) and then in the same manner we can detérmidew it is
clear that ally; can be found successively and the lemma will be proved.

Denote bym the order ofQ, and dividem by N:m =nN +r, 0<r < N — 1. Multiply
both sides of (3.1) by. 7" and compare the differential parts of the two pseudo-differential
operators:

qo= (Q_VL_H)-F
Combining this equality with Lemma 3.3 we obtain the statement of the lemma.

Denote by Ps@ the ring of all pseudo-differential operators with coefficients fri&m
To use the result of Lemma 3.4 we need a ring homomorphism

7 PsSdR — Psd®

defined as follows: take the unique differential homomorphism betweend O that
mapsy; intoa;, i =1,2,..., wherew; are the coefficients of the wave operaforand

then extend this homomorphism to homomorphism betweerRPatd Psd by leaving

d fixed. Now from the representation in Lemma 3.4 we can derive a similar one for the
operatord. and Q.

Lemma 3.5. Let L and Q form a string pair and n is the corresponding string number.
Then one can find differential polynomials go, g1, - - -, g, from PsdR, such that if we set
gi = 7 (g;) then:

Q=qol" +q1L"t + -+ qy. (3.2)
The operators g; are homogeneous. More precisely: go = xd, andif g; # 0, then
wt(g;) = —iN.

The differential operator g, is not zero.

Proof. Introduce the pseudo-differential operator

Ky=1+y10" 4. e Psdr.
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It is easy to check that, = K,dY K;* and 0, = K,xoN"*1K 1 are homogeneous
elements from Ps® with weights respectively: WL ,) = —N and wiQ,) = —nN. The
definition of R was givenin such away that(L,) = L andrz (Q,) = Q. Applying Lemma
3.4withL,, O, we get:

Qy =GoL} + Ly ™+,

where eacly; is homogeneous with weight ¢f;) = wt(Q,) — (n + i) Wit(L,) = —iN.
Map both sides of the last equality by

Q=m@GOL" + - +m(Gn) + 7 (Guralyt + ).

Comparing the strictly pseudo-differential parts of the operators at the two sides of the
above equality we see that:

7 (Gn1lyt+---) =0.

The inequalityg, # 0 holds because was chosen to be the minimal number with the
property thatk x3"V*+1k 1 s a differential operator. O

3.2. x = oo isaregular singular point

Here we give the proof of Theorem 0.3, i.e. that the infinite point is regulad.for
Take the smallest for which Q = KxaN"+1 Kk ~1 is a differential operator. The idea is to
assume that = oo is irregular forL and then to assign weights.tcanda, in such a way
that the most irregular terms éfatco have the highest weight. This weights will enable us
to associate with each differential operator frév] a (o, o)-homogeneous polynomial
in Y with coefficients Laurent polynomials iK. Following [16] and using (0.6) we will
get contradiction.

We denote the ring of Laurent polynomials By The definition ofp ando is prompted
by the theory of irregular points (see, e.g., [3]). Introduce the rational number:

ordV> ordV,
=max 1,2 vees 2
r ><< + > + N )

(called principal level). It can be expressedras, wherer; andr; are relatively prime.
Well known fact is thate = oo is regular if and only ifr = 1. Our assumption thak is
irregular pointyields- > 1. The integerg = r» ando = r1 — 2r; represent the weights of
x andd, respectively. They satisfy the inequality:

o+o>0.

The next definitions are modifications of corresponding ones given by J. Dixmier [16]. In
the first definition we endow the rin@[d] (of differential operators with homomorphic at
oo coefficients) withZ-graded structure.

Definition 3.6. Assume thal = Vod" + V19"~ 1+ ... 4+ V, is an arbitrary element ab.
For each ternV (x)d;. define its weight

Vp.o (V(x)3L) = p(ordV) + oi.
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Then the number

Vp.o (L) 1= max vy, (V;d"™")
l n

X

will be called(p, o)-order of L.

The second definition associates to each differential operator & a (p, o)-
homogeneous polynomial frof{Y].

Definition 3.7. Assume the notation of the previous definition and denoté(ty the set
{ie{0,1,....,n}|vp,6(Vid"™") =v, +(L)}. The polynomialp € L[Y] defined as:

p= ZaiXordV’ Yy (3.3)
iel
whereq; € C are uniquely determined from the expansion

Vi = a;x°%Vi 1 (lower order termys

will be called polynomial associated with

The following two lemmas are also taken from [16]. Although the situation there is
slightly different the proofs are essentially the same. We are going to prove only the first
one. The second can be proven in a similar way.

Lemma 3.8. Assume L, Ly € O[d] and p 4+ o > 0. The polynomial associated to the
product L1 L is the product of the polynomials associated with L1 and L respectively.
The (p, o)-order of thisoperator is: v, o (L1, L2) = vy 6 (L1) + vy 6 (L2).

Proof. Set¢é = d,. Then for the product of two differential operators we have:

oo

kL1 0% Lo
L]_LZZZ: —k—k . (34)
— " ogk ol

where: : is the normal ordering which always puts the differentiation on the right. Write
Li=ao™ +---+an,, Lo =bog "2 + - - + by,. From the definition of : we have that
tLily: = > aibjgNHNe=i=),
0<i<N1, 05/

Each term in this sum satisfies the inequality , (a;b;ENTN271=7) < v, ,(L1) +
v, (L2). The equality is possible only where 1(L1) andj € I(L2). On the other hand
the coefficient in front of the highest degreezoih:

Ni+Nap—i—j
Z aibj€ 1+N2—i—j
iel(Ly), jel(Lp)

isai, bi, # 0, wherei; andis are the minimal numbers frod(L1) and7 (L) respectively.
Thus this sum (which in fact is equal to the product of ¢aeo)-polynomials associated
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with L1 and L3) is not zero. The conclusion of this observations is that ther)-
polynomial associated withL1L5 : is the product of the polynomials associated with
L1 and Ly and alsov, o (: L1L2 1) = v, 6(L1) + v, ,6(L2). To finish the proof it is
enough to use formula (3.4) and the obvious fact mﬁ;(ang) < vp,6(L1) — ko and

Up.o (0L2) <vpo(La) —kp. O

Lemma 3.9. Consider again two operators L1, Ly € O[d] and denote by f1, f» the

polynomials associated with them and by n1 and n» their (p, o)-orders. If the fraction

f12/f5* isnot a constant and p + o > 0, then the polynomial associated with [L1, L>] is:
df1dfz2 df1df2

SRk Ry (3.5)
3Y 9X 09X aY

For the (p, o)-order we have a formula: v, 5 ([L1, L2]) =n1+n2—p —o.

In order to apply these lemmas to the string equation (0.6) we have to find the
polynomials f and g associated with. and Q and their(p, o)-ordersv and w. This
requires few auxiliary results, stated in the following two lemmas.

Lemma 3.10. (i) The (p, o)-order of L isv = No and the polynomial associated with L
is:

f=Y" + (at least oneterm).

(i) The (p, o)-order of Q isw = (N + 1)o + p and the polynomial associated with
0O hasthe form:

q=XYf"+ar(X,V) "1t an(X, Y).

Proof. (i) Since vp,c,(aN) = No the only thing we have to check is that ¢Wl)p +
(N —i)o < No fori =2,3,..., N and that equality is reached for at least an8ut
this is obvious from the definition of ando .

(i) The polynomialg has the form:

gX,Y)=ao(X, V) f" +ar(X,Y) f" 4+ an(X,Y)

for someaq; € L[Y]. Lemma 3.5 gives that;, i = 1,2,...,n, can have only negative
degrees ofX. But then the coefficient at the highest degreeroiih the polynomialg®
is not a constant, while the corresponding ong this 1. Thus the fractiorf™ /g" is not a
constant. Now from Lemma 3.9 the polynomiahssociated withiL, Q] is:

_0f 9g  df dg

T9YoX axoy
andv, o (h) =vp,6 (f) +vp,0(8) —p —0 =v+w — p —o. On the other hand the string
equation (0.6) yieldsu,  (h) = (n + 1)v. From the last two relation we derive the formula
for w. To finish the proof it is enough to notice that, (goL") = (Nn + Do +p. O

Lemma 3.11. Under the above notationsg = XY .
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Proof. If h is the polynomial associated wiflL, Q] then using Lemma 3.9 we have the
following series of equalities:

af o af o
oxh = px (2 98 9 0
Y oX 09XaY

0 0 0 0
- a—J;(wg—oYayg>—<vf—oYayf>a—§= 8—1;— f—g

— f w+1 v+18 <fw)
g’
where we have used that for(a, o)-homogeneous polynomigl of (p, o)-degreev the
following identity holds:

pXox f+oYoy f =vf.

Now the relation (0.6) leads to:
N,OX fn+l f w+1 v+18 <f ) (36)
g’

View f andg as elements irkC[Y], whereC is an algebraic extension of the field of
fractions of the ringC containing all the roots of the polynomiafgY) andg(Y). Take
a(X) to be a zero off of orderv > 1. Denote also by the order ofx(X) as a zero of.
Then comparing the orders of the terms at the both sides in formula (3.6) we obtain

vin+ 1D+ (w—Dv— (v+Du=o0rdy_qx) dy ({;T) (3.7)

We will treat the following 2 cases separately:
Case 1. If wv # vu, then the right side of (3.7) v — vu — 1, henceu =nv + 1.
Case 2. If wv =vpu, then using the formulas farandw we find

w (nN + Do +p ( p—i—o)
h=—yv=——v= n -+ VYV >nv.

v No No

In both caseg: > nv, which means thayg—n is a polynomial inY. Now from Lemma

3.10 f* divides the polynomiaky f*~1 + --. + a, whose degree it does not exceed
N—1+4+N(n—1) <nN.Butthe degree of” is exactlynN = a1 f* 1 +---+a,=0. O

Now we are ready to give the proof of Theorem 0.3.

Proof of Theorem 0.3. Put w = nv + p + o and g = XYf" in (3.6) and after
simplifications we get a differential equation fgr

Yoy (fF7) = (o +o)NfFH.

An immediate consequence of this equation is that ¢(X)Y " . But the choice op and
o was done in such a way th#t= YV + (at least one terin This contradiction proves the
theorem. O
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The regularity ofL imposes the following restrictions on the coefficients of the wave
operatork .

Corollary 3.12. Let L be an operator solving the string equationand K = 1+ a9~ 1+ -
isthewave operator defining the corresponding string pair. Then the order of the coefficient
ai, i =1,2,...,doesnot exceed the number —i, i.e.

1
a;i(x) € —i(’).
X
3.3. An estimate for n

Here we want to estimate the numbefrom the string equation in terms of the roots
of the indicial equation foi. at oco. For us it would be convenient to write the indicial
equation, using again the idea of the weights. But in order to have an analogue of Lemma
3.8 we have slightly to change the procedure of association polynomials to the elements of
O[9]. The next definition describes this process.

Definition 3.13. Write everyL € O[d] as
L=VoDN +... 4 Vy_1D+ Vy,
whereD = x9, and assume also that:
V; =a;x" + (lower order termps
The number

wt(L) := max ord(V;)

S

will be called weight ofL. The polynomial associated withis from C[D] and is defined
as follows:

p(L) := Z aiDN_i.
i ord(V;)=wt(L)

In particular if the pointc = oo is regular therp(1) = 0 is explicitly the indicial equation
(see [21]).

In terms of the above definition we can give the following corollary from Lemma 3.5
and Corollary 3.12.

Corollary 3.14. Assume that (L, Q) is a string pair and » is the corresponding string
number. Divide Q by L to derive

0=01L+gq,

where ¢ is a differential operator of order not exceeding N — 1. The weight of ¢ satisfies
theinequality: wt(g) < —nN.
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Obviously p(D)x' = x' p(D + i) for every polynomialp € C[D]. This observation is
enough to make the following conclusion:

Lemma 3.15. Assumethat L1, L, € D are two arbitrary differential operators and denote
by f1 and f> the polynomials associated with them. Then the polynomial associated with
theproduct L1L> is:

f1(D +wWt(L2)) f2(D).
The weight of the product is a sum of the weights of the two operators.
Now we will assume thaf. is an operator solving the string equation. Denote by

A1, A2, ..., An the roots of the indicial equation d@f at co. The following very important
fact, used in performing Darboux transforiiaas, is the content of the next proposition.

Proposition 3.16. Assume that L is a differential operator that solves the string equation.
Then we can find numbersi and j such that:

1
n< NIM —Ajl.

Proof. Let(L, Q) be a string pair. As in Corollary 3.14 divid@ by L
0=01L+q.
Using thatQ satisfies the string equation (0.6) we get
Lg=L1L (3.8)

for someL; € O[0].
Denote byf, ¢ andh the polynomials associated wifhy ¢ and L1 respectively. For us
the weight ofg will be very important and will be denoted hy.
Lemma 3.15 combined with (3.8) gives:
f(D+w)g(D)=h(D—N)[f(D).

As a result we found thatf (A; + w)g(x;) =0fori =1,2,..., N. Using the inequality:
degg < N — 1 one can find,; for whichg(x;) # 0, hencef (A; + w) =0, i.e.A; =A; +w
for somea ;. Applying Corollary 3.14 we get that to < —nN. This gives that

nN < |w| =[x — Ajl. O

4. Z.-invariantness of bispectral operators

Let A, be the ring of all differential operators commuting with We want to prove
that if the rank ofL is r thenL is aZ,-invariant operator. The next lemma shows that it is
enough to prove thal (z, d,) is Z,-invariant.

Lemma4.l. If AisZ,-invariantthen L isalso Z,-invariant.
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Proof. It is enough to prove that the wave operafoiis Z,-invariant. Assume thatl is
Z,-invariant. Then obviously = b(A) is alsoZ,-invariant.

Now by induction oni we will see that the termy; 3~/ is Z,-invariant. Compare the
coefficients in front 0B~/ in the relation:

O(1+a1d 4+ )=(1+ad t+--)(Oo+0107 1+ --).

Comparing the coefficients in front 6 andd—1 one dedupes th& = ©g is Z,-invariant
and that?1 = 0. Next assume that 1, 02072, ..., @;0~" areZ,.-invariant and compare
the coefficients in front 0§ —'—2:

i+2 s—i—2 s—i—2
9ai+2=zai+2—s(@s+< 1 )@5/—1"‘"""( s >@((JS))

s=2
+ it20 + aip1(O1 — Op).

The last formula together with the fact th@atis aZ, -invariant pseudo-differential operator
and the inductive assumption give that 19—~ is Z,-invariant. O

The next lemma shows that the algelra consists ofZ,-invariant polynomials.
Lemma4.2. Let L be an operator of rank r. Then A, isa subalgebra of C[z"].

Proof. Let P € Ar. Putb1(P) = f(z) € Ar. From Lemma 1.9 we know thaf(z) is a
polynomial. Also the degree of (z) is a number divisible by. Assume thatf ¢ C[z"]
and also that the coefficient in front of the highest degree is 1. We can repyeasnt

f=rfo+ f,

where fp € C[7"] is formed from all terms off whose degrees are divisible lbyand
f1=f — fo. The polynomialfy will be called the invariant part of and f1 the non-
invariant part off. Denote byng andn1 the degrees ofp and f1 respectively. Obviously
no > n1 andny is not divisible byr. The idea is to construct new polynomiélfrom A in
such a way that the differenég — 711 between the degrees of the invariant and the non-
invariant part off is smaller. After finitely many steps we will end up with a polynomial
for which this difference is negative, which will be a contradiction.

The polynomialf can be constructed as follows: leg = kr and N = pr set f :=
fP —z*N. Denote byfy and f1 the invariant and the non-invariant parts ofand letiig
andn be their degrees. Write the following chain of equalities:

fzfp—ZNk=(f0+f1)p—ZNk=fé’—sz+<i)fé’_1f1_|_..._

Sincepng = kN and fy is a polynomial inz” we can conclude thaty < pno — r. The
above expansion together with > n1 gives thati; = ng(p — 1) + n1. Now we can prove
that the new difference is smaller:

no—n1< png—r—nyi=png—r—(p—DLno—ni=ng—nyi—r. O
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Proof of Theorem 0.4. It remains to prove thé&,-invaxiantness ofA. Write A in the
form:
r—1
Az, 0) =) 7' Ai(2.20;). (4.1)
i=0
where

Z Za ZAIJ r nN+1az)ﬂi—]’.

All A; ; are Laurent polynomials angl is chosen in such a way that 0.0, whenA; # 0.

We have to prove that alh;, i =1,2,...,r — 1, are 0. Thus assume that at least one
A; £ 0. After applying the bispectral involutiob; on (4.1) we will get the following
relation:

no ny—1
§ = Z Q”O_jAoyj(Lr/N) 4ot Z Q"’fl_jAr_lyj(Lr/N)L(r_l)/N. (4.2)
i=0 i=0

The idea is to construct an operator frady whose image under the bispectral
involution is not fromC[z"]. This will be contradiction with Lemma 4.2. We split the
construction of such an operator into two cases:

Casel. ng<maxni,no,...,n._1}.

Denote byp the maximal value of the numbets, n1, ..., n,—1 and byl the set of all
indeces for whichn; = p. Dueto Lemma 2.1

(adL)p(Qp) — (p)!Npr(n-i-l)’
hence one obtains the following relation:

@dL)? (0) = (p)!N? LD 3" A o(L/N) LIV, (4.3)
iel
Since the operator at the right-hand side commutes jtih follows that the differential
operator at the left-hand side is frary,. After applying the bispectral involution to (4.3)
we get that:

Z/o(r1+l)N ZAi O(Zr)Zi
iel
is an element fromi ;. This element is not polynomial ifi” because the sdtincludes at
least one indexe {1,2,...,r — 1}.
Case2.ng > maxny, no,...,n,_1}.
Now (4.2) can be written in the form:
no—1 ni
9 _ QnoAO,O(Lr/N) — Z Qno_]AO,j(Lr/N) + Z in—jAl’j(Lr/N)Ll/N
j=0 j=0
ny—1

4Lt Z Qnr’l_jAr_]_’j(Lr/N)L(r_l)/N. (4.4)
=0
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Applying (adL)" to the above equality we see (using Lemma 2.1) that it annihilates the
operator at the right-hand side. Hence the operator

(@dL)™(Q" Aoo(L"/N)) = (adL)"(6)
must be differential. Denote hy; the numbeng(n + 1). Using again Lemma 2.1, i.e. that
(@dL)"(Q"0) = no!N"0 Lo +D)

we see that after multiplying from the right both sides of (4.4)IB\t the operator on
the left-hand side will become differential. Denote this new operataP bwe re-denote
Ai,jLNl by A; ; to avoid complicated notation. Thus the new relation has the form:

no—1 ny
P = Z Qno_jﬂo,j(Lr/N) + Z in_jﬂl’j(Lr/N)Ll/N
Jj=0 Jj=0
np_1
4ot Z Q”“l_jﬂr_l’j(Lr/N)L(r_l)/N. (4.5)
j=0
We can repeat this procedure until no is reduced to a number smaller or equal to
max{ni, no, ...,n,—1}. Then one proceeds as in case &

5. Darboux transfor mations

In this section we will gradually simplify the operatdr by successive applications
of Darboux transformations. Our goal is to obtain after a finite number of steps a Bessel
operator.

According to Theorem 0.3 the point= oo is a regular singular point for the operator
L. Assume also that is a rankr differential operator. From Theorem 0.4 we know that in
this casel is Z,-invariant operator. Thus if we represdntis

L=a"4+vig" 4 4 Vy_10 + Vy
coefficientsV; can be expanded as

1 o0
ViZFZVi,kx—’k. (5.1)
k=0

In what follows we need to split the séf = {A1, A2,..., Ay} Of roots of the indicial
equation abo for L into subsets of equivalent modulonumbers.

For an arbitrary seM; denote byx the number inM; with minimal real part. The next
lemma is a version of a classical result (see, e.g., [21]) and shows how one can pick an
Z,--invariant function from KeL.

Lemmab5.1. If A isthe minimal number of a set M;, then thereis a function ¢, fromKerL
which can be expanded around oo as.

o0
¢ (x) = x* chx_kr, co=1 (5.2)
k=0
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We omit the proof as it repeats the classical one.
Given a functionp, we construct a first order operator by setting

2}

e

Then the operatol. can be factorised aé = Q, P, and after we perform the Darboux
transformation

L=0;P.— L=P,0; (5.3)

the new operatok will have the following properties:

Py=0 —

Proposition 5.2. Assume that the operator L solvesthe string equation with a Z, -invariant
wave operator K =1+ «10~ 1+ -+, ord(a;) < —i. Then

(i) every operator which is obtained by a Darboux transformation described above also
solves the string equation;

(ii) if {A1, 22, ..., An} are the roots of the indicial equation at co of L and A = 4, is
the number with minimal real part from some M; then the roots of the indicial equation at
oo of L arery = Ax — 1for k #£igand Aj, =iy + (N — D).

Proof. Put
K=prKo™™ (5.4)

Now we will check that_, K also satisfy the conditions of the lemma. Let’s check the first
condition of Definition 3.2.

LK=P.0,P Ko t=P LKd =P KoVo1=Ka".
Further denote b = P; 0 0, and note that the following sequence of equalities holds:
OK=P,00,P,Kd1=P,OLKd L.
Using the equalities K = K9V and QK = Kx93"V+1 the last relations give
OR = P, Kxd"™+1gN=1 = RoxaNotD = RyatDN+L L Ryt DN

Now it is clear thatk xd " *DN+1K -1 = § — I+l js a differential operator.
Denote byg the polynomial associated with, and byi the one associated wit3; .
Obviouslyg(D) = D — A and it has weight1. Then using Lemma 3.15 we get:

h(D —1)g(D) =(D —11)(D = A2) - - (D — An),
g(D— (N =D)h(D)=(D =)D = 42)--- (D = An).
From these equalities we get the second assertion in the lemma.
After this proposition we are close to our final goal.
Proposition 5.3. Let L be a bispectral operator with coefficients satisfying (0.4). Then

by finitely many Z, -invariant Darboux transformations we can transform it into a Bessel
operator.
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Proof. We will perform Darboux transformations in the following way: start wih= L.
Choose an indek, if there is any, for which the difference between numberafjnwith
maximal real part and with minimal real part exce@fdsDenote byi the number inM;
with the minimal real part, seP; = P, and factorisel as L = R; P; then the Darboux
transformation will be

Lo=L=R1P,— L1:= P1R;.

According to Proposition 5.2 the setg? := M; will be transformed into seta/ 1 for
which the difference between the numbers with maximal and minimal real parts are the
same fori # j. Wheni = j there are two cases:

Case 1. There is exactly one number i#; with minimal real part. The differences
between the numbers i#; are integer. Thus there is a well defined ordering: wu, iff
A—u > 0,in facth — u = Rer — Reu. Having in mind this remark the elements df
can be ordered as

A<ur < < Uy
Now the assumption aboM; means
A+ (N—1D <y — 1

Due to Proposition 5.2 in the new sM;l the following inequalities must hold: miMl.l > A,
maxMi1 = us — 1. Hence, the difference betweertimaximal and the minimal number is
reduced at least by 1.

Case 2. In M; there is at least two numbers with minimal real part. Then the above
Darboux transformation decreases the number of the roots with minimal real part at least
by 1.

After finitely many Darboux transformations we obtain an operafpisuch that ifM™
is the set of roots of the indicial equation & and M;.” are the corresponding subsets
moduloZ for M™, then

maxM;." — minM}" <N. (5.5)
But again from Proposition 5.2 it flows that there is an operator

Kn=1+ad 1+,
such that,, K,, = K,,,8" and there is an integar> 0 for which

O = Kpxd"V 1K -1 (5.6)
is differential. The minimak with this property, accordingtProposition 3.16 satisfies the
inequality:

n< %(maxM;” —minMY').
Using (5.5) we see that must be zero. Put in (5.6) = 0 and compare the differential

parts of the operators at both sides to conclude that

Om = x0y.
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Now comparing the coefficients af at both sides of the string equation (0.6) with= 0
we obtain the equation

—xVi+jV;=NV;,.
Integrating it, we obtain that

.~ NtJ .
Vi=vjx , vjeC.

This shows thaL,, is a Bessel operator.0

Proof of Theorem 0.2. It remains to show that the chaine of the above Darboux
transformations can be replaced by one monomial. First we represent the chain by
following graph:

Lo=RiP1—> L1=P1Ri=RoP»—> Lo=PRo=R3P3—~ ---— L,,, = P,R,.
If we setA = R1R2--- R,, andB = Py, P,,—1 - - - P1 then obviously:

L™ = LB" = R1P1R1P1---R1P1= RlLT_lpl =AB
and for the Bessel operatdp := L,

m

Lﬁ/
The Darboux transformations do not change the rank of the operator. Thus the dapnk of
isr. If r < N then according to Lemma 1.6 there is a monomial Darboux transformation
which transformsLg into Lg, whereLg is some Bessel operator of orderand rank
r. But the monomial Darboux transformations centing Bessel operators are transitive.
Thus there is a monomial Darboux transformation connedtireid Lg. The only thing

that we have to prove is that the operatarand B from (5.7) have rational coefficients.To
prove this we need the following lemmanr

= PuRyPuRy - PyRy = PyL" 1R, = BA. (5.7)

m—1

Lemma 5.4. Assume that P € O[4d] is an operator with holomorphic at co coefficients. If
P dividesfrom the right some power Lﬁ of a Bessel operator

Lg=x"N(D—p1)---(D—Bn), D=xd,

then the coefficients of P arerational.

Proof. Letn be the order of? and
y =B = (BL.BL+N,....p1+d —DN,...,Bv. By + N, ...,
By + (d — DN).
First we prove that KeP has a basis of elemenfs, i =1, 2, ..., n, of the form:

fi=x" " pijx)nx)’,  piy, #0, (5.8)

J=0
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wherep;; are polynomials. In general evefye Ker P can be written as:
N
=Y (5.9)
i=1

with f; having of the form given by (5.8) ang; — y; ¢ Z for i # j. The analytical
continuation around the infinite point defines the monodromy map:

My :KerP — KerP.
If an elementf =Y"}_, fi asin (5.9) and (5.8) is in Ke?, then

Moo(f) = exp(2n+/=1yi)x" > pij(x)(Inx + 27 /~1)’
i=1 j=0

is also in KerP.

Let s be the minimal number for which there is an elemgrds in (5.10), where none
of the termsy; is in KerP. From all such operators from Ké&rwith minimal s take one
for which the number:

min{r; |i=1,2,...,s}

is minimal. We can assume that =min{r; | i = 1,2,...,s}. Then in the following
element from KepP:

f—exp(=2myV/=1)Mos(f) =Y fi=x"Y_ pij(x)(Inx)’
i=1 j=0
either the termy; vanishes (when, = 0) or the numbeF; = r, — 1 is less tham,. In both
cases this is a contradiction with the choicefof
Having in mind the basis from (5.8) the action of the operd&aran be written as (see
[21]):
P¢ — Wr(f11 f27 MR} fn7¢)
Wr(f17f25"'5fn) .

Note that each derivativg(k) has the formfi(k) =x"Fir(x,Inx), whereF; (X,Y) € L[Y]
is a polynomial inY with coefficients — Laurent polynomials iKi. Hence formula (5.10)
gives:

(5.10)

xyrtyetetys S F(x, Inx)d ¢

P =
¢ xyitvet-+vs Fo(x, Inx)

whereF; € L[Y]. Thus the coefficien; in front of 3 is
Fi(x,Inx)
~ Fu(x,Inx)’
Sincec; € O the monodromy map/,, preserves;. Hence
Fi(x,Inx +27/=10) _ Fi(x,Inx)
Fo(x,Inx 4+ 2n4/—1) "~ Fu(x,Inx)

i
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for every integell and also for every € C since the above equality is equivalent to an
equality between polynomials. Using thaaind Inx are algebraically independent we get:
Fi(X, Y+ _ F(X.,Y)
F,(X,Y+1) F,(X,Y)
which on the other hand is equivalent to
Fi (X, Y+ _ F,(X, Y+

Fi(X,Y) Fo(X,Y)

Take the derivative with respect toand set/ = 0. Then one sees thdf;(X,Y) =
c(X)F,(X,Y). After putting firstY =Inx, X = x and thenY =0, X = x it follows that

Fi(x,Inx) _ Fi(x,0
Fu(x,Inx) 77 Fu(x,0)
is a rational function. O

c(x)

ci(x)=

6. Proof of the characterisation theorem

Essentially the proof of Theorem 0.5 has already been performed in the previous
sections, as well as in [4,8]. Below we skleta plan how to pick the pieces of the proof
from these sources.

Proof of Theorem 0.5. The implication (1)}~ (3) is the content of Theorem 0.2. Next we
consider (3} (2). Here we use the Definition 1.4 for monomial Darboux transformations.
If Ly is a Bessel operator then one factorigégsas

L:g =QP, (6.1)
where the operataP acts ony in the following way:

p_ Wr(f1, f2,.., fus ¥)
Wr(f1, f2, ..., fn)

and the functiong, ..., f, have the structure prescribed in Definition 1.4. Having in mind
the type of the kernel it is obvious that the operafohas only regular singularities. But
then the same is true for the opera@rwhose coefficients axe computed by induction
from the (6.1). Then the same is true for the prodR@. At the end by the main result in
[4] the latter operator is bispectral.

The implication (2)— (1) is trivial. The equivalence of (3) and (4) is the content of [8].
We briefly describe it.

First, we recall the definition oW1, its subalgebra®1..(N) and their bosonic
representations introduced in [4]. The algebra of the additional symmetries of the KP-
hierarchy is isomorphic to the Lie algebra of regular polynomial differential operators on
the circle

D =spar{z*d’ |, p € Z, B >0}.

(6.2)
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Its unique central extension [22] will be denoted By, . This algebra gives the action
of the additional symmetries on tau-functions (see [2,27]). Denotetbg central element
of W14+ and byW (A) the image ofA € D under the natural embeddifiy<— Wi, (as
vector spaces). The algebiia . -, has a basis

e, Jl=w(=7"al), Lkez 1>0.

The commutation relations oW1, can be written most conveniently in terms of
generating series [22]

[W("e?), w("e™)]
e — ek

_ vk k (x+y)D;
_(exm_ey )W(Z +mex+y )~|—(Sk’_mmc,

(6.3)

whereD, = z9;.

From the theory of KP-hierarchy it is well known that each operdtar its wave
function (1.2) defines or can be defined by the so-cateefunction, which is a function
t(f1, ..., Iy, ...) ininfinite number of variables,, n =1, . ... We denote the tau-functions
of the Bessel operatoisg by 75. In [5] a family of highest weight modules1s over
W1+ has been constructed, using as a highest weight vegtdve briefly describe them.

Introduce the subalgebély - (N) of Wi, Spanned by andJ,iN, l,keZ,1>0.1t
is a simple fact thaWi1 0 (V) is isomorphic toW1. o (see [22]). Now put

My =sparlJity - Ji" ytp ki < - <k < O}, (6.4)
The main result of [8] can be summed up as:
Theorem 6.1. If an element in a module Mg is a tau-function then the corresponding
operator L is a monomial Darboux transformation of some Bessel operator Lg (with

eventually different 8’). If an operator L isamonomial Darboux transfor mation of a Bessel
operator Lg then the corresponding tau-function belongs to the module Mg.

Obviously the above cited theorem gives the equivalence between (3) and14).
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