
Original Citation:

A o(n)-Competitive Deterministic Algorithm for Online Matching on a Line

Springer New York LLC
Publisher:

Published version:
DOI:

Terms of use:
Open Access

(Article begins on next page)

This article is made available under terms and conditions applicable to Open Access Guidelines, as described at
http://www.unipd.it/download/file/fid/55401 (Italian only)

Availability:
This version is available at: 11577/3300957 since: 2019-05-20T08:53:22Z

10.1007/s00453-019-00565-w

Università degli Studi di Padova

Padua Research Archive - Institutional Repository

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Padova

https://core.ac.uk/display/201725742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Algorithmica manuscript No.
(will be inserted by the editor)

A o(n)-Competitive Deterministic Algorithm for
Online Matching on a Line

Antonios Antoniadis · Neal Barcelo ·
Michael Nugent · Kirk Pruhs · Michele
Scquizzato

Received: date / Accepted: date

Abstract Online matching on a line involves matching an online stream of
requests to a given set of servers, all in the real line, with the objective of min-
imizing the sum of the distances between matched server-request pairs. The
best previously known upper and lower bounds on the optimal deterministic
competitive ratio are linear in the number of requests, and constant, respec-
tively. We show that online matching on a line is essentially equivalent to a
particular search problem, which we call k-lost-cows. We then obtain the first
deterministic sub-linearly competitive algorithm for online matching on a line
by giving such an algorithm for the k-lost-cows problem.

Keywords Online algorithms · Competitive analysis · Metric matching ·
Search problems

1 Introduction

The classical Online Metric Matching problem (OMM) is set in a metric space
(V, d), containing a set of servers S = {s1, s2, . . . , sn} ⊆ V . A set of requests

A preliminary version of this work [1] was presented at the 12th Workshop on Approximation
and Online Algorithms (WAOA 2014).

Kirk Pruhs was supported, in part, by NSF grants CCF-1421508 and CCF-1535755, and an
IBM Faculty Award.

A. Antoniadis
Max-Planck Institut für Informatik, Saarbrücken, Germany
E-mail: aantonia@mpi-inf.mpg.de

N. Barcelo · M. Nugent · K. Pruhs
University of Pittsburgh, Pittsburgh, PA, USA
E-mail: ncb30@pitt.edu, mpn1@pitt.edu, kirk@cs.pitt.edu

M. Scquizzato
University of Padova, Padova, Italy
E-mail: scquizza@math.unipd.it

2 Antonios Antoniadis et al.

R = {r1, r2, . . . , rn} ⊆ V arrive one-by-one in an online fashion. When a re-
quest ri arrives it must be immediately and irrevocably matched to some
previously unmatched server sj . The cost of matching request ri to sj is
d(ri, sj), and the objective is to minimize the total (equivalently, average) cost
of matching all requests. For this problem there exists a deterministic (2n−1)-
competitive algorithm, and this competitive ratio is optimal for deterministic
algorithms [9,13].

The Online Matching on a Line problem (OML) is a special case of OMM
where V is the real line and d(ri, sj) = |ri − sj |. The original motivation for
considering OML came from applications where there is an online stream of
items of various sizes, and the goal is to match each item as it arrives to a
stored item of approximately the same size; for example, matching skiers, as
they arrive in a ski rental shop, to skis of approximately their height. It is ac-
knowledged that OML is perhaps the most interesting instance of OMM [14].
Despite some efforts, there has been no progress in obtaining a better deter-
ministic upper bound for this special case, and thus the best known upper
bound on the competitive ratio for deterministic algorithms is inherited from
the upper bound for OMM, namely 2n− 1.

In the classical cow-path problem, also known as the Lost Cow problem
(LC), a cow is standing at a fence (formally represented by the real line) which
contains one gate (the target) at some unknown location. Unfortunately the
cow is short-sighted, which means that she will not know that she has found
the gate until she is standing in front of it. The objective is to minimize
the total distance that the cow has to walk until she finds the gate. There
exists a 9-competitive algorithm for LC,1 and this is optimal for deterministic
algorithms [3]. Kalyanasundaram and Pruhs [10] observed that LC is a special
case of OML where there is an optimal matching with only one positive cost
edge, i.e., where only one request is matched with a cost greater than zero.

In 1996, Kalyanasundaram and Pruhs [10] conjectured that the hardest
instances for OML are LC instances, and thus that there should be a 9-
competitive algorithm for OML. In 2003, Fuchs et al. [7] refuted this conjecture
by giving a rather complicated adversarial strategy that gives a lower bound of
9.001 on the competitive ratio of any deterministic algorithm for OML. This is
currently the best known lower bound on the deterministic competitive ratio
for OML.

1 Recall that the competitive ratio for a search problem is defined as the largest ratio
between the total distance traversed by the agent before reaching its target and the distance
it would have traversed under perfect information of the search domain, for all possible
locations of the target. A natural assumption is that the target is not located infinitesimally
close (i.e., within an arbitrarily small distance ε) to the starting position of the cow and
on the opposite side of her first move, as otherwise the competitive ratio can be arbitrarily
large.

A o(n)-Competitive Deterministic Algorithm for Online Matching on a Line 3

1.1 Our Results

As also noted by the authors, the lower bound in [7] can be intuitively under-
stood as giving a lower bound on the competitive ratio for a search problem
involving two lost cows (instead of one), and showing that the optimal de-
terministic competitive ratio for OML is at least the optimal deterministic
competitive ratio for this two lost cows problem. This motivates us to ask the
question of whether there is some natural search problem which is equivalent
to OML. As search problems seem easier to reason about than online match-
ing, we hypothesize that perhaps one can make progress on online matching
by attacking an equivalent search problem. We introduce the following gener-
alization of the LC problem.

Definition 1 (k-Lost-Cows (k-LC)) There are k short-sighted cows arriv-
ing at a fence, possibly at different locations and at different times. The fence
contains k gates at locations unknown to the cows, and the goal of each cow
is to find a gate through which to cross the fence. Once a gate has been used
by a cow, it cannot be used by other cows. The objective is to minimize the
total distance walked by the cows until they all have crossed the fence. We
assume that (i) cows can coordinate, (ii) no two cows simultaneously arrive at
the same unused gate, (iii) when a cow arrives at an unused gate she has to
use it.

As will become clear later, assumptions (ii) and (iii) are without loss of
generality. In the remainder of the paper we will think of the fence as the real
line. We show that this search problem is essentially equivalent to OML. More
precisely we show that:

– If there is a deterministic (resp., randomized) f(k)-competitive algorithm
for k-LC then there is a deterministic (resp., randomized) f(n)-competitive
algorithm for OML.

– If there is a deterministic (resp., randomized) f(p)-competitive algorithm
for OML, where the parameter p is the minimum number of positive cost
edges one can have in an optimal matching, then there is a deterministic
(resp., randomized) f(k)-competitive algorithm for k-LC.

This shows that OML is essentially equivalent to a search problem involving
multiple lost cows, instead of just one lost cow (modulo the difference in the
parameters n and p).

We give the first sublinearly-competitive, O
(
nlog2(3+ε)−1/ε

)
-competitive

for any ε > 0 to be precise, deterministic online algorithm for OML, which we
obtain by first giving a deterministic O

(
klog2(3+ε)−1/ε

)
-competitive algorithm

for k-LC. Our algorithm for k-LC is a reasonably natural greedy algorithm, but
the resulting OML algorithm is not particularly intuitive. This provides mild
support for the hypothesis that it is easier to reason about online matching
via search rather than online matching directly. We also obtain a lower bound
of Ω

(
nlog2(3+ε)−1

)
for our algorithm, showing that this analysis is essentially

tight.

4 Antonios Antoniadis et al.

1.2 Other Related Work

For OML, it had been conjectured [10] that the generalized Work Function
Algorithm (WFA) of [15] is O(1)-competitive, but this was disproved in [14],
where it was shown that the WFA has a competitive ratio of Ω(log n). Ex-
panded proofs for this and other results of [14] can be found in [22,23].

Randomized algorithms for OML have also been investigated. In 2006,
Meyerson et al. [17] presented the first o(n)-competitive algorithm for gen-
eral metric spaces (and thus for the line). More precisely, [17] obtained an
O
(
log3 n

)
-competitive randomized algorithm using randomized embeddings

into trees [6]. One could say that the procedure used to obtain a matching
within such trees somewhat resembles a strategy for the Lost Cow problem.
Bansal et al. [4] refined the approach in [17] to obtain an O

(
log2 n

)
-competitive

randomized algorithm for general metrics. Finally, Gupta and Lewi [8] gave
two different O(log n)-competitive randomized algorithms for the line metric,
once again using randomized embeddings, and one being the natural harmonic
algorithm. The algorithms in [17,4,8] could in a way be imagined as having
lost cows walk on the tree-embeddings. Kao et al. [12] gave a randomized al-
gorithm for LC with competitive ratio of approximately 4.5911, and proved a
matching lower bound. Many variants of searching problems such as the LC
problem have been extensively studied (see, e.g., [16]).

The OMM problem has also been studied within the framework of re-
source augmentation, where the online algorithm is given additional servers.
Kalyanasundaram and Pruhs [11] showed that a modified greedy algorithm is
O(1)-competitive if the online algorithm gets twice as many servers. Chung
et al. [5] showed that poly-log competitiveness is achievable if the online algo-
rithm gets an additive number of additional servers. Raghvendra [19] recently
presented a (2n−1+1/n)-competitive deterministic algorithm for OMM which
also achieves optimal O(log n) competitiveness in the random arrival model,
where the adversary chooses the set of requests R at the beginning but their
arrival order is chosen uniformly at random from all possible permutations.

Our algorithm for k-LC is similar to the natural offline greedy algorithm,
which repeatedly matches the two closest points. More precisely, if all the
cows arrived at the same time and ε was zero, then our algorithm for k-LC
would give the same matching as the offline greedy algorithm. Reingold and
Tarjan [21] showed that the approximation ratio of the offline greedy algorithm
for non-bipartite matching is essentially the same as the competitive ratio
of our algorithm for k-LC. The first step of the two analyses is the same,
looking at the cycles formed by the algorithm’s matching and the optimal
matching, but they diverge from there. A corollary of our analysis is that the
natural offline greedy algorithm is a Θ

(
nlog2 3−1)-approximation for bipartite

matching. We note that although the result of Reingold and Tarjan holds
for (not necessarily bipartite) matching in general metric spaces, this greedy
matching can of course not improve upon the tight (2n− 1)-competitive ratio
known for OMM. Intuitively, Section 4 crucially uses the straightforward fact
that for any three ordered points x,y and z on the line, it holds that |xy|+|yz| =

A o(n)-Competitive Deterministic Algorithm for Online Matching on a Line 5

|xz|. Relaxing this to a triangle inequality would blow up the competitive ratio
by a factor of n.

2 Overview

In this section we present an informal overview of both our algorithms and
analyses for k-LC and OML.

In Section 3 we consider the k-Lost-Cows Without Arrivals (k-LCWA)
problem, which is a restriction of k-LC in which each cow arrives at time
t = 0. Our algorithm for OML is based on simulating an algorithm for k-LC,
which in turn is based on simulating an algorithm for k-LCWA. Recall that in
the optimal deterministic algorithm for the 1-LC problem the cow follows the
classical “doubling strategy”, whereby she changes her direction of movement
at increasing powers of 2, i.e., at points −1, 2,−4, . . . of the real line (assuming,
without loss of generality, that the cow is initially located at the origin); for
k-LCWA, we consider the algorithm A where each cow independently and in
parallel follows a generalization of this strategy in which she switches direction
of movement at increasing powers of 1 + ε, for some ε > 0. For the case k = 1,
it is well-known (see, e.g., [16, Lemma 2.1]) that the competitive ratio of
algorithm A is O(ε + 1/ε). To keep the paper self-contained, we provide this
analysis in Appendix A.

By Proposition 1 (see Appendix A), one nice feature of algorithm A is
that, for any 0 < ε ≤ 1, its cost is within a factor of O(1/ε) of the cost of
the final matching M between cows’ starting positions and the corresponding
gates that the cows use in A. To analyze the cost of M we consider the union
of M and the optimal matching OPT. As Reingold and Tarjan have already
observed in [21] these edges can be decomposed into a set of disjoint cycles.
We then prove some structural properties regarding the directions of edges in
M and OPT. Finally, we can charge the cost of M ’s edges to the cost of OPT’s
edges based on the order in which A matches cows.

As an example, consider the base case of the first cow c that finds a gate
in this cycle, and let ` denote the length of the edge corresponding to this
matching. Since c’s search is never biased more than 1 + ε in either direction
from its origin, we know that the closest gate to c is at least `/(1 + ε) away.
Also, since A has all cows walking in parallel and no other cow has found
a gate, we know that no other cow has a gate closer than `/(1 + ε). Using
this argument we can charge the cost of this edge to any edge in OPT. As
we proceed inductively, the inequalities become more complicated since we
now may have to charge to multiple edges in both M and OPT. To aid our
analysis we define a weighted binary tree for each cycle, with the property that
the sum of the leaf costs is OPT’s cost, and the sum of the internal nodes is
an upper bound on M ’s cost. We show that if each tree is perfect (complete
and balanced) then M is O

(
klog2(3+ε)−1

)
-competitive. The last step is to show

that perfect trees are the worst case.

6 Antonios Antoniadis et al.

In Section 4 we then show how to extend the algorithm for k-LCWA to an
algorithm for k-LC. Dealing with the online arrival of cows is a bit tricky since
the charging argument used in the analysis of the algorithm A for k-LCWA
is delicately based on the order in which cows find their gates. To cope with
this, we simulate the state that A would be in had all the cows arrived at
time 0, and use this to possibly change how the cows walk. Specifically, in
the general k-LC problem, if a cow c is walking and finds a gate occupied by
some other cow c′, the algorithm determines which cow would have found this
gate first had the two cows been released at the same time; if c′ would have
found the gate first, then c continues her own walk, otherwise c changes her
walking strategy to the one that c′ had at the time she reached the gate. It is
relatively straightforward to see that the total distance walked by the k cows
in this simulation is exactly the same as the total distance walked had all the
cows arrived at time 0.

In Section 5 we show how to reduce k-LC to OML, and OML to k-LC.
To convert an algorithm for k-LC into an algorithm for OML, one can release
a new cow for every request r of the OML instance, wait until this cow hits
an unoccupied server s, and then match r to s. To convert an algorithm for
OML into an algorithm for k-LC one can continually issue requests at a cow’s
current location until a request is matched with a server corresponding to an
unoccupied gate.

3 The Parallel Cows Algorithm for k-Lost-Cows Without Arrivals

We now define the (1 + ε)-Parallel Cows algorithm for the k-LCWA problem.
The algorithm is to have every cow walk according to the (1+ε)-cow algorithm
independently and in parallel. In particular, this means that in her walk each
cow ignores the other cows as well as all the gates already occupied by other
cows. Throughout this section we assume ε to be some fixed parameter, and
thus when possible we remove reference to it to lighten notation (e.g., Parallel
Cows algorithm is a shorthand for (1 + ε)-Parallel Cows algorithm). In this
section we analyze the Parallel Cows algorithm, and prove the following result.

Theorem 1 For ε ≤ 1, the (1 + ε)-Parallel Cows algorithm for k-LCWA is
O
(
klog2(3+ε)−1/ε

)
-competitive.

In Section 3.1 we discuss that we can view the matchings of cows to gates
found by the Parallel Cows algorithm and by OPT as a set of disjoint weighted
cycles. Properties of these cycles allow us to use weighted binary trees to
analyze the total cost of the Parallel Cows algorithm in relation to OPT, where
the leaves of a tree correspond to the edges in OPT and the internal nodes
correspond to edges in the Parallel Cows matching. In Section 3.2 we analyze
this tree in the case when it is a perfect binary tree and all of OPT’s edges have
the same cost, which intuitively seems like the worst case. In Section 3.3 we
prove that we do indeed obtain the worst case matching for the Parallel Cows
algorithm when the cycle analysis yields a perfect binary tree. The competitive

A o(n)-Competitive Deterministic Algorithm for Online Matching on a Line 7

ratio for the Parallel Cows algorithm then follows from observing that, by
Proposition 1 in Appendix A, when ε ≤ 1 the walking costs are only O(1/ε)
times the matching costs.

3.1 Cycle Property

In this section we discuss some useful properties about the combination of the
matchings produced by OPT and by the Parallel Cows algorithm, denoted
with A.

We first introduce some notation. Let C = {c1, c2, . . . , ck} ⊆ R denote
the set of cow starting locations. We use ci to refer to the cow herself as
well as her starting location, specifying it when it is not clear from con-
text. Let G = {g1, g2, . . . , gk} ⊆ R denote the set of gate locations. When
referring to a specific algorithm, we use g(ci) : C → G to denote the gate
that cow ci matches to. Consider the graph with vertices V = C ∪ G. Let
EOPT = {eOPT

1 , eOPT
2 , . . . , eOPT

k } be OPT’s edges in the graph, where eOPT
i =

(ci, g(ci)), and whose weight is |ci − g(ci)|. EA is defined analogously.

As already observed in [21], the graph with vertices V and edges EOPT∪EA

is a disjoint union of cycles, and furthermore it suffices to consider the ratio
of the two costs when the union of the two matchings is a single cycle.

Figure 1 depicts one such cycle.

c1 g1 c2 g2 c3 g3 c4 g4 c5 g5 c6 g6

eOPT
1 eOPT

2 eOPT
3 eOPT

4 eOPT
5 eOPT

6

eA1 eA2 eA3 eA4 eA5

eA6

v0 v1 v2 v3

v4 v5

Fig. 1 A cycle and the corresponding MVST.

8 Antonios Antoniadis et al.

3.2 Perfect Tree Case

In this section, we show how to associate a cycle as described in the previous
section with a weighted binary tree, where the sum of the values of the leaves
of the tree is the cost of the optimal matching in that cycle, and the sum of
the values of the internal nodes of the tree provides an upper bound on the
cost of the matching found by the Parallel Cows algorithm. We additionally
analyze the cost of this tree when the tree is perfect.

Definition 2 A Full Weighted/Valued Binary Tree (FWVBT) T is a full bi-
nary tree whose vertices are each associated to a value. The weight of T is
defined as the sum of the values of all the vertices of T . The cost of T is de-
fined as the sum of the values of all internal vertices of T . The total leaf value
of T is defined as the sum of the values of all the leaves of T .

Definition 3 A (1 + ε)-Minimum Value Subtree Tree ((1 + ε)-MVST) is an
FWVBT with the property that the value of a vertex i is equal to (1 +
ε) min{v1, v2}, where v1 and v2 are the weights of the subtrees of i rooted
at the left and right child of i respectively (there is no constraint on the values
of leaves). A perfect (1 + ε)-MVST is a (1 + ε)-MVST where each leaf has the
same depth and the same value.

Since we assume ε is a fixed parameter, throughout we abbreviate (1 + ε)-
MVST by MVST. Given a cycle as described in the previous section, one can
associate it with a MVST, as follows (see Figure 1):

– Each edge eOPT
i of OPT corresponds to a vertex/leaf of value |ci − g(ci)|.

Each such leaf forms a distinct singleton (connected) component.
– Consider the edges of A, except the longest edge eA` , in the order in which
A adds them. For each edge eAi added, a vertex is introduced, and the two
neighboring connected components become its children in the tree. This
merges the two connected components into a single one. The value of this
new vertex is set to be (1+ε) min{v1, v2)}, where v1 and v2 are the weights
of the two subtrees of the vertex.

– It can be easily verified that for each edge eAi the total number of connected
components decreases by one, and that the tree is indeed binary and full.

We have the following lemma:

Lemma 1 With respect to a cycle and the corresponding MVST, the cost of
the optimal matching OPT is the total leaf value of the tree, while the cost of
A’s matching is upper bounded by the cost of the tree.

Proof The first part of the observation about the cost of OPT is straightfor-
ward. With respect to the cost of A, we claim that the cost of an edge added is
upper bounded by (1 + ε) times the cost of the cheapest of the two connected
components that get merged as a result of the addition of this edge. We can
show this inductively: by the definition of the algorithm any vertex of height
2 in the resulting tree cannot have a cost more than (1 + ε) times the smallest

A o(n)-Competitive Deterministic Algorithm for Online Matching on a Line 9

value leaf among the two leaves that got merged into one component. Other-
wise the smallest of the neighboring OPT edges would have been selected by
the algorithm.

For the inductive step, assume the statement holds for edges corresponding
to vertices up to some height h. Then, for an edge corresponding to a vertex
of height h + 1, we have that it has a cost that is upper bounded by (1 + ε)
times the cost of the cheapest connected component it merges, which is the
sum of the weights of the edges in it; otherwise, by definition, A would “close
the cycle” for this cheapest connected component instead of selecting the edge
it did. However this connected component now consists of costs coming from
edges of OPT (the values of the leaves) and from the edges of A (the internal
nodes). For the edges of A we do not know the exact value but by the inductive
hypothesis we have an upper bound that is their value in the tree. ut

Let us now assume that the cycle produced by A has a length that is a
power of two, and that the above construction produces a perfect binary tree,
where each leaf has a value of 1. We prove the following lemma.

Lemma 2 A perfect MVST with k leaves all of value 1 has cost Θ
(
klog2(3+ε)

)
.

Proof We first observe that all the leaves have the same value, and that the
tree is perfect. Therefore for an internal node i with left and right subtrees
of weight v1 and v2, respectively, we have v1 = v2. To simplify the analysis
we will assume without loss of generality that the value of i is (1 + ε)v1, i.e.,
the leaves of the left subtree are the ones that contribute to the weight of i.
This implies that a leaf ` contributes to the weight of one of its ancestors i if
and only if ` is a leaf on the left subtree of i, or in other words, if and only if
the last edge on the path from ` to i is a right-turn. We can similarly define a
left-turn.

Let f(j) be the contribution of a leaf ` (whose value is 1) to the value
of an internal node i that is an ancestor of `, assuming that the path from
` to i contains exactly j right-turns. It can be verified that when the tree is
perfect and each leaf has a value of 1, then f depends just on the number of
right-turns j on the path from the leaf to the root.

It holds that f(0) = 1, and for j ≥ 1 we have

f(j) = (1 + ε)

j−1∑
i=0

f(i)

= (1 + ε)(1 + (1 + ε))

j−2∑
i=0

f(i)

= (1 + ε)(1 + (1 + ε))2
j−3∑
i=0

f(i)

...

= (1 + ε)(1 + (1 + ε))j−1.

10 Antonios Antoniadis et al.

Also, since each leaf only contributes to a vertex if it lies after a right-turn
on the path from the leaf to the root, we have that each leaf whose path to
the root has j right-turns contributes to the total cost of the tree a value of

j∑
i=1

f(i) =

j∑
i=1

(1 + ε)(1 + (1 + ε))i−1 = (2 + ε)j − 1.

Note that on a perfect binary tree with k leaves, the path from each leaf
to the root has length log2 k, and that the k different paths from the leaves
to the root are exactly all possible configurations of left-turns and right-turns
on a path of length log2 k. It follows that the total cost of a perfect tree with
k leaves of value 1 is

log2 k∑
i=0

(
log2 k

i

)(
(2 + ε)i − 1

)
= (3 + ε)log2 k − k = klog2(3+ε) − k,

which concludes the proof of the lemma. ut

The above lemma also implies that the cost of the matching returned by
the algorithm for this particular class of cycles (the ones corresponding to a
perfect binary tree with leaf values of 1) is a Θ

(
nlog2(3+ε)−1

)
-approximation

with respect to the optimal matching. As we will see in the next subsection,
this particular class of cycles is actually the worst case.

3.3 Analysis

The following lemma implies that the competitive ratio of the algorithm is at
most (

3 + ε

2

)log2 k

= klog2
3+ε
2 ,

where k ≤ n is the number of leaves in the tree. This is the case because the
cost of the optimal solution is the total leaf value L of the tree. The lemma
furthermore implies that the perfect trees analyzed in the previous subsection
are indeed the worst case.

Lemma 3 Let T be a (1 + ε)-MVST with the values of its k leaves summing
to L. Then the cost of T is upper bounded by

L ·
(

3 + ε

2

)log2 k

.

A o(n)-Competitive Deterministic Algorithm for Online Matching on a Line 11

Proof We prove the lemma by induction on the levels of the tree. For the
base case, consider a leaf of the tree. The induced subtree clearly has only
one vertex which is simultaneously a leaf, and therefore k = 1. The statement
directly follows.

For the inductive step, let T1 and T2 be the left and right subtrees in T ,
respectively. Let L1 = `L2 for ` ≥ 0, and k1 = ck2 for c > 0. Note that c, in
contrast to `, cannot be 0, since by the definition of MVST the tree is full. We
have L = (1 + `)L2, and k = (1 + c)k2. Without loss of generality, assume that

L1

(
3 + ε

2

)log2 k1

≤ L2

(
3 + ε

2

)log2 k2

,

which by substitution implies that ` ≤
(
3+ε
2

)log2
1
c . If we let c(T) denote the

cost of T , then we have

c(T) = c(T1) + c(T2) + (1 + ε) min{c(T1), c(T2)}

≤ (2 + ε)L1

(
3 + ε

2

)log2 k1

+ L2

(
3 + ε

2

)log2 k2

≤ (2 + ε)
`

`+ 1
L

(
3 + ε

2

)log2
c
c+1k

+
1

`+ 1
L

(
3 + ε

2

)log2
1
k+1k

= L

(
3 + ε

2

)log2 k
[

(2 + ε)
`

`+ 1
L

(
3 + ε

2

)log2
c
c+1

+
1

`+ 1

(
3 + ε

2

)log2
1
c+1

]
.

In order to prove the lemma it therefore suffices to show that

(2 + ε)
`

`+ 1

(
3 + ε

2

)log2
c
c+1

+
1

`+ 1

(
3 + ε

2

)log2
1
c+1

≤ 1⇔

(2 + ε)`

(
3 + ε

2

)log2 c
(

3 + ε

2

)log2
1
c+1

+

(
3 + ε

2

)log2
1
c+1

≤ `+ 1⇔

(2 + ε)`

(
3 + ε

2

)log2 c

+ 1 ≤ (`+ 1)

(
3 + ε

2

)log2(c+1)

⇔

(`+ 1)(c+ 1)log2(
3+ε
2) − (2 + ε)`clog2(

3+ε
2) − 1 ≥ 0.

Let

f(`, c) = `
[
(c+ 1)log2

3+ε
2 − (2 + ε)clog2

3+ε
2

]
+ (c+ 1)log2

3+ε
2 − 1.

Since f(`, c) is linear in `, and furthermore for any fixed c > 0 we are

interested in values of ` such that 0 ≤ ` ≤
(
3+ε
2

)log2
1
c , in order to prove that

f(`, c) ≥ 0 for all such values of c and ` it suffices to show that:

(i) f(0, c) ≥ 0, for all c > 0, and

(ii) f
((

3+ε
2

)log2
1
c , c
)
≥ 0, for all c > 0.

12 Antonios Antoniadis et al.

We now show these two inequalities.

(i) We have f(0, c) = (c+1)log2
3+ε
2 −1, which is clearly nonnegative because

c+ 1 > 1 when c > 0.
(ii) We have

f

((
1

c

)log2
3+ε
2

, c

)
=

=

(
1

c

)log2
3+ε
2 [

(c+ 1)log2
3+ε
2 − (2 + ε)clog2

3+ε
2

]
+ (c+ 1)log2

3+ε
2 − 1

=

(
c+ 1

c

)log2
3+ε
2

− (2 + ε) + (c+ 1)log2
3+ε
2 − 1.

It therefore suffices to show that

g(c) :=

(
c+ 1

c

)log2
3+ε
2

+ (c+ 1)log2
3+ε
2 − (3 + ε) ≥ 0,

for all c > 0. By using two times the inequality of arithmetic and geo-
metric means, we have:

g(c) =

(
3 + ε

2

)log2 (1+1/c)

+

(
3 + ε

2

)log2 (1+c)

− (3 + ε)

≥ 2

√(
3 + ε

2

)log2 (c+2+1/c)

− (3 + ε)

≥ 2

√(
3 + ε

2

)log2 (2+2
√
1)

− (3 + ε)

= 2
3 + ε

2
− (3 + ε) = 0.

This concludes the proof of the lemma. ut

3.4 Proof of Parallel Cows Competitiveness

We can now prove Theorem 1.

Proof (of Theorem 1) Fix some instance of k-LCWA, where the value of the
optimal solution is OPT, and let A be the cost of the Parallel Cows algorithm
on this instance and MA be the cost of the matching found by the Parallel
Cows algorithm on this instance. Note that the cost of the optimal matching
and the cost of the optimal solution are the same. By Lemma 1, MA is the
sum of the costs of the MVSTs built on the cycles induced by the algorithm’s
and optimal’s matchings, while OPT is the sum of the costs of the leaves of
those same MVSTs. Fix one cycle, and let T be the MVST for that cycle.

A o(n)-Competitive Deterministic Algorithm for Online Matching on a Line 13

By Lemma 3 the cost of the algorithm’s matching on this cycle is at most

O
(
k
log2(3+ε)−1
c

)
times that of the optimal’s, where kc is the number of cows

and gates in the cycle. Thus MA = O
(
klog2(3+ε)−1OPT

)
.

Since each cow only stops when it finds an unused gate, the walking cost
of each cow in the Parallel Cows algorithm is the same as if that cow and the
gate it finds were the only ones present. Thus when ε ≤ 1 its walking cost is
O(1/ε) times its matching cost, and thus A = O

(
klog2(3+ε)−1OPT/ε

)
. ut

4 From k-Lost-Cows Without Arrivals to k-Lost-Cows

In this section we show how to extend the solution for the k-LCWA problem of
the previous section to the k-LC problem. The algorithm for k-LC is a suitable
simulation of the (1 + ε)-Parallel Cows algorithm for the k-LCWA problem.
The resulting algorithm for k-LC inherits exactly the same competitive ratio
of the (1 + ε)-Parallel Cows algorithm for k-LCWA (but outputs a possibly
different matching of cows to gates).

The algorithm is as follows. As soon as a cow c is released, she starts
walking following the (1 + ε)-cow strategy. Whenever, during her walk, c finds
a gate g, there are two possible cases. If g does not yet have a cow matched
to it, then c is matched to g. Otherwise, there is already some cow c′ matched
to g. In this case, the algorithm determines which one between c and c′ would
have reached location g first if both c and c′ were released at time 0.2 If c′

would have found g first, then c continues her walk. Otherwise, c would have
found g earlier than c′ would. Ideally, in this case we wish c to “kick” c′ out of
gate g, and then c′ to continue her walk. However, since c′ cannot be removed
from gate g once she has been matched to it, we have c simulate the rest of
the walk of c′. This means that c changes its walking strategy to follow, from
that point on, the walking strategy that c′ had at the time she reached gate g.
See Figure 2. (For this case it might be helpful to think that, when they meet
at gate g, cows c and c′ act as if they swapped identities.)

gc′ c

Fig. 2 Simulation algorithm for k-LC. Cow c reaches gate g, which is already occupied by
cow c′. However, c would have reached gate g first, had c and c′ been released at the same
time; in this case, when c reaches gate g she updates her walking strategy (solid) to follow
the walking strategy of c′ (dashed).

Clearly, the optimal (offline) matching of cows to gates does not change in
case of arbitrary release times associated to the cows. Therefore, in order to

2 We remark that we are implicitly assuming that all cows walk at the same speed.

14 Antonios Antoniadis et al.

prove that the above algorithm has the same competitive ratio as the Parallel
Cows algorithm for k-LCWA we only need to show that the total walking cost
of this simulation is equal to the total walking cost if all the cows were released
at time 0.

Lemma 4 The total distance walked by the cows in the above simulation al-
gorithm for k-LC is exactly the same as the total distance walked by the cows
in the (1 + ε)-Parallel Cows algorithm for k-LCWA.

Proof The lemma follows by construction: the algorithm simulates the (1+ ε)-
Parallel Cows algorithm for the k-LCWA problem in such a way that any
path walked by a cow in the latter is also walked in the simulation algorithm,
possibly with different disjoint portions of the same path being walked by
different cows, and paths walked in the (1 + ε)-Parallel Cows algorithm are
the only paths walked in the simulation algorithm. ut

A direct consequence of Theorem 1 and Lemma 4 is the following.

Theorem 2 For ε ≤ 1, the above simulation algorithm for k-LC is O
(
klog2(3+ε)−1/ε

)
-

competitive.

5 Comparing k-Lost-Cows and Online Matching on a Line

In this section we explore the relationship between the k-LC and OML prob-
lems. In particular we show that upper bounds in the k-LC setting carry over
to upper bounds in the OML setting (assuming the competitive ratio is defined
in terms of the number of servers, n). We also show that lower bounds in the
k-LC setting carry over to lower bounds in the OML setting; however, here
the competitive ratio for OML is defined in terms of the minimum number of
positive requests in an optimal matching.

Definition 4 Given a matching M , a request ri ∈ R is said to be positive in
M if ri is matched in M to a server sj such that d(ri, sj) > 0.

Although one can perturb the input instance so that all the n requests are
positive, we prefer to distinguish between the number p of positive requests
in an optimal solution and the total number of requests n. This is because
in our reduction: (i) we explicitly introduce a large number of requests that
OPT should match with cost zero, and (ii) it better exemplifies the connection
between the number of positive requests in an optimal solution for the OML
instance and the number of cows k in the corresponding k-LC instance.

Theorem 3 Let p be the minimum number of positive requests in an optimal
solution to OML. The following two implications hold.

1. If there is an f(k)-competitive algorithm for k-LC then there is an f(n)-
competitive algorithm for OML.

A o(n)-Competitive Deterministic Algorithm for Online Matching on a Line 15

2. If there is an f(p)-competitive algorithm for OML then there is an f(k)-
competitive algorithm for k-LC.

Proof To prove the first claim we shall simulate the f(k)-competitive algorithm
for k-LC, as follows: given an input instance for the OML problem, we create
an input instance for k-LC by placing one gate at each server location, and by
releasing a new cow at location ri whenever a request ri arrives. Once released,
the cow walks according to the algorithm for k-LC, until she reaches her final
gate g; the request ri is then matched to the server found at the location of
gate g. Since the cost of the final matching is clearly no more than the total
distance walked by the cows, and since by construction the number of cows is
equal to the number of requests, the claim follows.

For the second part, assume that we have an f(p)-competitive algorithm
A for OML, and let I be an instance to the k-LC problem. To obtain an
f(k)-competitive algorithm for k-LC, we create an instance I ′ for the OML
problem with a server at every integer. When a cow arrives, at some location
c we add one request for location c in I ′. It is easy to see, using a simple
exchange argument, that A can be converted into an algorithm that matches
each request r with one of its two surrounding servers (i.e., the rightmost
unmatched server on the left of r and the leftmost unmatched server on the
right of r - note that one of these two servers could be collocated with request)
with no increase of competitive ratio. Assuming this, we now have c walk to
the server that A matches the request to, which is either one unit to the left,
one unit to the right or staying put. While c has not yet found a gate, we
continue to have a request in I ′ at c’s current location, always having c walk
to the server that is used to match the latest request. Once c finds a gate, we
stop requesting to c’s location. We continue to do this until all cows have been
matched.

First note that by construction the total walking cost of the cows is equal
to the matching cost of A. Further, we claim that there is an optimal solution
to I ′ with k positive requests. To see this assume by contradiction that the
optimal matching to I ′ with the minimum number of positive requests has
more than k positive requests. Since there are k gates, at least one positive
request, say ri, must be matched to a non-gate location, say s(ri). However
every used server that is not a gate receives a request. So there is another
request at location s(ri), say rj , that is matched to some positive cost sever
s(rj). Note that the optimal solution that matches ri to s(rj) and rj as cost
0 does not increase the cost of the matching and has one less positive request.
This contradicts our choice of OPT. This shows that there is an algorithm A
that is f(k)-competitive on I ′, and therefore the corresponding cow algorithm
is f(k)-competitive on I.

Notice that in order to achieve the competitive ratio of f(k) for instances
with k cows, we have to reduce to an OML instance with p = k positive
requests and a potentially much larger n. ut

The following is a direct consequence of Theorems 2 and 3.

16 Antonios Antoniadis et al.

Theorem 4 There is an O
(
nlog2(3+ε)−1/ε

)
-competitive algorithm for OML.

We note that, in a manner similar to that presented in Section 4, it is
possible to extend the Parallel Cows algorithm for k-LCWA to OML directly
and obtain an O

(
plog2(3+ε)−1/ε

)
-competitive algorithm for OML.

6 Conclusions

This paper presents the first deterministic sub-linearly competitive algorithm
for online matching on a line, by exploiting and analyzing the connections
between this problem and a generalization of the well-known lost-cow problem.

Since the conference version of this paper appeared, there have been fur-
ther advancements in the understanding of the problem. Nayyar and Raghven-
dra [18] provided a new analysis of the deterministic online algorithm presented
in [19], showing that on a line its competitive ratio is O(log2 n); very recently,
Raghvendra [20] improved the analysis of this algorithm to a competitive ratio
of O(log n). Despite these advancements, there is still a big gap between the
best known upper and lower bounds for the problem. Furthermore, Antoniadis,
Fischer, and Tönnis [2] have shown a lower bound of Ω(log n) for a restricted
class of algorithms. Since this class contains all the deterministic algorithms
found in the literature, it would be interesting to try to either develop an
algorithm that does not belong to this class, or extend their construction to
show a lower bound for an even wider class of algorithms.

References

1. A. Antoniadis, N. Barcelo, M. Nugent, K. Pruhs, and M. Scquizzato. A o(n)-competitive
deterministic algorithm for online matching on a line. In Proceedings of the 12th Inter-
national Workshop on Approximation and Online Algorithms (WAOA), pages 11–22,
2014.

2. A. Antoniadis, C. Fischer, and A. Tönnis. A collection of lower bounds for online
matching on the line. In Proceedings of the 13th Latin American Theoretical Informatics
Symposium (LATIN), pages 52–65, 2018.

3. R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlins. Searching in the plane. Inf.
Comput., 106(2):234–252, 1993.

4. N. Bansal, N. Buchbinder, A. Gupta, and J. Naor. A randomized O(log2 k)-competitive
algorithm for metric bipartite matching. Algorithmica, 68(2):390–403, 2014.

5. C. Chung, K. Pruhs, and P. Uthaisombut. The online transportation problem: On
the exponential boost of one extra server. In Proceedings of the 8th Latin American
Theoretical Informatics Symposium (LATIN), pages 228–239, 2008.

6. J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

7. B. Fuchs, W. Hochstättler, and W. Kern. Online matching on a line. Theor. Comput.
Sci., 332(1-3):251–264, 2005.

8. A. Gupta and K. Lewi. The online metric matching problem for doubling metrics.
In Proceedings of the 39th International Colloquium on Automata, Languages, and
Programming (ICALP), pages 424–435, 2012.

9. B. Kalyanasundaram and K. Pruhs. Online weighted matching. J. Algorithms,
14(3):478–488, 1993.

A o(n)-Competitive Deterministic Algorithm for Online Matching on a Line 17

10. B. Kalyanasundaram and K. Pruhs. Online network optimization problems. In Online
Algorithms: The State of the Art, pages 268–280. Springer-Verlag, 1998.

11. B. Kalyanasundaram and K. Pruhs. The online transportation problem. SIAM J.
Discrete Math., 13(3):370–383, 2000.

12. M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment: An
optimal randomized algorithm for the cow-path problem. Inf. Comput., 131(1):63–79,
1996.

13. S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-line algorithms for weighted bipartite
matching and stable marriages. Theor. Comput. Sci., 127(2):255–267, 1994.

14. E. Koutsoupias and A. Nanavati. The online matching problem on a line. In Proceedings
of the 1st International Workshop on Approximation and Online Algorithms (WAOA),
pages 179–191, 2003.

15. E. Koutsoupias and C. H. Papadimitriou. On the k-server conjecture. J. ACM,
42(5):971–983, 1995.

16. A. López-Ortiz. On-line Target Searching in Bounded and Unbounded Domains. PhD
thesis, University of Waterloo, 1996.

17. A. Meyerson, A. Nanavati, and L. J. Poplawski. Randomized online algorithms for
minimum metric bipartite matching. In Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 954–959, 2006.

18. K. Nayyar and S. Raghvendra. An input sensitive online algorithm for the metric
bipartite matching problem. In Proceedings of the 58th IEEE Annual Symposium on
Foundations of Computer Science (FOCS), pages 505–515, 2017.

19. S. Raghvendra. A robust and optimal online algorithm for minimum metric bipartite
matching. In Proceedings of the 19th International Workshop on Approximation Algo-
rithms for Combinatorial Optimization Problems (APPROX), pages 18:1–18:16, 2016.

20. S. Raghvendra. Optimal analysis of an online algorithm for the bipartite matching prob-
lem on a line. In Proceedings of the 34th International Symposium on Computational
Geometry (SoCG), pages 67:1–67:14, 2018.

21. E. M. Reingold and R. E. Tarjan. On a greedy heuristic for complete matching. SIAM
J. Comput., 10(4):676–681, 1981.

22. R. van Stee. SIGACT news online algorithms column 27: Online matching on the line,
part 1. SIGACT News, 47(1):99–110, 2016.

23. R. van Stee. SIGACT news online algorithms column 28: Online matching on the line,
part 2. SIGACT News, 47(2):40–51, 2016.

APPENDIX

A Analysis of the (1 + ε)-Cow Algorithm

Here we analyze the search strategy for the 1-LC problem whereby the cow, starting at the
origin of the real line, changes her direction of movement at points

p1 = −1, p2 = (1 + ε), p3 = −(1 + ε)2, p4 = (1 + ε)3, . . . , pi = (−1)i(1 + ε)i−1, . . . ,

for some ε > 0. See Figure 3. We refer to this strategy as the (1 + ε)-cow algorithm.

0−1 1 + ε−(1 + ε)2 (1 + ε)3

Fig. 3 Representation of the (1 + ε)-cow algorithm.

18 Antonios Antoniadis et al.

Proposition 1 The (1 + ε)-cow algorithm is O(ε+ 1/ε)-competitive for the 1-LC problem.

Proof Let p ∈ R be the location of the gate, Aε(p) be the total distance traversed by the
cow following the (1+ε)-cow algorithm until she finds the gate located at point p, and c(Aε)
be the competitive ratio of the (1 + ε)-cow algorithm. Then, by definition,

c(Aε) = sup
p∈R

{
Aε(p)

|p|

}

= sup
p∈R

{∑k
i=1 2|pi|+ |p|
|p|

: p ∈ [pk−1, pk+1]

}

= 1 + sup
p∈R

{∑k
i=1 2|pi|
|p|

: p ∈ [pk−1, pk+1]

}

= 1 + sup
k∈Z

{∑k
i=1 2|pi|
|pk−1|

}

= 1 + sup
k∈Z

{∑k
i=1 2(1 + ε)i−1

(1 + ε)k−2

}

= 1 + sup
k∈Z

{
2 ·

(1 + ε)k − 1

((1 + ε)− 1)(1 + ε)k−2

}
< 1 + 2 ·

(1 + ε)2

ε

= O

(
ε+

1

ε

)
,

as desired. ut

