7,796 research outputs found

    Permutation Strikes Back: The Power of Recourse in Online Metric Matching

    Get PDF
    In the classical Online Metric Matching problem, we are given a metric space with kk servers. A collection of clients arrive in an online fashion, and upon arrival, a client should irrevocably be matched to an as-yet-unmatched server. The goal is to find an online matching which minimizes the total cost, i.e., the sum of distances between each client and the server it is matched to. We know deterministic algorithms~\cite{KP93,khuller1994line} that achieve a competitive ratio of 2k12k-1, and this bound is tight for deterministic algorithms. The problem has also long been considered in specialized metrics such as the line metric or metrics of bounded doubling dimension, with the current best result on a line metric being a deterministic O(logk)O(\log k) competitive algorithm~\cite{raghvendra2018optimal}. Obtaining (or refuting) O(logk)O(\log k)-competitive algorithms in general metrics and constant-competitive algorithms on the line metric have been long-standing open questions in this area. In this paper, we investigate the robustness of these lower bounds by considering the Online Metric Matching with Recourse problem where we are allowed to change a small number of previous assignments upon arrival of a new client. Indeed, we show that a small logarithmic amount of recourse can significantly improve the quality of matchings we can maintain. For general metrics, we show a simple \emph{deterministic} O(logk)O(\log k)-competitive algorithm with O(logk)O(\log k)-amortized recourse, an exponential improvement over the 2k12k-1 lower bound when no recourse is allowed. We next consider the line metric, and present a deterministic algorithm which is 33-competitive and has O(logk)O(\log k)-recourse, again a substantial improvement over the best known O(logk)O(\log k)-competitive algorithm when no recourse is allowed

    Efficient Classification for Metric Data

    Full text link
    Recent advances in large-margin classification of data residing in general metric spaces (rather than Hilbert spaces) enable classification under various natural metrics, such as string edit and earthmover distance. A general framework developed for this purpose by von Luxburg and Bousquet [JMLR, 2004] left open the questions of computational efficiency and of providing direct bounds on generalization error. We design a new algorithm for classification in general metric spaces, whose runtime and accuracy depend on the doubling dimension of the data points, and can thus achieve superior classification performance in many common scenarios. The algorithmic core of our approach is an approximate (rather than exact) solution to the classical problems of Lipschitz extension and of Nearest Neighbor Search. The algorithm's generalization performance is guaranteed via the fat-shattering dimension of Lipschitz classifiers, and we present experimental evidence of its superiority to some common kernel methods. As a by-product, we offer a new perspective on the nearest neighbor classifier, which yields significantly sharper risk asymptotics than the classic analysis of Cover and Hart [IEEE Trans. Info. Theory, 1967].Comment: This is the full version of an extended abstract that appeared in Proceedings of the 23rd COLT, 201

    A Match in Time Saves Nine: Deterministic Online Matching With Delays

    Full text link
    We consider the problem of online Min-cost Perfect Matching with Delays (MPMD) introduced by Emek et al. (STOC 2016). In this problem, an even number of requests appear in a metric space at different times and the goal of an online algorithm is to match them in pairs. In contrast to traditional online matching problems, in MPMD all requests appear online and an algorithm can match any pair of requests, but such decision may be delayed (e.g., to find a better match). The cost is the sum of matching distances and the introduced delays. We present the first deterministic online algorithm for this problem. Its competitive ratio is O(mlog25.5)O(m^{\log_2 5.5}) =O(m2.46) = O(m^{2.46}), where 2m2 m is the number of requests. This is polynomial in the number of metric space points if all requests are given at different points. In particular, the bound does not depend on other parameters of the metric, such as its aspect ratio. Unlike previous (randomized) solutions for the MPMD problem, our algorithm does not need to know the metric space in advance

    Online Duet between Metric Embeddings and Minimum-Weight Perfect Matchings

    Full text link
    Low-distortional metric embeddings are a crucial component in the modern algorithmic toolkit. In an online metric embedding, points arrive sequentially and the goal is to embed them into a simple space irrevocably, while minimizing the distortion. Our first result is a deterministic online embedding of a general metric into Euclidean space with distortion O(logn)min{logΦ,n}O(\log n)\cdot\min\{\sqrt{\log\Phi},\sqrt{n}\} (or, O(d)min{logΦ,n}O(d)\cdot\min\{\sqrt{\log\Phi},\sqrt{n}\} if the metric has doubling dimension dd), solving a conjecture by Newman and Rabinovich (2020), and quadratically improving the dependence on the aspect ratio Φ\Phi from Indyk et al.\ (2010). Our second result is a stochastic embedding of a metric space into trees with expected distortion O(dlogΦ)O(d\cdot \log\Phi), generalizing previous results (Indyk et al.\ (2010), Bartal et al.\ (2020)). Next, we study the \emph{online minimum-weight perfect matching} problem, where a sequence of 2n2n metric points arrive in pairs, and one has to maintain a perfect matching at all times. We allow recourse (as otherwise the order of arrival determines the matching). The goal is to return a perfect matching that approximates the \emph{minimum-weight} perfect matching at all times, while minimizing the recourse. Our third result is a randomized algorithm with competitive ratio O(dlogΦ)O(d\cdot \log \Phi) and recourse O(logΦ)O(\log \Phi) against an oblivious adversary, this result is obtained via our new stochastic online embedding. Our fourth result is a deterministic algorithm against an adaptive adversary, using O(log2n)O(\log^2 n) recourse, that maintains a matching of weight at most O(logn)O(\log n) times the weight of the MST, i.e., a matching of lightness O(logn)O(\log n). We complement our upper bounds with a strategy for an oblivious adversary that, with recourse rr, establishes a lower bound of Ω(lognrlogr)\Omega(\frac{\log n}{r \log r}) for both competitive ratio and lightness.Comment: 53 pages, 8 figures, to be presented at the ACM-SIAM Symposium on Discrete Algorithms (SODA24

    Metric Embedding via Shortest Path Decompositions

    Full text link
    We study the problem of embedding shortest-path metrics of weighted graphs into p\ell_p spaces. We introduce a new embedding technique based on low-depth decompositions of a graph via shortest paths. The notion of Shortest Path Decomposition depth is inductively defined: A (weighed) path graph has shortest path decomposition (SPD) depth 11. General graph has an SPD of depth kk if it contains a shortest path whose deletion leads to a graph, each of whose components has SPD depth at most k1k-1. In this paper we give an O(kmin{1p,12})O(k^{\min\{\frac{1}{p},\frac{1}{2}\}})-distortion embedding for graphs of SPD depth at most kk. This result is asymptotically tight for any fixed p>1p>1, while for p=1p=1 it is tight up to second order terms. As a corollary of this result, we show that graphs having pathwidth kk embed into p\ell_p with distortion O(kmin{1p,12})O(k^{\min\{\frac{1}{p},\frac{1}{2}\}}). For p=1p=1, this improves over the best previous bound of Lee and Sidiropoulos that was exponential in kk; moreover, for other values of pp it gives the first embeddings whose distortion is independent of the graph size nn. Furthermore, we use the fact that planar graphs have SPD depth O(logn)O(\log n) to give a new proof that any planar graph embeds into 1\ell_1 with distortion O(logn)O(\sqrt{\log n}). Our approach also gives new results for graphs with bounded treewidth, and for graphs excluding a fixed minor

    Faster Clustering via Preprocessing

    Full text link
    We examine the efficiency of clustering a set of points, when the encompassing metric space may be preprocessed in advance. In computational problems of this genre, there is a first stage of preprocessing, whose input is a collection of points MM; the next stage receives as input a query set QMQ\subset M, and should report a clustering of QQ according to some objective, such as 1-median, in which case the answer is a point aMa\in M minimizing qQdM(a,q)\sum_{q\in Q} d_M(a,q). We design fast algorithms that approximately solve such problems under standard clustering objectives like pp-center and pp-median, when the metric MM has low doubling dimension. By leveraging the preprocessing stage, our algorithms achieve query time that is near-linear in the query size n=Qn=|Q|, and is (almost) independent of the total number of points m=Mm=|M|.Comment: 24 page
    corecore