51 research outputs found

    Generalizations of tournaments: A survey

    Get PDF

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    On d-panconnected tournaments with large semidegrees

    Get PDF

    Hamiltonian degree sequences in digraphs

    Get PDF
    We show that for each \eta>0 every digraph G of sufficiently large order n is Hamiltonian if its out- and indegree sequences d^+_1\le ... \le d^+_n and d^- _1 \le ... \le d^-_n satisfy (i) d^+_i \geq i+ \eta n or d^-_{n-i- \eta n} \geq n-i and (ii) d^-_i \geq i+ \eta n or d^+_{n-i- \eta n} \geq n-i for all i < n/2. This gives an approximate solution to a problem of Nash-Williams concerning a digraph analogue of Chv\'atal's theorem. In fact, we prove the stronger result that such digraphs G are pancyclic.Comment: 17 pages, 2 figures. Section added which includes a proof of a conjecture of Thomassen for large tournaments. To appear in JCT

    A new framework for analysis of coevolutionary systems:Directed graph representation and random walks

    Get PDF
    Studying coevolutionary systems in the context of simplified models (i.e. games with pairwise interactions between coevolving solutions modelled as self plays) remains an open challenge since the rich underlying structures associated with pairwise comparison-based fitness measures are often not taken fully into account. Although cyclic dynamics have been demonstrated in several contexts (such as intransitivity in coevolutionary problems), there is no complete characterization of cycle structures and their effects on coevolutionary search. We develop a new framework to address this issue. At the core of our approach is the directed graph (digraph) representation of coevolutionary problem that fully captures structures in the relations between candidate solutions. Coevolutionary processes are modelled as a specific type of Markov chains ? random walks on digraphs. Using this framework, we show that coevolutionary problems admit a qualitative characterization: a coevolutionary problem is either solvable (there is a subset of solutions that dominates the remaining candidate solutions) or not. This has an implication on coevolutionary search. We further develop our framework that provide the means to construct quantitative tools for analysis of coevolutionary processes and demonstrate their applications through case studies. We show that coevolution of solvable problems corresponds to an absorbing Markov chain for which we can compute the expected hitting time of the absorbing class. Otherwise, coevolution will cycle indefinitely and the quantity of interest will be the limiting invariant distribution of the Markov chain. We also provide an index for characterizing complexity in coevolutionary problems and show how they can be generated in a controlled mannerauthorsversionPeer reviewe
    • …
    corecore