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Abstract
In this paper, we study the online metric matching with recourse (OMM-Recourse) problem.
Given a metric space with k servers, a sequence of clients is revealed online. A client must be
matched to an available server on arrival. Unlike the classical online matching model where the
match is irrevocable, the recourse model permits the algorithm to rematch existing clients upon the
arrival of a new client. The goal is to maintain an online matching with a near-optimal total cost,
while at the same time not rematching too many clients.

For the classical online metric matching problem without recourse, the optimal competitive ratio
for deterministic algorithms is 2k − 1, and the best-known randomized algorithms have competitive
ratio O(log2 k). For the much-studied special case of line metric, the best-known algorithms have
competitive ratios of O(log k). Improving these competitive ratios (or showing lower bounds) are
important open problems in this line of work.

In this paper, we show that logarithmic recourse significantly improves the quality of matchings
we can maintain online. For general metrics, we show a deterministic O(log k)-competitive algorithm,
with O(log k) recourse per client, an exponential improvement over the 2k − 1 lower bound without
recourse. For line metrics we show a deterministic 3-competitive algorithm with O(log k) amortized
recourse, again improving the best-known O(log k)-competitive algorithms without recourse. The
first result (general metrics) simulates a batched version of the classical algorithm for OMM called
Permutation. The second result (line metric) also uses Permutation as the foundation but makes
non-trivial changes to the matching to balance the competitive ratio and recourse.

Finally, we also consider the model when both clients and servers may arrive or depart dynamically,
and exhibit a simple randomized O(log n)-competitive algorithm with O(log ∆) recourse, where n

and ∆ are the number of points and the aspect ratio of the underlying metric. We remark that no
non-trivial bounds are possible in this fully-dynamic model when no recourse is allowed.
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1 Introduction

The classical online metric matching (OMM) problem is defined on a metric space (X , d),
where X denotes a set of n points where the servers and clients are located, and a distance
function (metric) d : X × X → R+. A set S ⊆ X of servers, |S| = k, is given offline, and a
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40:2 Online Matching with Recourse

sequence of client requests C = (c1, . . . , ck) is revealed in an online manner. The algorithm
is required to match each client request to an available (previously unmatched) server on
arrival irrevocably. The objective is to minimize the total cost of the matching, which is the
sum of distances between matched client-server pairs. The performance of an algorithm is
measured using the notion of competitive ratio – the worst-case over all instances of the ratio
of the cost of the online algorithm and the cost of an optimal offline matching.

This problem was first studied in two independent works [17, 18]. Both these works
present a (2k − 1)-competitive deterministic algorithm called Permutation, and also show
that this bound is tight among deterministic algorithms. Subsequently, the work of [22] shows
that randomization can overcome this lower bound (for oblivious adversaries) by giving a
O(log3 k)-competitive1 randomized algorithm, which was later improved in [4], where the
authors show an O(log2 k)-competitive algorithm. In contrast, the best known lower bound
for randomized algorithms is a factor of Ω(log k)[22]. Resolving this gap has remained a
challenging and long-standing open problem in this area.

The OMM problem has also elicited much interest in specialized metrics such as the line
metric (OMM-Line). It was long conjectured that OMM-Line should admit a 9-competitive
algorithm, by virtue of the connections between this problem and another classical problem
in online algorithms known as the cow-path problem. However, [10] disproved this particular
conjecture by presenting a lower bound of 9.001. In terms of upper bounds, no algorithms
with better competitive ratios than those for general metrics were known until a recent line
of work [15, 23, 25] gave improved algorithms for the line metric. The current best algorithm
is a deterministic O(log k)-competitive algorithm [25]. It is still an open question whether
constant-competitive algorithms exist for OMM-Line. Intriguingly, there are Ω(log k) lower
bounds on natural families of algorithms [1, 19].

Given these barriers for OMM, we study whether we can obtain strictly better performance
if we are allowed to re-match a few clients upon the arrival of a new client.

I Problem 1 (OMM-Recourse). An instance consists of a metric space (X , d), and a set
S ⊆ X of servers with |S| = k. A sequence of client requests Ck = (c1, . . . , ck) is revealed in
an online manner. At time t, after the algorithm observes ct, it must maintain a matching
Mt such that every client is matched to exactly one server, and each server is matched to at
most one client. The algorithm can re-match some earlier clients, and the number of times
clients are re-matched is called the recourse.

I Definition 2. We say that an online algorithm is α-competitive with β-amortized recourse
for OMM-Recourse if for all t ∈ [k], the cost of the algorithm’s matching for Ct :=
(c1, . . . , ct) is at most α times the cost of the optimal matching for Ct, and the total number
of recourse steps taken so far is at most βt. Additionally, the algorithm is said to have a
per-client recourse of β if no client is rematched more than β times.

While our main theoretical motivation is in understanding the power of recourse in the
classical OMM problem, often it is also the case in practice that matching decisions are not
irrevocable, and instead, there is simply a cost (or) penalty for re-assignments. For example,
in a video streaming setting, users arrive online and want to stream a video. The ISP must
choose a server to stream from, preferring a server closer to the user. Of course, this decision
can be changed over the time horizon, but this will cause a temporary disruption that must
be minimized. The recourse model then naturally captures the competing goals of minimizing
cost and the number of re-assignments. Moreover, the stronger notion of per-client recourse
guarantees a fairness property by bounding the inconvenience for each client.

1 Throughout the paper, logarithms are with respect to base 2.
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The main results of this paper affirmatively answer the question of whether limited
recourse can help in the OMM problem.

I Theorem 3. There is an efficient deterministic 2 log k-competitive algorithm with log k
per-client recourse for OMM-Recourse on general metrics. (Section 3)

Theorem 3 coupled with the (2k − 1) lower bound for deterministic algorithms without
recourse highlights the exponential improvement in competitive ratio possible with limited
recourse. We complement the above result by noting that the guarantees given above are
tight for our algorithm. We also show that any deterministic algorithm which has constant
per-client recourse must have a logarithmic competitive ratio.

I Theorem 4. No deterministic algorithm for OMM-Recourse with per-client recourse at
most an absolute constant C can have a competitive ratio o(log k). (Appendix C)

Our algorithm for Theorem 3 is an adaptation of the classical Permutation algorithm
for OMM [17, 18] which recomputes the offline optimal matching on the arrival of a new
client, and matches the arriving client to the server that is part of the new offline matching
but as yet unmatched in the online matching. While Permutation is a very natural and
elegant algorithm, it fares poorly in the standard model without recourse where it has a
competitive ratio of Ω(k) even on line metrics! At a high level, the worst-case behavior
for the classical Permutation algorithm for OMM occurs when clients arrive one-by-one,
and the competitive ratio improves if the clients arrive in batches. Our algorithm then uses
recourse to mimic the output of such a batched version of Permutation.

We next turn our attention to the special case of the line metric, where we present a
special-purpose algorithm that significantly improves on Theorem 3:

I Theorem 5. There is a deterministic 3-competitive algorithm with O(log k)-amortized
recourse for OMM-Line-Recourse. (Section 4)

Note that obtaining constant-competitive algorithms for the line metric has been a
challenging open problem for OMM– our algorithm achieves such a guarantee when equipped
with a small amount of recourse. This result is also the main technical contribution of
our work. Once again, our algorithm builds on the classical Permutation algorithm for
OMM. Exploiting the nature of the line metric, we view the online matching determined by
Permutation as a collection of directed forward or backward arcs from the clients to servers.
Noting that such a matching may be sub-optimal only if overlapping forward and backward
arcs are present, our algorithm tries to re-match some clients to eliminate such overlaps.
However, blindly re-matching to eliminate all overlapping arcs can lead to a large recourse.
Instead, we propose a clever asymmetric uncrossing method to balance the competitive ratio
and recourse. Our analysis is somewhat non-standard in that we first identify a family of
algorithms for OMM-Line-Recourse, all of which share the same asymmetric uncrossing
criterion, and incur the same cost. Of this family, we first choose one algorithm (whose cost
analysis is most intuitive) to bound the competitive ratio of all the algorithms in the family.
However, this algorithm can demonstrably incur large recourse. Hence, our actual algorithm
is another one from this family which is designed for minimizing the recourse but whose cost
analysis in a direct manner is not apparent to us.

Finally, we focus on another limitation of classical OMM– due to the irrevocable nature
of assignments, the competitive ratio would be unbounded when both clients and/or servers
can arrive or depart the system. Hence, the classical model only considers the setting when
all servers are known ahead of time and clients arrive in an online manner. We show that by
allowing recourse, we can, in fact, handle arrivals and departures of clients and servers:

APPROX/RANDOM 2020
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I Theorem 6. There is a randomized O(logn)-competitive algorithm with O(log ∆) amortized
recourse for OMM-Recourse when clients and servers can arrive and depart, where ∆ is
the aspect ratio of the metric space.

We defer the details of this dynamic model to [16].

Related Work. To the best of our knowledge, the only work which considers recourse for
online min-cost matching is the recent work [20] where the authors consider a two-stage
version of the uni-chromatic problem (where there is no distinction between servers and
clients): In the first stage, a perfect matching between 2n given nodes must be selected;
in the second stage 2k new nodes are introduced. The goal is to produce α-competitive
matchings at the end of both stages, and such that the number of edges removed from the
first stage matching is at most βk. The authors show that α = 3, β = 1 and α = 10, β = 2 are
possible when k is known or unknown, respectively. Our results can be seen as a multi-stage
generalization of this two-stage model, although the two models are slightly different in terms
of the distinction between servers and clients.

A related model capturing a different kind of flexibility in online matching is that of
matching with delays [8, 5]: here, the requests need not be matched at the time of arrival, but
accrue a delay penalty until the algorithm matches them. The algorithm must minimize the
total matching cost plus total delay penalty. The current best known randomized algorithms
are O(logn) competitive [2], which also proves a lower bound of Ω

(
logn

log logn

)
. The best

known deterministic algorithms are O(k0.59)-competitive [3]. Another class of beyond-worst
case models are stochastic models, such as i.i.d. and random order settings. The majority of
work in this vein has been done in the reward maximization objective (see e.g., [11, 7, 6] and
references therein). For OMM, [24] gave a deterministic algorithm that is simultaneously
O(log k)-competitive in the random order model and (2k − 1)-competitive in worst case.
Recently, [12] show O((log log log k)2)-competitive algorithms in the known i.i.d. model.

Finally, online algorithms with recourse have also been studied in other settings such as
scheduling and set cover (see, e.g., [14, 13, 9] and the references within.).

Recently, and independent of our work, [21] have obtained an O(1)-competitive algorithm
with O(log k)-amortized recourse for OMM-Line-Recourse with a very different approach
of extending the t-net framework of [25].

2 Preliminaries

For most of the paper (except for the fully dynamic setting), we consider the setting where
the servers S are known up front. The clients arrive online, and we denote by Ct = (c1, . . . , ct)
the set of the first t clients. An optimal matching between Ct and S is denoted byM∗t , and
similarly, the algorithm’s matching between Ct and S will be denoted byMt. We denote by
OPTt, the cost of the optimal matchingM∗t . For any matchingM, we useM(c) andM(C)
to denote the server and the set of servers matched to the client c and the set of clients C,
respectively. We defineM(s) andM(S) similarly.

The Permutation algorithm. As mentioned in Section 1, [17] and [18] independently
proposed a (2k − 1)-competitive algorithm Permutation for OMM. Since our algorithms
build extensively on this algorithm, we first summarize Permutation and its key properties.
The algorithm maintains two matchings: the current online matchingMt, and the optimal
offline matchingM∗t of the clients Ct that have arrived so far. The main observation behind
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Algorithm 1 Permutation (metric (X , d), server-optimal matchingMt−1 for Ct−1).

1: for new batch of clients Ccur = Ct+` \ Ct−1 = {ct, ct+1, . . . , ct+`} that arrives do
2: letM∗t−1 andM∗t+` be optimal matchings for Ct−1 and Ct+` from Lemma 7.
3: let Scur = S∗t+` \ S∗t−1 be the set of `+ 1 servers matched inM∗t+` but not inM∗t−1
4: letMcur denote the minimum cost matching between Ccur and Scur
5: augmentMt−1 usingMcur to obtain the new matchingMt+`
6: end for

the algorithm is that, when a new client ct+1 arrives, there exists an optimal matching of
Ct+1 to S which uses exactly the servers used inM∗t plus one extra server. Permutation
simply identifies the extra server st+1 and matches ct+1 with st+1. This property can be
formalized as follows.

I Lemma 7 (Lemma 2.2 in [17]). There exists a sequence of optimal matchingsM∗1, . . . ,M∗k
matching client sets C1, . . . , Ck to S such that the sets of servers used in these matchings,
S∗i :=M∗i (Ci) are nested, i.e., S∗1 ⊆ S∗2 ⊆ · · · ⊆ S∗k .

I Definition 8 (Server-optimal matching). At time t, a matchingMt of client-set Ct is said
to be server-optimal if it uses the same servers asM∗t , i.e.,M∗t (Ct) =Mt(Ct).

I Proposition 9 ([17]). Permutation always maintains a server-optimal matching.

The notion of server-optimality will be crucial throughout this paper. Intuitively, it says
that the algorithm has identified the right set of servers from S to match to, and is only
sub-optimal w.r.t to the actual matching maintained between Ct andMt(Ct).

Algorithm 1 gives a more general version of Permutation which we will use later, where
clients arrive in batches, and we add a minimum-cost matching between the arriving clients
in the batch and the additional servers an optimal solution uses (from Lemma 7).

I Lemma 10 ([17]). After the arrival of a batch of clients Ct+` \ Ct−1, the cost of the
matchingMcur computed in Algorithm 1 is at most 2OPTt+`.

I Theorem 11 (Theorem 2.4 in [17]). Algorithm 1 is (2m−1)-competitive for online weighted
matching if the requests arrive in m batches.

3 Online matching with recourse for general metrics

In this section, we prove Theorem 3 by showing that Algorithm 2 is a (2 log k, log k)-
competitive algorithm for OMM-Recourse in a general metric. To motivate the algorithm,
note that Theorem 11 says that in order to minimize competitive ratio, it is best to feed
the client sequence to Permutation in as few batches as possible. However, we are also
constrained in matching clients immediately on arrival. One way of balancing the two goals
is to run Permutation incrementally on each client arrival, and use recourse to periodically
unmatch a suffix of client sequence and re-introduce these clients as a single batch. As an
example, assume that we create B batches of k/B clients, with the jth batch consisting of
clients Batchj = {(j−1)k/B+1, . . . , jk/B}. As clients in batch j arrive, we first match them
via vanilla Permutation. After the (jk/B)th client arrives, we unmatch all clients in Batchj
and re-introduce them as one single batch. The amortized recourse of this algorithm is 1.
Moreover, the matching at any time t may be viewed as the output of running Permutation
with at most B batches of k/B clients each and k/B batches of 1 client each. Setting B =

√
k

then gives us an O(
√
k)-competitive algorithm with a per-client recourse of 1!

APPROX/RANDOM 2020
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Algorithm 2 MultiScalePermutation (metric (X, d) and server set S ⊆ X).

1: initialize matchingM0 = ∅
2: for each new client ct that arrives at time-step t do
3: let i(t) = arg maxi s.t t is divisible by 2i
4: unmatch the latest 2i(t) clients {ct−2i(t)+1, . . . , ct} and revert to matchingMt−2i(t)

5: introduce a block of clients {ct−2i(t)+1, . . . , ct} to Algorithm 1 with the current
matching beingMt−2i(t) and updateMt to be the resulting matching for the clients Ct

6: end for

To get a smaller competitive ratio at the expense of slightly higher recourse, we employ
the following natural extension: imagine the first t clients as the leftmost t leaves of a
balanced binary tree of depth dlog2 ke. If an arriving client is the last leaf of some subtree,
we unmatch all clients in the largest such subtree and re-introduce them as a single batch.
The competitive ratio would then be bounded by 2 log k since the matching at time t is
simply the combination of at most log k batches (based on the binary decomposition of t)
and by using Theorem 11. Further, any client is rematched at most log k times, since the
size of the batch it is part of doubles on every rematch.

Proposition 12 generalizes the result in Theorem 3 to give a trade-off between the cost
and recourse, and Proposition 13 proves that our analysis of Algorithm 2 is tight. The proofs
of these propositions appear in Appendix B.

I Proposition 12. Algorithm 2 with the constant 2 replaced by d, gives an (d − 1) logd k-
competitive algorithm with logd k-per client recourse. In particular, for any d = O(1) we get
O(log k)-competitive algorithm with O(log k)-per client recourse, and for d = kα (α ≤ 1), we
get an Õ(kα)-competitive algorithm with 1 + 1/α-per client recourse.

I Proposition 13. The cost-recourse tradeoff of Theorem 3/Proposition 12 is tight: for
d = 2, there is a sequence of instances where Algorithm 2 is Ω(log k)-competitive and has
Ω(log k) per-client recourse. Further, there is an increasing sequence {di}, such that with
d = di there is a sequence of instances where Algorithm 2 is Ω(d logd k)-competitive with
Ω(logd k) per-client recourse.

4 Online Matching on the Line Metric

In this section, we focus on the special case of a line metric, where, for all points x ∈ X , we
associate a location ` : X → R such that d(x, y) = |`(x)− `(y)|. We also assume without loss
of generality that all the clients and servers are in distinct locations on the line.

Our starting point is again the Permutation algorithm which, by itself can have Ω(k)
competitive ratio even on line metrics: see Figure 1a, where the distance between any
consecutive client and server is 12. Permutation would first match c1 to s1, and then c2
to s2 (the set {s1, s2} is server-optimal as it admits an optimal matching (c1, s2), (c2, s1)).
Continuing in this manner, Permutation would incur a total cost of Ω(k2), whereas the
optimal matching would have a cost of k. A natural fix would seem to be to re-match the
clients and servers in the existing matching to maintain an optimal matching at all times,
but as illustrated in the example in Figure 1b, this can lead to Ω(k) amortized recourse.

2 Even though in this example it seems that Permutation can perform well by breaking ties correctly, we
can modify the edge lengths very slightly to force the matchings, thus proving that no clever tie-breaking
can help the algorithm.
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M1
c1 s1
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(a) Permutation without
re-match.

M3
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M1
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(b) Permutation with full
re-match.
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c1 s1

c1 c2
s1s2

c1 c2c3
s1s2 s3

(c) Asymmetric Permutation
with re-match.

Figure 1 Illustrative examples of OMM-Line-Recourse.

One of our main observations is that we can view a matching on a line metric as
composed of forward and backward arcs between the matched clients and servers based on
their relative location (as in Figure 1a), and, as we formalize later, a matching between
a given client and server set is sub-optimal if and only if it contains overlapping forward
and backward arcs. Indeed, Permutation does no recourse but has large overlaps, and
always re-matching overlapping arcs output by Permutation yields an optimal solution
but with large recourse. Our idea is to balance the overlap and recourse by re-matching
overlapping pairs asymmetrically. When a new client ct arrives, let st be the new server that
Permutation brings in to the system. Then, if (ct, st) is a forward arc i.e. if `(ct) ≤ `(st),
our algorithm simply adds it as is, even if it overlaps with existing backward arcs. On the
other hand, when (ct, st) is a backward arc, we use rematches to maximally cancel portions
of this backward arc with overlapping portions of existing forward arcs. See Figure 1c for an
example whereM2 has undergone a re-matching, whileM3 has not.

While this re-matching process is unambiguous for the example in Figure 1c, in general,
there could be multiple ways of re-matching overlapping arcs inMt−1∪{ct, st}. We, therefore,
begin by defining a family of asymmetric maximally canceling algorithms in Section 4.1
and prove that all algorithms in this family incur the same cost. In Section 4.2, we study
one special algorithm, RecursiveCancel in this family which is the most amenable for
cost analysis and bound the competitive ratio of the entire family of algorithms by 3.
However, RecursiveCancel can incur a large Ω(k) recourse, and so our final algorithm
MinimumCancel in Section 4.3 further identifies a way of re-matching backward arcs
which minimally changes the existing matching. Using this property, we show that the
MinimumCancel algorithm has O(log k) amortized recourse, thereby proving Theorem 5.

Before going into the details of the algorithms, we first introduce a property of the
Permutation algorithm on the line metric that is useful:

I Lemma 14. If Permutation maintains edges (c1, s1), (c2, s2), . . . , (ct, st) at time t, then
any server st′ added by the algorithm at time t′ > t will lie outside all these arcs.

The proof follows from the server optimality of the Permutation algorithm and is
presented in Appendix B.

4.1 Preliminary Concepts and Notation
We begin by introducing a few concepts that are important for cost analysis of matching
on the line metric: forward and backward arcs, atomic intervals, and discrepancy. We end
the section by defining the family of asymmetric maximally canceling algorithms. Unless
otherwise stated, Ct = {c1, c2, . . . , ct} will denote the set of clients which have arrived by
time t, and St = {s1, s2, . . . , st} will denote the set of servers chosen by Permutation.

I Definition 15 (Forward and Backward Arcs). Let a client c be matched to server s in a
given matchingM. We call the edge (c, s) a forward arc −→c, s if `(c) ≤ `(s) and a backward
arc ←−s, c otherwise.

APPROX/RANDOM 2020
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We now note that in an optimal matching, no pair of forward and backward arcs cross.

I Proposition 16. Consider a set C of clients and a set S of servers with |C| = |S|. Then,
a matching M between C and S is optimal for the client-server set (C, S) if and only if,
for any forward arc −−−→c1, s1 ∈M and backward arc ←−−−s2, c2 ∈M, the intervals [`(c1), `(s1)] and
[`(s2), `(c2)] are disjoint.

Now, to compute the cost of any matchingMt between Ct ∪ St, our approach will be to
decompose the total cost into the contribution of what we call atomic intervals corresponding
to Ct ∪ St. Informally, the atomic intervals partition the line into open intervals between two
consecutive points in Ct ∪ St in the metric space.

I Definition 17 (Atomic intervals). For two nodes p1, p2 ∈ Ct ∪ St in the matching Mt at
time t, we call the open interval I = (`(p1), `(p2)) an atomic interval if and only if for any
other p ∈ Ct ∪St, it holds that `(p) /∈ (`(p1), `(p2)). We denote the set of all atomic intervals
at time t by AIt. We denote by |I| = |`(p1)− `(p2)| the length of the interval I.

Note that AIt depends only on the set Ct ∪ St, and grows in t as this set expands. We
call I ′ = (`(p′1), `(p′2)) a subinterval of I = (`(p1), `(p2)), denoted I ′ ⊆ I if `(p1) ≤ `(p′1) ≤
`(p′2) ≤ `(p2).

I Definition 18 (Discrepancy). For any atomic interval I ∈ AIt with its left end-point at
location l, we define its discrepancy at time t to be the excess number of servers to the left of
l in the currently used set of servers St: disct(I) := |St ∩ (−∞, l]| − |Ct ∩ (−∞, l]|.

The next lemma shows that the discrepancy of atomic intervals immediately gives the
cost of the optimal matching.

I Lemma 19. At any time t, and for any atomic interval I ∈ AIt, exactly |disct(I)| arcs
cross I in an optimal matching between Ct and St. Further, if disct(I) is positive (respectively,
negative), the direction of the crossing arcs is backward (resp., forward). Consequently, the
cost of an optimal matching is OPTt =

∑
I∈AIt

|disct(I)| · |I|.

While disct(I) quantifies the minimum number of arcs that must cross I in any feasible
matching, there could be many more arcs crossing I in the sub-optimal matching maintained
by our algorithm. To this end, for a given matchingMt between Ct∪St, and any subinterval
I ′ ⊆ I ∈ AIt, let nft (I ′) and nbt(I ′) denote the number of forward and backward arcs,
respectively, crossing I ′ at time t. The following is then easy to see.

B Claim 20. For a matchingMt, and any atomic interval I ∈ AIt, we have nbt(I)−nft (I) =
disct(I). Furthermore, the cost ofMt is cost(Mt) =

∑
I∈AIt

|nft (I) + nbt(I)| · |I|.

We are now ready to define the family of asymmetric maximally canceling algorithms for
OMM-Line-Recourse.

I Definition 21 (Asymmetric maximally canceling algorithm). We call an algorithm an asym-
metric maximally canceling algorithm if the sequence of matchings {Mt} produced by the
algorithm satisfies:
1. The server sets {St} are given by Permutation (with a deterministic tie breaking rule);
2. Denoting st as the new server added by Permutation at time t:

If (ct, st) is a forward arc, then no rematches are made. In other words, for all atomic
intervals I ∈ AIt which overlap with (`(ct), `(st)) we have: nft (I) = nft−1(I) + 1.
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Figure 2 Illustration of RecursiveCancel: The leftmost figure shows the initial matching –
(c, s) is the new backward arc and (c′, s′) is the forward arc chosen at step 9 of first iteration. The
center figure shows the matching at step 11 after the rematching. The edge (c′, s) becoems the new
backward arc, and (c′′, s′′) is the forward edge picked in step 9 for the next iteration where (c′, s)
and (c′′, s′′) are replaced by (c′′, s) and (c′, s′′) as in the rightmost figure.

If (ct, st) is a backward arc, we use it to cancel existing forward arcs as much as possible.
In other words, in the resulting matchingMt (after recourse), for all atomic intervals
I ∈ AIt which overlap with (`(st), `(ct)) we have: nft (I) = max{nft−1(I)− 1, 0}.
nft (I) is unchanged for all atomic intervals that do not overlap with (`(ct), `(st)).

Note that it suffices to define just nft as nbt(I) can be derived from nft (I) for all I
using Claim 20. Furthermore, the definition does not restrict how the rematches are
performed, but only that all asymmetric maximally canceling algorithms have the same
values of nft (I) and nbt(I), for all the atomic intervals. Claim 20 immediately gives:

B Claim 22. All asymmetric maximally canceling algorithms incur the same matching cost.

The next section gives a bound on this cost by focusing on a specific member in this
family by exploiting a useful invariant.

4.2 Algorithm RecursiveCancel for Bounding Cost
We now present our algorithm RecursiveCancel (Algorithm 3) and bound its cost. When
a new backward arc overlapping with existing forward arcs is added, RecursiveCancel
chooses the overlapping forward arc with the rightmost server and rematches the clients and
servers of these two arcs to elimate overlap. This procedure results in at most one remnant
backward arc (a strict suffix, i.e., server end, of the original backward arc) which can overlap
with existing forward arcs. RecursiveCancel then recurses on this remnant until there is
no overlap with a forward arc.

We begin with a couple of simple but useful observations about the behavior of rematches
made by RecursiveCancel.

I Lemma 23. Let (c, s) and (c′, s′) be two arcs defined in steps 8 and 9, respectively, of an
iteration of RecursiveCancel. Then, (i) the new edge (c′, s) added in step 11 is a backward
arc, thereby proving that the while loop is well-defined; and (ii) the edge (c, s′) added in step
10 is either a backward arc, or it is a suffix of the original forward arc (c′, s′).

Proof. From Lemma 14, we know that there are no free servers inside an arc added by
Permutation. Furthermore, since any arc in the current matching under RecursiveCancel
is a sub-arc of some original arc added by Permutation, throughout the execution of
RecursiveCancel algorithm there is never a free server inside an arc in the matchingMt.
Thus, c′ is to the right of s, otherwise the server s which is free inMt−1, is inside the arc
(c′, s′). The second part of the lemma can be proved by noting that the forward arc (c′, s′)
intersects the backward arc (c, s), and thus `(c′) < `(c). J
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Algorithm 3 Algorithm RecursiveCancel.

1: setM0 = ∅
2: for each client ct arriving at time t ≥ 1 do
3: let st be the server Permutation matches ct to, and let a := (ct, st)
4: if a is a forward arc, i.e., `(ct) < `(st) then
5: Mt =Mt−1 ∪ {a}
6: else . (ct, st) is a backward arc
7: while there exists a forward arc inMt−1 which overlaps with a do . a is the

current backward arc
8: let (c, s) := a

9: let (c′, s′) be the forward arc overlapping with a with the rightmost server s′
10: Mt−1 = {Mt−1 \ {(c′, s′)}} ∪ {(c, s′)}
11: set a := (c′, s) . From Lemma 23, a will be a backward arc for loop recursion
12: end while
13: Mt =Mt−1 ∪ {a} . a now has no overlapping forward arcs, and is added toMt

14: end if
15: end for

I Lemma 24. Suppose that at some time t, the algorithm adds a backward arc (c, s) to the
matchingMt (either by rematching an older edge in step 10 during the recursion, or as a
new edge in step 13) at the end of the recursion. Then, this arc does not overlap with any
existing forward arcs inMt.

Proof. The proof follows directly from the fact that we use the forward arc with the rightmost
server in the step 9 of the algorithm. J

We now try to quantify the excess cost of RecursiveCancel over the optimal solution
using the above-defined quantities. Indeed, if RecursiveCancel adds an edge (c, s) which
is a backward arc at some time step t, then from Lemma 24, we know that it does not
have any existing forward arc overlapping with it, and hence would not contribute to any
sub-optimality at this time. Hence, RecursiveCancel is sub-optimal only due to the
addition of forward arcs which have overlaps with existing backward arcs. These could
happen either in step 5 or in step 10. However, by Lemma 23, we also know that the forward
arcs added in step 10 are only suffixes of the original forward arcs, and so the excess cost
due to the rematched forward arc is only at most that of the original forward arc. Using this
intuition, we label each atomic interval of each forward arc as either redundant (i.e., cost
avoided by OPTt) or non-redundant (cost incurred by OPTt) as follows:

I Definition 25 (Redundant/non-redundant forward arcs with respect to atomic intervals).
Suppose at time t, client ct is matched to server st with a forward arc a := (ct, st) in step 5
of Algorithm 3. Then, the forward arc a is said to be redundant with respect to I ∈ [`(ct), `(st)]
if nbt−1(I) > nft−1(I), and non-redundant with respect to I otherwise. Alternatively, if a new
forward arc (c, s′) is added in step 10 of the recursion then it must be the suffix of some
forward arc (c′, s′) ∈Mt−1 (Lemma 23), and for any atomic interval I (or its subinterval),
the new arc simply inherits its status (redundant/non-redundant) from the status of (c′, s′)
with respect to I.
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Figure 3 Illustration of Definition 25. In this example, when forward arc a = (c5, s5) is added, a

is redundant w.r.t. atomic intervals in [`(s1), `(c1)] and [`(s4), `(c4)] and non-redundant with respect
to others.

We are now ready to bound the cost of RecursiveCancel. Indeed, we first show
in Lemma 26 that the semantic meaning of redundant or non-redundant forward arcs with
respect to atomic intervals is preserved throughout the algorithm. That is, for any atomic
interval I, it will hold that there are exactly min(nft (I), nbt(I)) many forward arcs that are
redundant with respect to I, since these can be avoided in an optimal matching.

I Lemma 26. At any time t and for any atomic interval I, there are exactly min(nft (I), nbt(I))
forward arcs crossing I that are redundant w.r.t I.

Proof. We prove the following two claims inductively on the number of client-server pairs
added:
1. In any atomic interval I ∈ AIt, the number of forward arcs that are redundant with

respect to I is equal to the minimum of the number of forward arcs and the number of
backward arcs crossing I.

2. In any atomic interval I, if there exist two forward arcs a1 = (c1, s1) and a2 = (c2, s2)
crossing the interval I such that a1 is redundant w.r.t. I, and a2 is non-redundant w.r.t.
I, then `(s2) ≥ `(s1).

Let a = (c, s) be the client-server pair given by Permutation. Consider the two cases,
adding a forward arc and a backward arc:
1. Suppose that s is to the right of c i.e. the case when we add the forward arc directly. If

in an atomic interval I between c and s, there are fewer forward arcs than backward arcs
before adding c and s, then a is redundant w.r.t. I. Observe that this ensures that in
such an interval I, the number of forward arcs that are redundant w.r.t. I increases, and
is still equal to the minimum of the number of forward and the number of backward arcs
crossing the interval. In intervals I where the number of forward arcs crossing I is at
least the number of backward arcs crossing I before adding c and s, a is non-redundant
w.r.t. I. In this case, the minimum of forward and backward arcs does not increase, and
thus the claim continues to remain valid.
For the second claim: If a is redundant w.r.t. an atomic interval I, then using claim 1
on the instance before adding a, we can infer that all the forward arcs crossing I are
redundant w.r.t I. Thus, claim 2 is void in this case. If a is non-redundant w.r.t. an
atomic interval I, we need to show that the new server is to the right of any server whose
forward arc is redundant w.r.t. I. This follows directly from the fact that an unmatched
server cannot be present in the middle of an arc (Lemma 14), and hence, s is to the right
of the server of any forward arc that intersects I.

2. Suppose that s is to the left of c i.e. the case when we recursively add backward arc(s).
In this case, in an atomic interval I ∈ [`(s), `(c)], either a backward arc is added if there is
no forward arc crossing I, or if there is at least one forward arc crossing I, the number of
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forward arcs crossing I reduces by one. The intervals outside [`(s), `(c)] are not affected.
From Lemma 23, we know that the forward arcs corresponding to a server only shorten.
Thus, the second claim trivially follows.
The algorithm deletes a forward arc from the atomic interval I ∈ [`(s), `(c)] if there
exists at least one forward arc crossing I before adding the new client c. If the number
of forward arcs crossing I is at most the number of backward arcs crossing I, then all
the forward arcs crossing I are marked redundant w.r.t. I, and we delete one such
arc interval. The property of claim 1 still holds. Similarly, the property holds if there
are no backward arcs are crossing I in which case, all the forward arcs crossing I are
marked non-redundant. Thus, it remains to show that if there are both forward arcs
that are labeled non-redundant and also ones that are marked redundant w.r.t. I cross
I, our algorithm makes sure after the changes, one of the forward arc that is labeled
non-redundant no longer crosses I. We use claim 2 here. If there are forward arcs a1 and
a2 cross I and a1 is redundant w.r.t I while a1 is non-redundant w.r.t I, note that the
server of a2 is to the right of the server of a1.
Recall that for any atomic interval I, there is at most one forward arc that crosses I is
deleted. If a forward arc a that is redundant w.r.t. I is deleted, when the arc is selected
in Line 9 of the algorithm, it has the farthest server among all arcs that intersect the
backward arc. This combined with the above fact implies that if a forward arc that is
redundant w.r.t. I is deleted, then there is no forward arc that is marked non-redundant
crosses I. Thus, if there are forward arcs that are labeled non-redundant crossing I, our
algorithm deletes one of them, which completes the proof of claim 1 in the case when we
add a backward arc.

The both cases together complete the proof of the two claims, and in particular, of the
original lemma. J

In order to analyze the cost of the algorithm, we define the redundant cost of a forward arc
a = (c, s) at time t as the sum of the lengths of all the atomic intervals I ∈ AIt such that a
is redundant w.r.t. I. Similarly, the non-redundant cost of a forward arc a = (c, s) is the
sum of the lengths of all the atomic intervals I ∈ AIt such that a is non-redundant w.r.t. I.
In Lemma 27, we bound the total redundant cost of all the forward arcs in terms of their
non-redundant cost.

I Lemma 27. At any time t, the redundant cost of any forward arc is at most the non-
redundant cost of that forward arc.

Proof. We will prove that for any forward arc a, at any time t, the redundant cost of a is
at most the non-redundant cost of a at time t. Summing over all forward arcs will then
complete the proof of Lemma 27.

To show this, we will in fact show the following: if RecursiveCancel adds a forward
arc a = (ct, st) in step 5 at time t, then in any suffix of a, the redundant cost is at most the
non-redundant cost. This suffices for us since we know from Lemma 23 that re-matched
forward arcs are only suffixes of existing forward arcs, and their redundant/non-redundant
labels remain the same from Definition 25.

Henceforth, we assume that at time t, the client ct has arrived, and Permutation has
chosen to match it using the server st by a forward arc, and RecursiveCancel has done
the same. Let A = Ct−1 ∪ St−1 denote the set of clients and servers prior to adding ct and
st. Let x ∈ [`(ct), `(st)]. Consider the suffix [x, `(st)] of the arc (ct, st), and introduce a
virtual client c′ at x. We claim that the optimal cost of matching clients and servers in
A∪ {c′, st} is at least the optimal cost of matching clients and servers in A. Indeed, if this is
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not the case, then we can produce a cheaper matching for the clients in Ct−1 using a subset
of servers in St−1 ∪ {st} by ignoring the client c′, which is a contradiction to Proposition 9
that Permutation maintains a solution that is server-optimal.

When we add {c′, st} to A, by Lemma 19, the increase in the cost of optimal matching
occurs precisely at the intervals where the number of clients to the left is greater than the
number of servers (after adding c′ and st). And in other intervals in [x, `(st)], the cost paid
by the optimal matching decreases. However, this exactly corresponds to the redundancy
and non-redundancy of the forward arc (ct, st) with respect to the intervals inside [x, `(st)].
The intervals where the cost of optimal matching increases are the ones with respect to which
the arc is non-redundant, and the intervals where the cost of optimal matching decreases are
the ones with respect to which the arc is redundant. J

I Theorem 28. At any point of time, the cost of the matching of Algorithm 3 (Recurs-
iveCancel) is at most 3 times the cost of the optimal offline matching OPTt.

Proof. For the sake of analysis, for every atomic interval I ∈ AIt, let us label an arbitrary
set of min(nft (I), nbt(I)) backward arcs as redundant with respect to I, and the rest as
non-redundant with respect to I. Then, from Lemma 26, there will be an equal number of
redundant backward arcs and redundant forward arcs with respect to any atomic interval
I ∈ AIt. Using this, we conclude that, for any atomic interval I ∈ AIt, there are exactly
|disct(I)| non-redundant arcs (including both forward and backward) w.r.t I. Indeed, if
nft (I) ≥ nbt(I), then there are nbt(I) redundant forward (and redundant backward) arcs
by Lemma 26, and the remaining nft (I)− nbt(I) forward arcs crossing I are non-redundant
w.r.t I. But this is precisely the (absolute value of) the disct(I) by Claim 20. A similar
argument holds when nbt(I) > nft (I).

For ease of notation, let us denote the total non-redundant cost of all the forward arcs (resp.
backward) maintained by the algorithm at time t as cost(Mt, NF ) (resp. cost(Mt, NB)).
Similarly, we denote the total redundant cost of all the forward arcs (resp. backward) as
cost(Mt, RF ) (resp. cost(Mt, RB)). Now, from Lemma 19, and by noting that |disct(I)| is
equal to the number of arcs crossing I which are non-redundant w.r.t. I, we have that

cost(M∗t ) =
∑
I

|I||disct(I)| = cost(Mt, NF ) + cost(Mt, NB) .

On the other hand, the cost ofMt maintained by RecursiveCancel is at most

cost(Mt) = cost(Mt, RF ) + cost(Mt, RB) + cost(Mt, NF ) + cost(Mt, NB)
= 2 · cost(Mt, RF ) + cost(Mt, NF ) + cost(Mt, NB)
≤ 2 · cost(Mt, NF ) + cost(Mt, NF ) + cost(Mt, NB)
≤ 3 (cost(Mt, NF ) + cost(Mt, NB)) ≤ 3cost(M∗t ) = 3OPTt .

The first equality is from the definition of redundant backward arc w.r.t. atomic intervals
and the first inequality is due to Lemma 27. J

4.3 Algorithm MinimumCancel
Even though the RecursiveCancel algorithm has a good competitive ratio, there are
instances in which the algorithm performs Ω(k) rematches per client on average. We illustrate
one such example in Appendix A. We, therefore, present another algorithm MinimumCancel
which also satisfies Definition 21 and then bound its recourse.
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Algorithm 4 Algorithm MinimumCancel.

1: for each client ct arriving at time t do
2: let st be the server Permutation matches ct to
3: if (ct, st) is a forward arc then
4: Mt =Mt−1 ∪ (ct, st)
5: else
6: let At denote all forward arcs −→c, s ∈Mt−1 with `(c) ∈ [`(st), `(ct)]
7: let Ft = ∪−→c,s∈At

[`(c), `(s)] denote the union of line segments contained within At,
and let Ot = Ft ∩ [`(st), `(ct)] denote the overlapped portion with ←−−st, ct

8: let A∗t denote a minimal subset of At whose union covers the overlapped region Ot
9: order the edges in A∗t as (c′1, s′1), (c′2, s′2), . . . , (c′m, s′m) such that `(c′1) ≤ `(c′2) . . . ≤
`(c′m)

10: let Ãt = {(c′2, s′1), (c′3, s′2), . . . , (c′m, s′m−1)}
11: updateMt = {Mt−1 \A∗t } ∪ Ãt ∪ {(ct, s′m)} ∪ {(c′1, st)}
12: end if
13: end for

The crux of the algorithm is to cancel parts of forward arcs that overlap with the new
backward arc in a manner that minimally changes the existing solution. We do this by
identifying a minimal arc cover of the overlapping regions and perform the rematch only
within the covering set of arcs. Figure 4a gives an illustration of the existing set of arcs
when a new backward arc ←−−st, ct is added. Figure 4b shows the minimal cover chosen in step 8
of the algorithm, and the final rematch will contain the arcs

←−−−
st, c

′
1,
−−−→
c′2, s

′
1 and

−−−→
ct, s

′
2. Figure 4c

shows an example of a non-minimal cover where there are three overlapping forward arcs.

I Lemma 29. When a new client ct arrives, the re-matched set of forward arcs Ãt computed
in step 10 of Algorithm 4 are mutually disjoint.

Proof. We first claim that in the minimum cover A∗t , no three forward arcs intersect. Suppose
for contradiction that there are forward arcs a1 = −−−→c1, s1, a2 = −−−→c2, s2, a3 = −−−→c3, s3 intersect at
a point. Without loss of generality, let a1 be the arc with left most client and a3 be the
arc with right most server. Then, the union of [`(c1, `(s1))] and [`(c3), `(s3)] fully contains
[`(c2), `(s2)], thus making the arc a2 redundant in the cover, contradicting the minimality of
the cover A∗t . It is easy to conclude that the arcs (c′2, s′1), (c′3, s′2), . . . , (c′m, s′m−1) are mutually
disjoint. The minimal cover property is crucial as illutrated in Figure 4c; the disjointness
property of residual forward arcs does not hold for the non-minimal cover. J

Using Lemma 29, we can bound the recourse of the MinimumCancel algorithm.

I Theorem 30. After the arrival of k clients, the total recourse of MinimumCancel
algorithm is at most O(k log(k)).

ctst Ot

(a) A backward arc and overlap-
ping forward arcs.

ctst Ot

c
′

1
s
′

1

c
′

2
s
′

2

(b) A minimal cover of Ot (in
dashed orange).

ctst Ot

(c) A non-minimal cover of Ot (in
dashed orange).

Figure 4 Illustration for Algorithm 4. Forward arcs in At are shown with thick width.
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Proof. Note that once a client is matched by a backward arc, it is not going to get re-matched
later. We now bound the number forward-arc to forward-arc rematches.

For a vertex (either client or server) z, let us define a “length” len(z) parameter which is
equal to the number of vertices (all vertices which are part of the eventual matching after all
the k clients have arrived) lying strictly inside the arc defined by z and its currently matched
server/client. Therefore, before the start of the algorithm, the len value of every vertex is at
most 2k. We now define the level of vertex z as blog len(z)c so that the total initial level of
all the vertices is at most 2k(1 + log k). Suppose that a client c is currently matched to s
by using a forward arc, and in an iteration gets re-matched to s′ and s gets re-matched to
c′ both again using forward arcs. At least one of len(c) or len(s) should have decreased by
at least a factor of 2 since these are now disjoint arcs from Lemma 29. And therefore the
total level of c and s at least decreases by 1. In other words, on every re-match, the total
level decreases by at least 1, which together with the bound on the total initial level gives
the number of such re-matches to be at most 2k(1 + log k). If at least one of c or s gets
re-matched by a backward arc, its match does not change from then on. Thus, the number
of these type of re-matches are at most 2k. Thus, in total, the recourse of the algorithm is
O(k log k). J

5 Conclusion and Open Questions

The current work (together with the concurrent work [21]) represents the first attempt at
exploring the trade-off between recourse and competitive ratio in online metric matching, and
understanding the optimal trade-offs is an interesting direction to pursue. Concretely, can we
get o(log k)-competitive (even randomized) algorithms with polylog(k)-recourse for general
metrics? This would be interesting given the Ω(log k)-lower bounds for algorithms without
recourse. Similarly, obtaining or refuting O(1)-competitive algorithms with O(1)-recourse
on line metrics is a very interesting question. Finally, extending our results to specialized
inputs such as random order arrivals or unknown i.i.d. models would be interesting, as it
better captures beyond-worst-case scenarios.
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A Bad Example for Recourse of RecursiveCancel

We illustrate the fact that RecursiveCancel algorithm can have bad recourse in the
following example:

c1 c2 c3 c4 s1 s2 s3 s4 c5s5

c1 c2 c3 c4 s1 s2 s3 s4 c5s5

Recursive cancel

c1 c2 c3 c4 s1 s2 s3 s4 c5s5

c1 c2 c3 c4 s1 s2 s3 s4 c5s5

c1 c2 c3 c4 s1 s2 s3 s4 c5s5

c1 c2 c3 c4 s1 s2 s3 s4 c5s5

Minimum Cancel

In this instance, there are four clients c1, c2, c3 and c4, `(c1) < `(c2) < `(c3) < `(c4) currently
matched using forward arcs to s1, s2, s3 and s4 respectively such that `(c4) < `(s1) < `(s2) <
`(s3) < `(s4). A new client c5 arrives to the right of s4 and Permutation outputs s5 to
the left of c1 as the new server. Since the arc (c5, s5) is backward, the algorithms try to fix
the matching. The RecursiveCancel i.e. Algorithm 3 changes the matching completely
to obtain (c2, s1), (c3, s2), (c4, s3) as the new forward arcs, where as Algorithm 4 changes
only c4’s matching and keeps c2 and c3 intact. If there are k such forward arcs, and if k
backward arcs arrive, Algorithm 3 has a recourse of Ω(k2) where as Algorithm 4 has only
O(k) recourse.

B Missing Proofs

Proof of Proposition 12. For the sake of simplicity, we stick with d = 2, and the same
proof holds for larger d as well. At any time t, we view our algorithm as simulating the
Permutation algorithm for a certain batch sequence. Indeed, note, the solution maintained
inMt is exactly what Permutation maintains when fed O(log t) batches of consecutive
clients corresponding to the different powers-of-two 2i−1 (in decreasing order) such that the
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ith bit from right in the binary representation of t is 1. Theorem 11 then bounds the cost.
The recourse is bounded since any client is involved in a re-matching of size 2i at most once
for all i. J

Proof of Proposition 13. For simplicity, we prove the proposition for the case d = 2. An
alternate view of Algorithm MultiScalePermutation is the following: Let the leaves of a
complete balanced tree of degree d denote the k client arrivals. Whenever the arrival of a
client completes a subtree (that is, it is the rightmost leaf in some subtree), the matching for
the clients and their currently matched serves is re-solved optimally.

Our lower bound instance will be on the line metric and consist of two parts: a core
instance and a auxiliary instance. The subsequent client arrival will be chosen as the next
arrival from either the core or the auxiliary instance so as to obtain a large recourse cost as
we describe soon. The servers for the core instance will at locations ±1,±2,±3, . . . ,±k/2,
and the servers for the auxiliary instance will be k servers at location 10k. The client arrival
sequence in the core instance will be ε,−1− ε, 1 + ε,−2− ε, 2 + ε,−3− ε, 3 + ε, . . .; the client
arrival sequence for the auxiliary instance is 10k, 10k, 10k, . . ..

Note that the above instance have been set up so that on the arrival of a client from
the core instance, the server added by Permutation to the matching is also from the core
instance, and similarly for a client from the auxiliary instance a server from the auxiliary
instance is added. Further, the same is done by OPTso that it suffices to study the cost and
recourse for the arrivals in the core instance.

To decide whether the next client arrival happens from the core or the auxiliary sequence,
we first check whether the arrival completes any subtree. If it does, denote the largest subtree
it completes by T , and by T1, . . . , Td the d subtrees of the root of T (so that the new arrival
is the rightmost leaf of Td). If the number of core arrivals so far in Td is even, then the new
arrival is also chosen from the core sequence. Otherwise the new arrival is chosen from the
auxiliary chosen.

We first prove the recourse bound. The sequence in which Permutation adds servers
when the clients arrive from the core sequence is 1,−1, 2,−2, . . .. In particular, the new client
and server are added on the opposite sides of a central matching that is built online. The
construction of the client arrival sequence ensures that when MultiScalePermutation
resolves the optimal matching for subtree T = (T1, T2) the number of client arrivals in T2 is
odd, and hence batch resolving ends up rematching all clients in T1 ∪ T2 (except at most
one). (In the general d case we have to assume d is odd, in which case it is easy to show that
all the subtrees T1, T2, . . . , Td have odd number of core clients, and thus a d−1

d fraction of
clients are rematched in the subtree T .)

To study cost, consider the matching immediately after the arrival of the ith client, and
let i =

∑`
j=0 d

jkj (0 ≤ kj ≤ d − 1) denote the base d representation of i. In particular,
consider the case kj = 1 for 1 ≤ j ≤ `. The matching consists of one batch of d` clients each,
followed by 1 batch of d`−1 clients and so forth. The cost of OPTis at most i. However, the
cost of MultiScalePermutation is Ω(i · `) = Ω(i logd i). J

Proof of Lemma 14. Recall that Permutation maintains an offline optimal matching
M∗t at time t, and when a client ct arrives, we pair it with the server that is present in
M∗t \ M∗t−1. In fact, the symmetric difference of M∗t and M∗t−1 is an augmenting path
starting at ct and ending at st. Let it be denoted by P = ct, sp1 , cp1 , . . . , spm

= st. The edges
(ct, sp1), (cp1 , sp2), . . . , (cpm−1 , spm

) are the new edges, and the rest (sp1 , cp1), (sp2 , cp2), . . . ,
(spm−1 , cpm−1) are the old edges. Recall that the cost ofM∗t is at least that ofM∗t−1, and
thus, in the augmenting path, the cost of new edges is at least that of the old edges.
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We claim a stronger property that in any suffix of the augmenting path, the cost of the new
edges is at least that of old edges. Consider a suffix spi

, cpi
, . . . , spm

. If the cost of new edges
is less than the old edges, we can change the old matching from (spi

, cpi
), . . . , (spm−1 , cpm−1)

to (cpi , spi+1), . . . , (cpm−1 , spm) while keeping the rest of the edges intact to get a matching
with cost less thanM∗t−1, contradicting the fact thatM∗t−1 is an optimal matching for the
first t− 1 clients. Now, suppose that there is a free server s′ in between ct and st. Consider
the prefix of the augmenting path P starting at ct and ending at s′. Let this prefix be
denoted by P ′. LetM′t be the matching obtained fromM∗t−1 by augmenting with the new
augmenting path P ′. Since the cost of new edges is at least that of old edges in any suffix
of the original augmenting path, the difference between new edges and old edges in P ′ is
at most that of the original augmenting path P . Thus, the cost of the matchingM′t is at
most that ofM∗t . Furthermore, as we have assumed that the location of all the clients and
servers are distinct, the cost ofM′t is strictly smaller thanM∗t , contradicting the fact that
M∗t is an optimal matching of first t clients. This proves the claim that when we execute
Permutation on the line metric, there are no free servers inside any arc. J

C Lower bounds

In this section, we present our lower bound for OMM on general metrics.

I Theorem 31. Suppose that there exists an algorithm for OMM such that for every client c,
the number of servers s such that c is matched to s at some point of execution of the algorithm
is at most C, for an absolute constant C. Then, the competitive ratio of the algorithm is at
least Ω(log(n)).

Proof. We first describe the hard instance for OMM that we use to prove the lower bound.
The underlying metric space is the star metric i.e. there exists a node v0 that is at the
center of the star, and a set of nodes v1, v2, . . . , vn such that d(v0, vi) = 1 for all i ∈ [n], and
d(vi, vj) = 2 for all i, j ∈ [n], i 6= j. For every i ∈ [n], there is a server si at vi. For each time
t = 0, 1, . . . , n − 1 a single client ct arrives at a point in the metric space. First, at t = 0,
the client c0 arrives at v0. The next clients arrive at the location of the server just used by
the algorithm. Suppose that the algorithm matches c0 to si. Then, c1 arrives at vi. After t
clients have arrived and have been matched by the algorithm, consider the server matched
to c0- let it be si1 . Let si2 be the server matched by the algorithm to the client at vi1 , and
so on till there is no client yet arrived at vik . Then, in our instance, at time t, a new client
arrives at vik .

Note that all the clients arrive at different locations in the metric space. This implies that
at any point of time t, the offline optimal algorithm cost is equal to 1. We can simply match
each client ci other than c0 to the server si, and match c0 to an arbitrary unused server.

Suppose that for each client c, the number of servers s such that (c, s) is part of the
matching of the algorithm at some point, is at most C. Then, we claim that there is a time t
such that the online algorithm has cost at least Ω(log(n)) at time t. LetMt, t = 0, 1, . . . , n−1
denote the matching maintained by the algorithm after time t. We consider a new algorithm
that maintains a set of matchings M ′t , t = 0, 1, . . . , n− 1 after time t. For every time t, we
obtain M ′t from Mt as follows: Let M = Mt. While there exists a client c located at vi
matched in M to a server s at vj 6= vi, but the server si is not used in M , we rematch c to
si in M . Note that this process terminates in at most n steps. When this process can no
longer proceed, we output M ′t = M . The cost of the matching M ′t is at most the cost of Mt,
as every iteration of the above procedure only decreases the cost of the matching. For every
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client c, the number of servers s such that c is matched to s in some M ′t , is at most C + 1.
Finally, the new algorithm that maintains the matchings M ′t has a key property that at any
time t: the matching M ′t can be described as a path: (c0, si1), (c1, si2), . . . , (ct, sit+1) such
that cj and sij are at the same location.

We now claim that there exist some time t such that the size of M ′t is at least Ω(log(n)),
which proves the required lower bound. We define a directed graph G = (V,E). The vertex
set of the graph V is equal to {0, 1, . . . , n}. There is an edge from i to j if for some time t,
the client ci is matched to the server sj in M ′t . The out-degree of every node is at most C + 1
in G. We also define the graphs G0, G1, . . . , Gn−1 as follows: The vertex set of Gk is the
same as G for every k. There is an edge from i to j in Gk if client ci is matched to sj in M ′k.
It follows from the definitions that for every k ∈ {0, 1, . . . , n− 1}, Gi is a subgraph of G.

Note that for each k, the graph Gk is a path that starts at 0 and ends at the index of the
location of the client ck. Thus, all the graphs G0, G1, . . . , Gn−1 are different path subgraphs
of G all of which start at vertex 0 and end at a different vertex in G. As the out-degree of
every vertex is at most C + 1 in G, the number of distinct paths of length at most l in G
starting at 0 is at most (C + 1)l. Thus, there should exist at least one path whose length is

log(n)
log(C+1) = Ω(log(n)). As the length of the subgraph Gi denotes the cost of the matching
M ′i , we get the required lower bound on the competitive ratio. J
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