Hamiltonicity, Pancyclicity and Full Cycle Extendability in Multipartite Tournaments *

Zan-Bo Zhang ${ }^{1,3 \dagger}$ Xiaoyan Zhang ${ }^{2,3 \ddagger}$, Gregory Gutin ${ }^{4 \S}$, Dingjun Lou ${ }^{5 \boldsymbol{4},}$
${ }^{1}$ School of Information Technology, Guangdong Industry Polytechnic, Guangzhou 510300, China
${ }^{2}$ Institute of Mathematics \& School of Mathematical Science, Nanjing Normal University, Nanjing, 210023, China
${ }^{3}$ Faculty of EEMCS, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
${ }^{4}$ Department of Computer Science, Royal Holloway, University of London, Egham, TW20 0EX, UK
${ }^{5}$ Department of Computer Science, Sun Yat-sen University, Guangzhou 510275, China

Abstract

A digraph D with n vertices is Hamiltonian (pancyclic, vertex-pancyclic, respectively) if D contains a Hamilton cycle (a cycle of every length $3,4, \ldots n$, for every vertex $v \in V(D)$, a cycle of every length $3,4, \ldots n$ through v, respectively.) It is well-known that a strongly connected tournament is Hamiltonian (Camion 1959), pancyclic (Harary and Moser 1966), and vertex pancyclic (Moon 1968). A digraph D is cycle extendable if for every non-Hamiltonian cycle C of D, there is a cycle C^{\prime} such that C^{\prime} contains all vertices of C plus another vertex of D. A cycle extendable digraph is fully cycle extendable if for every vertex $v \in V(D)$, there exists a cycle of length 3 through v. Note that full cycle extendability is a stronger property than vertex pancyclicity. Hendry (1989) showed that not every strongly connected tournament is fully cycle extendable and characterized an infinite wide class of strongly connected tournaments, which are not fully cycle extendable.

A k-partite tournament is an orientation of a k-partite complete graph (for $k=2$, it is called a bipartite tournament). Gutin (1984) and Häggkvist and Manoussakis (1989) characterized Hamiltonian bipartite tournaments. A bipartite digraph D with n vertices is even pancyclic (even vertex pancyclic, respectively) if D contains a cycle of every even length $4,6, \ldots, n$ (a cycle of every even length $4,6, \ldots, n$ through v for every $v \in V(D)$, respectively). Beineke and Little (1982) and Zhang (1984) proved that every bipartite tournament is even pancyclic and even vertex pancyclic, respectively, if and only if it is Hamiltonian and does not belong to a well-defined infinite class of regular bipartite tournaments. We prove that unlike the case of tournaments, every even pancyclic bipartite tournament is fully cycle extendable. We show that this result cannot be extended to k-partite tournaments for any fixed $k \geq 3$ (where we naturally replace even vertex pancyclicity by vertex pancyclicity).

Key words: hamiltonicity, full cycle extendability, pancyclicity, vertex pancyclicity, bipartite tournaments, multipartite tournaments.

1 Introduction

In this paper, we consider directed and undirected graphs. When it is clear from the context which kind of graphs is considered or the definition/result is applicable to both kinds of graphs, we will omit the adjectives directed and undirected. In digraphs, all considered cycles and paths will be directed and thus we will simply call them cycles and paths.

[^0]A Hamiltonian cycle is a cycle in a graph which passes through all vertices. A graph is Hamiltonian if it contains a Hamiltonian cycle. A graph G of order n is pancyclic if it contains cycles of lengths $3,4, \ldots n$, and G is vertex-pancyclic if every vertex of G is contained in cycles of lengths $3,4, \ldots n$. A graph G is cycle extendable if G is not acyclic and for every non-Hamiltonian cycle C in G there is a cycle C^{\prime} whose vertices are all vertices of C plus another vertex. We will call G fully cycle extendable if it is cycle extendable and for every $v \in V(D)$, there is a cycle of length 3 through v. Full cycle extendability is a significantly stronger property than pancyclicity and vertex pancyclicity since full cycle extendability requires several vertices rather than none or just one to be on the cycle.

Tournaments and Multipartite Tournaments It is well-known that a tournament is Hamiltonian (pancyclic, vertex pancyclic, respectively) if it is strongly connected as proved by Camion [7] (Harary and Moser [24], Moon [25], respectively). In what follows, we will often denote the fact that $x y$ is an arc by $x \rightarrow y$. Moreover, for vertex subsets or subgraphs X and Y of a digraph, $X \rightarrow Y$ will mean that $x \rightarrow y$ for every $x \in X$ and $y \in Y$. Hendry [18] showed that a strongly connected (and thus Hamiltonian) tournament is fully cycle extendable unless it belongs to the following family \mathcal{T} of tournaments: a tournament $T=(V, A)$ is in \mathcal{T} if V can be partitioned into three non-empty sets W, X, and Y such that $|W| \geq 2, T[W]$ is strong, $W \rightarrow X$ and $Y \rightarrow W$. Note that \mathcal{T} is quite a wide class of tournaments. For more information on tournaments, see, e.g., Chapter 2 of a recent edited volume [4].
In this paper, we focus on multipartite tournaments, which are generalizations of tournaments. A multipartite tournament or k-partite tournament is an orientation of a k-partite complete graph, and thus k-partite tournaments are an extension of tournaments to k-partite graphs. When $k=2, k$ partite tournaments are called bipartite tournaments. Many results on paths and cycles in multipartite tournaments (including bipartite tournaments) are collected in Chapter 7 of a recent edited volume [28].
Hendry's characterization of fully cycle extendable tournaments in [18] implies that for every $k \geq 5$ there exists a finite positive number of k-partite tournaments which are pancyclic but not cycle extendable. The following result extends this fact to $k \geq 3$ and infinite number of such k-partite tournaments. We will see shortly that the case of $k=2$ is quite different.

Theorem 1.1. For every $k \geq 3$, there is an infinite number of k-partite tournaments that are pancyclic but not cycle extendable.

In bipartite graphs G, the analog of pancyclicity is even pacyclicity, where only cycles of length $4,6, \ldots, n$ are required (n is the order of G). Similarly, one defines even vertex pacyclicity and full even cycle extendability. A cycle factor is a disjoint collection of cycles covering all vertices of the graph. Clearly, a Hamiltonian cycle is a cycle factor with just one cycle. Jackson [19] proved a sufficient condition for a bipartite tournament to be Hamiltonian. Hamiltonian bipartite tournaments were characterized by Gutin [13] and, independently, by Häggkvist and Manoussakis [16] as follows.

Theorem 1.2. Any bipartite tournament T is Hamiltonian if and only if it is strong and has a cycle factor.

One of the most important implications of Theorem 1.2 is that Hamiltonicity in bipartite tournaments can be decided in polynomial time $[13,14,16,22]$.

Let $T(r, r, r, r)$ be a bipartite tournament whose vertex set can be partitioned into four sets V_{0}, V_{1}, V_{2} and V_{3}, each of size r, such that $V_{0} \cup V_{2}$ and $V_{1} \cup V_{3}$ are the parts of the bipartition, and $V_{i} \rightarrow V_{i+1}$ for $i \in\{0,1,2,3\}$ where $V_{4}=V_{0}$. The following characterization of even pancyclic and even vertexpancyclic bipartite tournaments were obtained by Beineke and Little [5] and K. M. Zhang (see, e.g., $[2,28]$), respectively. (The even vertex-pancyclicity result was proved independently by Häggkvist and Manoussakis [16].)

Theorem 1.3. A bipartite tournament is even pancyclic as well as even vertex-pancyclic if and only if it is Hamiltonian and is not isomorphic to $T(r, r, r, r)$ for any $r \geq 2$.

The following theorem is the main result of this paper. It shows that, in the sharp contrast to tournaments and k-partite tournaments with $k \geq 3$, every even pancyclic bipartite tournament is fully cycle extendable. Theorem 1.4 is a significant strengthening of Theorem 1.3.

Theorem 1.4. A bipartite tournament is fully cycle extendable if and only if it is Hamiltonian and is not isomorphic to $T(r, r, r, r)$ for any $r \geq 2$.

Results on Other Classes of Graphs Apart from those on k-partite tournaments, there have been many results in the literature linking Hamiltonicity, pancyclicity, vertex pancyclicity, and/or fully cycle extendability. There are many results on Hamiltonian and pancyclic undirected graphs, see e.g. survey papers $[10,11,12]$ of Gould. There are less such results on digraphs (see e.g. [2, 20, 29]). One of the first sufficient conditions for Hamiltonicity was Dirac's theorem [9], which asserts that every graph of order $n \geq 3$ and minimum degree at least $n / 2$ is Hamiltonian. This theorem was generalized by Bondy [6], who showed that the same assumptions imply that either G is pancyclic or n is even and G is isomorphic to $K_{n / 2, n / 2}$. Hendry [17] showed that Dirac's condition also implies cycle extendability (in undirected graphs), with some exceptional classes that can be characterized. Hendry [17] stated, as an open problem the following question: is a Hamiltonian chordal graph fully cycle extendable? Positive results were obtained for special classes of chordal graphs in [1] and [8], but unfortunately, in general, the answer to the question is proved to be negative [21].

Apart from the papers mentioned above, cycle extendability in digraphs was studied in $[23,26,30]$.

Discussion of Theorem 1.4 From Theorem 1.3 and Theorem 1.4, we see that the same condition imply even pancyclicity, even vertex-pancyclicity and full even cycle extendibility for bipartite tournaments. This is somewhat unexpected since similar results does not hold for tournaments. As we have mentioned above, while strong connectivity in tournaments implies pancyclicity, it can only imply cycle extendability if we exclude the wide class of tournaments \mathcal{T}.

Since full cycle extendability is a much stronger property than pancyclicity, it is unsurprising that proving Theorem 1.4 brings new challenges. In particular, the techniques used in the proof of Theorem 1.3 in [5] and [16] are not sufficient for our proof. We introduce a new concept of the in-out graph of a digraph and use its properties to prove Theorem 1.4.

The in-out graph of a digraph D is a graph that takes the arc set of D as its vertex set, and in which two vertices are joined by a red (green) edge if they share a common head (tail) in D. The concept looks similar to that of the line graph and actually, in-out graphs can be viewed as line graphs of a certain class of bipartite graphs (see Section 4). Let C_{0} and C_{1} be two arc-disjoint Hamiltonian cycles on the same vertex set, and denote the digraph formed by these two cycles by $C_{0} \cup C_{1}$. Let L be the in-out graph of $C_{0} \cup C_{1}$. It is not hard to see that the independent sets of L correspond to the path-cycle subgraphs of $C_{0} \cup C_{1}$. Here path-cycle subgraphs refer to subgraphs consisting of disjoint paths and cycles. Therefore, we can use L to construct and analyze the path-cycle spanning subgraphs of $C_{0} \cup C_{1}$, for instance, as in the basic result of Theorem 4.1. The condition of our theorem guarantees the existence of a Hamiltonian cycle H. In our proof, we need to consider even extendability of another cycle C. We perform some contraction operations on $C \cup H$ to map C and H into arc-disjoint Hamiltonian cycles C_{0} and C_{1} on the same vertex set. Next, we construct L and by analyzing L, we derive many structural properties of $C \cup H$, which imply even extendability of C. These ideas and techniques play crucial role in our proof of the main result.

Paper Organization Section 2 contains additional terminology and notation. Theorem 1.1 is proved in Section 3. In Section 4, as an application of in-out graphs, we prove Theorem 4.1. In Section 5, we give a proof of Theorem 1.4, where Theorem 4.1 is used as a tool. We conclude the paper in Section 6 with some open problems.

2 Terminology and Notation

In this section, we provide most of the terms and notations used in this paper, while a few others will be introduced when used in the sequel, for convenience. The concepts that are not explicitly defined follow those of [2].

We often use D to denote a digraph, and T to denote a bipartite tournament. The vertex set and arc set of a digraph D are denoted by $V(D)$ and $A(D)$, respectively. Let $X \subseteq V(D)$, the subgraph of D induced by X is denoted by $D[X]$. We use $d^{-}(x)$ and $d^{+}(x)$ to denote the in-degree and out-degree of a vertex $x \in V(T)$, respectively.

A k-path-cycle subgraph F of a digraph D is a collection of k paths and m cycles such that all paths and cycles are pairwise disjoint. If F spans D, we say that it is a k-path-cycle factor of D. When $k=0$ in the above definitions, we call F a cycle subgraph and a cycle factor, respectively.

Let D be a digraph with n vertices. If D contains cycle of length k for every $3 \leq k \leq n$, we say that D is pancyclic. D is vertex-pancyclic (arc-pancyclic) if it has a cycle of length k containing $v(a)$, for every $3 \leq k \leq n$ and every vertex $v \in V(D)$ (every arc $a \in A(D)$). The concept of even pancyclicity, even vertex-pancyclicity and even arc-pancyclicity are defined analogously, but in this cases only cycles of (all) even length(s) are required.

3 Proof of Theorem 1.1

Firstly we describe the construction. By T_{k}, we denote a tournament with vertex set $\left\{v_{i}: 0 \leq i \leq k-1\right\}$ and arc set

$$
\left\{v_{k-1} v_{0}\right\} \cup\left\{v_{i} v_{j}: 0 \leq i<j \leq k-1 \text { and }(i, j) \neq(0, k-1)\right\} .
$$

Let T_{k}^{r} be a k-partite tournament obtained from T_{k} by replacing every vertex v_{i} with a set of $r \geq 3$ vertices, $V_{i}=\left\{v_{i, 0}, v_{i, 1}, v_{i, 2}, \ldots, v_{i, r-1}\right\}$, and replacing every arc $v_{i} v_{j}$ with all the arcs $v_{i, s} v_{j, t}$, where $0 \leq i, j \leq k-1,0 \leq s, t \leq r-1$, and all V_{i} 's are mutually disjoint. Furthermore, let $T_{3}^{r \prime}$ be obtained from T_{3}^{r} by reversing the arcs $v_{0, r-2} v_{1, r-2}$ and $v_{0, r-1} v_{1, r-1}$, and let $T_{4}^{r \prime}$ be obtained from T_{4}^{r} by reversing the arc $v_{0, r-1} v_{1, r-1}$. Finally let $\mathcal{T}^{r}=\left\{T_{k}^{r}: k \geq 5, r \geq 3\right\} \cup\left\{T_{3}^{\prime^{\prime}}, T_{4}^{r^{\prime}}: r \geq 3\right\}$. We prove that all digraphs in \mathcal{T}^{r} are pancyclic (and thus Hamiltonian) but not cycle extendable.

In T_{k}^{r}, we denote the path $v_{0, i} v_{1, i} \ldots v_{k-1, i}$ by P_{i}, and let $P_{i}\left[v_{s, i}, v_{t, i}\right]$ denote the subpath of P_{i} from $v_{s, i}$ to $v_{t, i}$, for $0 \leq i \leq r-1$ and $0 \leq s<t \leq k-1$.

We firstly show that T_{k}^{r} is pancyclic for any integer $k \geq 5$, by listing a cycle of length l for every $3 \leq l \leq r k=n$ in Table 1.

Length	Cycle
$3 \leq l \leq k$	$v_{0,0} P_{0}\left[v_{k-l+1,0}, v_{k-1,0}\right] v_{0,0}$
$l=j k+i$, for $3 \leq i \leq k$ and $1 \leq j \leq r-1$	$v_{0,0} P_{0}\left[v_{k-i+1,0}, v_{k-1,0}\right] P_{1} \ldots P_{j} v_{0,0}$
$l=k+1$	$v_{0,0} P_{0}\left[v_{3,0}, v_{k-1,0}\right] v_{0,1} v_{k-2,1} v_{k-1,1} v_{0,0}$
$l=j k+1$, for $2 \leq j \leq r-1$	$v_{0,0} P_{0}\left[v_{3,0}, v_{k-1,0}\right] v_{0,1} v_{k-2,1} v_{k-1,1} P_{2} \ldots P_{j} v_{0,0}$
$l=k+2$	$v_{0,0} P_{0}\left[v_{2,0}, v_{k-1,0}\right] v_{0,1} v_{k-2,1} v_{k-1,1} v_{0,0}$
$l=j k+2$, for $2 \leq j \leq r-1$	$v_{0,0} P_{0}\left[v_{2,0}, v_{k-1,0}\right] v_{0,1} v_{k-2,1} v_{k-1,1} P_{2} \ldots P_{j} v_{0,0}$

Table 1: Cycles of every length from 3 to $n=r k$ in T_{k}^{r} for $k \geq 5$
To prove that T_{k}^{r} is not cycle extendable, it suffices to find a non-Hamiltonian cycle of T_{k}^{r} which is not extendable. We firstly show that every cycle Z of length at least $2 k+1$ in T_{k}^{r} must contain at least three vertices from V_{0} and three vertices from V_{k-1}. Since $T_{k}^{r}-V_{0}$ is acyclic, Z must contain at least a vertex from V_{0}. Note that any segment $v_{0, i} \ldots v_{0, j}(0 \leq i, j \leq r-1$ and possibly $i=j)$ of Z between two vertices from V_{0} but without an internal vertex from V_{0} is of length at most k. Hence if Z contains at most two vertices from V_{0}, then its length must be at most $2 k$, contradicting the assumption on its length. Thus Z contains at least three vertices from V_{0}. Then, Z must contain three arcs from V_{k-1} to V_{0}, so it must contain three vertices from V_{k-1} as well. Now consider the cycle $Z_{1}=P_{0} P_{1} v_{0,0}$ which is of length $2 k$. If Z_{1} is extendable to a cycle Z_{2} of length $2 k+1$, then Z_{2} must contain three vertices from V_{0} and three vertices from V_{k-1} by above discussion. However, Z_{1} contains two vertices from V_{1} and two vertices from V_{k-1}, thus $\left|V\left(Z_{2}\right) \backslash V\left(Z_{1}\right)\right| \geq 2$, a contradiction. Thus, Z_{1} is not extendable. So, T_{k}^{r} with $k \geq 5$ is pancyclic, but not cycle extendable.
Now we consider $T_{4}^{r \prime}$. Again, we list a cycle of length l in $T_{4}^{r \prime}$, for every $3 \leq l \leq 4 r$, in Table 2, to prove that $T_{4}^{r \prime}$ is pancyclic.

Length	Cycle
$l=3$	$v_{0,0} v_{2,0} v_{3,0} v_{0,0}$
$l=4$	$P_{0} v_{0,0}$
$l=5$	$v_{0, r-2} v_{1, r-1} v_{0, r-1} v_{1, r-2} v_{3, r-2} v_{0, r-2}$
$l=6$	$v_{0, r-2} v_{1, r-1} v_{0, r-1} v_{1, r-2} v_{2, r-2} v_{3, r-2} v_{0, r-2}$
$l=4 j-1$, for $2 \leq j \leq r$	$v_{0,0} v_{2,0} v_{3,0} P_{1} \ldots P_{j-1} v_{0,0}$
$l=4 j$, for $2 \leq j \leq r$	$P_{0} \ldots P_{j-1} v_{0,0}$
$l=4 j+1$, for $2 \leq j \leq r-1$	$P_{0} \ldots P_{j-2} v_{0, r-2} v_{1, r-1} v_{0, r-1} v_{1, r-2} v_{3, r-2} v_{0,0}$
$l=4 j+2$, for $2 \leq j \leq r-1$	$P_{0} \ldots P_{j-2} v_{0, r-2} v_{1, r-1} v_{0, r-1} v_{1, r-2} v_{2, r-2} v_{3, r-2} v_{0,0}$

Table 2: Cycles of every length from 3 to $4 r$ in $T_{4}^{r \prime}$
Next we prove that any cycle Z_{3} of length 5 in $T_{4}^{r \prime}$ must contain the arc $v_{1, r-1} v_{0, r-1}$. Suppose that Z_{3} does not contain $v_{1, r-1} v_{0, r-1}$; then it is also a cycle in T_{4}^{r}. Similar to the discussion on T_{k}^{r} with $k \geq 5$, we can conclude that Z_{3} contains at least two vertices from V_{0} and two vertices from V_{3}. So traversing Z_{3} we at least go from V_{0} to V_{3} twice. However there is no arc from V_{0} to V_{3}. Thus, to go from V_{0} to V_{3} we must pass at least one vertex in $V_{1} \cup V_{2}$. Therefore, we need at least two more vertices from $V_{1} \cup V_{2}$ on Z_{3}. But Z_{3} is of length 5 and we can add only one more vertex from $V_{1} \cup V_{2}$, a contradiction. Therefore Z_{3} must contain $v_{1, r-1} v_{0, r-1}$. But then no cycle extends any cycle on four vertices which avoids both $v_{0, r-1}$ and $v_{1, r-1}$, say, $P_{0} v_{0,0}$. Therefore, $T_{4}^{r \prime}$ is not cycle extendable.
Finally we prove that $T_{3}^{r \prime}$ is pancyclic but not cycle extendable. Pancyclicity of $T_{3}^{r \prime}$ is proved by a list of cycles of length l for $3 \leq l \leq 3 r$ in Table 3 .

Length	Cycle
$l=3$	$P_{0} v_{0,0}$
$l=4$	$v_{0, r-2} v_{1, r-1} v_{0, r-1} v_{1, r-2} v_{0, r-2}$
$l=5$	$v_{0, r-2} v_{1, r-1} v_{0, r-1} v_{1, r-2} v_{2, r-2} v_{0, r-2}$
$l=3 j$, for $2 \leq j \leq r$	$P_{0} \ldots P_{j-1} v_{0,0}$
$l=3 j+1$, for $2 \leq j \leq r-1$	$P_{0} \ldots P_{j-2} v_{0, r-2} v_{1, r-1} v_{0, r-1} v_{1, r-2} v_{0,0}$
$l=3 j+2$, for $2 \leq j \leq r-1$	$P_{0} \ldots P_{j-2} v_{0, r-2} v_{1, r-1} v_{0, r-1} v_{1, r-2} v_{2, r-2} v_{0,0}$

Table 3: Cycles of every length from 3 to $3 r$ in $T_{3}^{r \prime}$
Now we prove that the only cycle of length 4 in $T_{3}^{r \prime}$ is $v_{0, r-2} v_{1, r-1} v_{0, r-1} v_{1, r-2} v_{0, r-2}$. Let Z_{4} be a cycle of length 4 in $T_{3}^{r \prime}$. If $V\left(Z_{4}\right) \cap V_{2} \neq \emptyset$, then Z_{4} contains a path $Q=u v w$, where $u \in V_{1}, v \in V_{2}$ and $w \in V_{0}$. However, to form Z_{4} we need a path of length 2 from w to u, which does not exist. Thus $Z_{4} \cap V_{2}=\emptyset$, and $V\left(Z_{4}\right) \subseteq V_{0} \cup V_{1}$. Then Z_{4} must contain two arcs from V_{1} to V_{0}, therefore the arcs $v_{1, r-2} v_{0, r-2}$ and $v_{1, r-1} v_{0, r-1}$ must be on Z_{4}. So $Z_{4}=v_{0, r-2} v_{1, r-1} v_{0, r-1} v_{1, r-2} v_{0, r-2}$. Observe that any cycle of length 3 in Z_{4} must have exactly one vertex from V_{i} for $i \in\{0,1,2\}$. Hence none of them is extendable. So $T_{3}^{r \prime}$ is pancyclic but not cycle extendable.
Thus, we have proved that all digraphs in \mathcal{T}^{3} are pancyclic, but not cycle extendable.

4 In-out graph, and path-cycle factors of two arc-disjoint Hamiltonian cycles

Let D be a digraph. The in-out graph of D is defined as a 2 -edge-colored graph, which takes the arc set of D as its vertex set, and two vertices are adjacent by a red edge, if they have a common head in D or by a green edge, if they have a common tail in D. We denote the in-out graph of D as $L_{i o}(D)$.

In-out graphs are closely related to line graphs. The line graph $L(G)$ of an undirected graph G takes the edge set of G as its vertex set, and two vertices are connected in $L(G)$ if and only if they have a common end-vertex in G. A generalization of line graphs to digraphs is the concept of a line digraph. The line digraph $L_{d}(D)$ of D takes the arc set of a digraph D as its vertex set, and there is an arc directed
from u to v in $L_{d}(D)$, if and only if the head of u coincides with the tail of v in D. Let D be a digraph and G its underlying graph, obtained from D by omitting all orientations and removing multiple edges, if any. Normally, there are more edges in $L(G)$ than arcs in $L_{d}(D)$. If we omit all orientations in $L_{d}(D)$ and view it as an undirected graph, we have an interesting observation that compared with $L(G)$, the edges that are missing in $L_{d}(D)$ is exactly the edges of $L_{i o}(D)$, that is, $E(L(G))=E\left(L_{d}(D)\right) \cup E\left(L_{i o}(D)\right.$, where $E(H)$ stands for the edge set of an undirected graph H. Thus, the concept of in-out graph can be viewed as another way of generalizing line graphs.
Furthermore, $L_{i o}(D)$ is isomorphic to the line graph $L(G)$ of the associated bipartite graph G of D, where G is defined as a bipartite graph with vertex set $V^{\prime} \cup V^{\prime \prime}$, where $V^{\prime}=\left\{v^{\prime}: v \in V(D)\right\}$ and $V^{\prime \prime}=\left\{v^{\prime \prime}: v \in V(D)\right\}$, and edge set $\left\{u^{\prime} v^{\prime \prime}: u v \in A(D)\right\}$. If we further color every edge ef of $L(G)$ with the color green or red, according to the common endvertex of e and f in G being in V^{\prime} or $V^{\prime \prime}$, we have the same coloring as in $L_{i o}(D)$.
Next, we consider two arc-disjoint Hamiltonian cycles C_{0} and C_{1} on the vertex set $\{0,1, \ldots, k-1\}$, where $k \geq 3$. We denote an arc from vertex i to vertex j by (i, j). A cycle C or path P on p vertices is denoted by $\left(i_{0}, i_{1} \ldots, i_{p-1}, i_{0}\right)$ and ($\left.i_{0}, i_{1} \ldots, i_{p-1}\right)$ respectively, where $i_{t} \in\{0,1, \ldots, k-1\}, 0 \leq t \leq p-1 \leq k-1$, and i_{t+1} is the successor of i_{t} on C for $0 \leq t \leq p-1$ and $i_{p}=i_{0}$ (on P for $0 \leq t \leq p-2$, respectively). Without loss of generality, we assume that $C_{0}=(0,1, \ldots, k-1,0)$.
Consider the in-out graph of $C_{0} \cup C_{1}$, and let $L=L_{i o}\left(C_{0} \cup C_{1}\right)$. Since every arc in $C_{0} \cup C_{1}$ has a common head with exactly one arc, and a common tail with exactly one arc, the corresponding vertex has degree two in L and is incident to one red edge and one green edge. Therefore, L consists of some mutually disjoint even cycles, the edges of which are red and green, alternately. A vertex of L corresponds to an arc in $C_{0} \cup C_{1}$, and is denoted by (i, j) if it is from vertex i to j in $C_{0} \cup C_{1}$. An edge of L connecting two vertices $\left(i_{0}, j_{0}\right)$ and $\left(i_{1}, j_{1}\right)$ is denoted by $\left(i_{0}, j_{0}\right)-\left(i_{1}, j_{1}\right)$.
The following theorem establishes connections between L and some spanning subgraphs of $C_{0} \cup C_{1}$.
Theorem 4.1. Let $k \geq 3$ be an integer and let C_{0} and C_{1} be two arc-disjoint Hamiltonian cycles on the vertex set $\{0,1, \ldots, k-1\}$. Let $C_{0}=(0,1, \ldots, k-1,0)$ and $C_{1}=\left(i_{0}, i_{1}, \ldots, i_{k-1}, i_{0}\right)$, where $i_{t+1} \neq i_{t}+1$, $0 \leq t \leq k-1\left(i_{k}=i_{0}\right)$. Let $L=L_{i o}\left(C_{0} \cup C_{1}\right)$. For any $0 \leq i, j \leq k-1$, let $\left(i, j^{\prime}\right)$ and $\left(i^{\prime}, j\right)$ be distinct arcs of C_{1}.
(1) If $\left(i, j^{\prime}\right)$ and $\left(i^{\prime}, j\right)$ are on different cycles of L, then there are two arc-disjoint cycle factors F_{0} and F_{1} of $C_{0} \cup C_{1}$, each of which contains exactly one of $\left(i, j^{\prime}\right)$ and $\left(i^{\prime}, j\right)$.
(2) If $\left(i, j^{\prime}\right)$ and $\left(i^{\prime}, j\right)$ are on the same cycle of L, then there is a 1-path-cycle factor F of $C_{0} \cup C_{1}$, in which the path is a (j, i)-path.

Proof. (1) Since L is the disjoint union of even cycles, we can properly color the vertices of L with two colors; fix such a coloring. Observe that the subgraph of $C_{0} \cup C_{1}$ consisting of the arcs corresponding to all the vertices of the same color in L is a cycle factor of $C_{0} \cup C_{1}$. Indeed, for every arc (i, p) of $C_{0} \cup C_{1}$, there is exactly one $\operatorname{arc}(p, q)$ of $C_{0} \cup C_{1}$ whose color in L is the same as that of (i, p). If the corresponding vertices of two arcs of C_{1} are in different cycles of L, we can always color the vertices differently, so that we obtain two arc-disjoint cycle factors of $C_{0} \cup C_{1}$, each of which contains exactly one of these two arcs.
(2) Now suppose that $\left(i, j^{\prime}\right)$ and $\left(i^{\prime}, j\right)$ are on the same cycle Q of L. Delete edges $\left(i, j^{\prime}\right)-(i, i+1)$ and $\left(i^{\prime}, j\right)-(j-1, j)$ from L and denote the resulting graph by L^{\prime}. In L^{\prime}, instead of Q, we have two paths, each of which contains an odd number of vertices. Now properly color all vertices of L^{\prime} with colors l_{0} and l_{1}, such that the vertices ${ }^{1}\left(i, j^{\prime}\right),(i, i+1),\left(i^{\prime}, j\right)$ and $(j-1, j)$ are colored l_{0}. Now take the subgraph F of $C_{0} \cup C_{1}$ consisting of all arcs that are colored l_{1} in L^{\prime}. In $F, d^{-}(i)=1, d^{+}(i)=0, d^{-}(j)=0, d^{+}(j)=1$, and the indegree and outdegree of all the other vertices are 1 . Therefore, F is a 1 -path-cycle factor of $C_{0} \cup C_{1}$ in which the path is a (j, i)-path.

5 Proof of Theorem 1.4

If a bipartite tournament T is fully cycle extendable, then we can start from a cycle of length 4 in T, repeat the operation of cycle extension until we get a Hamiltonian cycle. Thus T is Hamiltonian. Also note that every $T(r, r, r, r)$ is Hamiltonian.

[^1]Next we prove that if T is Hamiltonian, then either T belong to $T(r, r, r, r)$ or T is fully cycle extendable. By Theorem 1.3, every vertex of a Hamiltonian bipartite tournament is on a cycle of length 4. Thus, we only need to prove that if T is Hamiltonian then it is even cycle extendable, unless it is isomorphic to $T(r, r, r, r)$ for some $r \geq 2$. Let T be a Hamiltonian bipartite tournament with bipartition (W, B). Clearly, T is balanced, i.e. $|W|=|B|$.

Firstly, we prove the theorem for T of order $|T| \leq 8$. If $|T|=4$, then there is no cycle to be extended. If $|T|=6$, then the only possible non-Hamiltonian cycles are of length 4 , which can be extended to the Hamiltonian cycle of length 6 . Thus, let $|T|=8$. Let C be a non-Hamiltonian cycle of T. If $|C|=6$, then C can be extended to a Hamiltonian cycle. The only case left is that of $|C|=4$.

Suppose that C is not extendable. $T-V(C)$ is a balanced bipartite tournament with four vertices. Up to isomorphism, there can be four such bipartite tournaments, as shown in Figure 1. Note that in Figure 1 , (1) is a 4 -cycle, while (2), (3) and (4) are acyclic with the length of the longest path being three, two and one, respectively.

(1)

(2)

(3)

(4)

Figure 1: The four balanced bipartite tournaments on four vertices
We let $C=u_{0} u_{1} u_{2} u_{3}$ and label the vertices of $T-V(C)$ as in Figure 1. Furthermore, without loss of generality, we may assume that the vertices with even (odd) subscripts are in $W(B)$. We will often need the following facts (1) and (2).

Since T is Hamiltonian, we have

$$
\begin{equation*}
d^{-}(x), d^{+}(x) \geq 1 \text { for all } x \in W \cup B \tag{1}
\end{equation*}
$$

Let $x y$ be an arc in $T-V(C)$. Note that in the formulas below, and also in the sequel, the subscripts are taken modulo 4 .

$$
\begin{equation*}
\text { If } u_{i} \rightarrow x \text {, then } u_{i+1} \rightarrow y \text {; and if } y \rightarrow u_{i} \text {, then } x \rightarrow u_{i+3} \tag{2}
\end{equation*}
$$

For, if any statement of (2) does not hold, then either the cycle $u_{i} x y u_{i+1} u_{i+2} u_{i+3} u_{i}$ extends C, or the cycle $y u_{i} u_{i+1} u_{i+2} u_{i+3} x y$ extends C, contradicting that C is not extendable.

Suppose $T-V(C)$ is isomorphic to Figure $1(1)$. Since $T-V(C)$ is a cycle, by (2), if $u_{i} \rightarrow v_{j}$ for any $0 \leq i, j \leq 3$ where $i+1 \equiv j(\bmod 2)$, then we must have $u_{i+1} \rightarrow v_{j+1}$. Repeatedly applying this argument, we obtain

$$
\begin{equation*}
u_{i} \rightarrow v_{j} \Rightarrow u_{i+r} \rightarrow v_{j+r}, \text { for } r \in\{0,1,2,3\} \tag{3}
\end{equation*}
$$

And similarly,

$$
\begin{equation*}
v_{j} \rightarrow u_{i} \Rightarrow v_{j+r} \rightarrow u_{i+r}, \text { for } r \in\{0,1,2,3\} \tag{4}
\end{equation*}
$$

If $u_{0} \rightarrow\left\{v_{1}, v_{3}\right\} \quad\left(\left\{v_{1}, v_{3}\right\} \rightarrow u_{0}\right)$, then by (3) and (4), all arcs between C and $T-V(C)$ are from C to $T-V(C)$ (from $T-V(C)$ to C), contradicting that T is Hamiltonian. Hence, without loss of generality, we may assume that $v_{3} \rightarrow u_{0} \rightarrow v_{1}$. Then, again by (3) and (4), we have $v_{0} \rightarrow u_{1} \rightarrow v_{2}, v_{1} \rightarrow u_{2} \rightarrow v_{3}$, and $v_{2} \rightarrow u_{3} \rightarrow v_{0}$. But then T is isomorphic to $T(2,2,2,2)$.

Suppose $T-V(C)$ is isomorphic to Figure 1(2). By (1), there must be an arc from v_{3} to C, say $v_{3} \rightarrow u_{0}$. By (2), $\left\{v_{0}, v_{2}\right\} \rightarrow u_{3}$. Since $v_{2} \rightarrow u_{3}$, by (2), $v_{1} \rightarrow u_{2}$. Applying (1) for v_{0}, we have $u_{1} \rightarrow v_{0}$. Then, C can be extended to the cycle $v_{1} u_{2} u_{3} u_{0} u_{1} v_{0} v_{1}$, a contradiction.

Suppose $T-V(C)$ is isomorphic to Figure 1(3). By (1), there must be an arc from C to v_{0}, say $u_{1} \rightarrow v_{0}$. By $u_{1} \rightarrow v_{0}$ and (2), $u_{2} \rightarrow\left\{v_{1}, v_{3}\right\}$. By $u_{2} \rightarrow v_{1}$ and (2), we have $u_{3} \rightarrow v_{2}$. Applying (1) for v_{2}, we have $v_{2} \rightarrow u_{1}$. By $v_{2} \rightarrow u_{1}$ and (2), we have $\left\{v_{1}, v_{3}\right\} \rightarrow u_{0}$. However, both v_{2} and u_{0} have only one out-neighbor u_{1}, contradicting the Hamiltonicity of T.

Suppose $T-V(C)$ is isomorphic to Figure 1(4). By (1), there must be an arc from v_{3} to C, say $v_{3} \rightarrow u_{0}$. By $v_{3} \rightarrow u_{0}$ and (2), $\left\{v_{0}, v_{2}\right\} \rightarrow u_{3}$. Applying (1) for v_{0} and v_{2}, we have $u_{1} \rightarrow\left\{v_{0}, v_{2}\right\}$. However, both v_{0} and v_{2} have only one in-neighbor u_{1}, contradicting the Hamiltonicity of T.

Thus, we either proved that T is in the exceptional class or get a contradiction. This finishes the proof of the theorem for $|T| \leq 8$.
Now we assume that $|T| \geq 10$. Suppose that T is not even cycle extendable, but all Hamiltonian bipartite tournaments of order less than $|T|$ are even cycle extendable, or belong to the exceptional class of bipartite tournaments. Let C be a longest non-even extendable cycle in T. Since T is Hamiltonian, $|C| \leq|T|-4$.

Claim 1. $V(C)$ is not contained in any non-Hamiltonian cycle C^{\prime}, such that $\left|C^{\prime}\right| \geq|C|+2$.
Proof. Assume that such a cycle C^{\prime} exists. Since C is not even extendable, $\left|C^{\prime}\right| \geq|C|+4$. Let $T^{\prime}=$ $T\left[V\left(C^{\prime}\right)\right] ; T^{\prime}$ is a bipartite tournament with a Hamiltonian cycle C^{\prime}. By our induction hypothesis, T^{\prime} is even cycle extendable, or isomorphic to $T\left(r^{\prime}, r^{\prime}, r^{\prime}, r^{\prime}\right)$, for some integer $r^{\prime} \geq 2$. However, C is not even extendable in T, and hence not even extendable in T^{\prime}. Therefore, T^{\prime} is not even cycle extendable, and so $T^{\prime}=T\left(r^{\prime}, r^{\prime}, r^{\prime}, r^{\prime}\right)$ for some integer $r^{\prime} \geq 2$. By definition, $V\left(T^{\prime}\right)$ can be partitioned into 4 parts $\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ where $\left|V_{i}\right|=r^{\prime}$ and $V_{i} \rightarrow V_{i+1}$ for $i \in\{0,1,2,3\}$ and $V_{4}=V_{0}$. Without loss of generality, we may assume that $V_{0}, V_{2} \subseteq W$ and $V_{1}, V_{3} \subseteq B$.
By our selection of C, cycle C^{\prime} is even extendable in T. Suppose that C^{\prime} can be extended to a cycle $C^{\prime \prime}$ where $V\left(C^{\prime \prime}\right)=V\left(C^{\prime}\right) \cup\{w, b\}, w \in W$ and $b \in B$.

Suppose that w and b are adjacent in $C^{\prime \prime}$, say $w b \in A\left(C^{\prime \prime}\right)$. Denote the predecessor of w and the successor of b on $C^{\prime \prime}$ by b_{0} and w_{0}, respectively. We must have $b_{0} \in V_{2 i-1}$ and $w_{0} \in V_{2 i}$ for $i=1$ or 2 for if we traverse $C^{\prime \prime}$ from w_{0} to b_{0}, we go through $4 r^{\prime}$ vertices, and the vertices must be in $V_{2 i}, V_{2 i+1}$, $V_{2 i+2}$ and $V_{2 i+3}=V_{2 i-1}$ for $i=1$ or 2 , successively and recursively. Without loss of generality, we may assume that $b_{0} \in V_{3}$ and $w_{0} \in V_{0}$ as in (A) of Figure 2.

Now suppose that w and b are not adjacent in $C^{\prime \prime}$ and denote the predecessor and the successor of w (b) by b_{0} and $b_{1}\left(w_{0}\right.$ and $\left.w_{1}\right)$. First assume that the predecessor and the successor of w or b are in the same V_{i} for some $0 \leq i \leq 3$, say $b_{0}, b_{1} \in V_{1}$. We traverse $C^{\prime \prime}$ from b_{1} to w_{0} to obtain a path P_{0}, and from w_{1} to b_{0} to obtain a path P_{1}. Then, $V\left(P_{0}\right) \cup V\left(P_{1}\right)=V\left(C^{\prime}\right)$. Since $\left|V_{1}\right|=\left|V_{3}\right|$, and their vertices appear on $P_{i}(i=0,1)$ alternatively, by $b_{0}, b_{1} \in V_{1}$ we have that the predecessor of w_{0} on P_{0} and the successor of w_{1} on P_{1} must be in V_{3}. Therefore $w_{0} \in V_{0}$ and $w_{1} \in V_{2}$, as in (B) of Figure 2.
Suppose that the predecessor and the successor of w or b are in different V_{i} for some $0 \leq i \leq 3$, say $w_{0} \in V_{0}$ and $w_{1} \in V_{2}$. Let P_{0} and P_{1} be defined as above. Since $\left|V_{1}\right|=\left|V_{3}\right|$, and their vertices appear on $P_{i}(i=0,1)$ alternatively, and since the predecessor of w_{0} on P_{0} and the successor of w_{1} on P_{1} are both in V_{3}, we can conclude that $b_{0}, b_{1} \in V_{1}$, as in (B) of Figure 2. Therefore, it suffices to consider the two cases in Figure 2.

Note that as C is a cycle in $T^{\prime},|C|$ must be divisible by 4 , and the vertices of C must be in V_{0}, V_{1}, V_{2} and V_{3} successively. We discuss the possible direction of the arcs between $\{w, b\}$ and $V(C)$ below, and extend C in all cases, thus contradicting that C is not even extendable. In Figure 3 and Figure 4, we use the shadowed region to denote the vertices of C^{\prime} that are also in C.

Consider (A) of Figure 2. We first consider the case that there exists $b_{0}^{\prime} \in V(C) \cap V_{3}$ such that $b_{0}^{\prime} \rightarrow w$. Suppose that there exists $w_{0}^{\prime} \in V(C) \cap V_{0}$ such that $b \rightarrow w_{0}^{\prime}$, as in (A.1) of Figure 3. We may assume that w_{0}^{\prime} is the successor of b_{0}^{\prime} on C and thus we can construct a cycle with vertex set $V(C) \cup\{w, b\}$ by inserting the arc $w b$ between b_{0}^{\prime} and w_{0}^{\prime} on C. Suppose that we cannot find any vertex $w_{0}^{\prime} \in V(C) \cap V_{0}$ such that $b \rightarrow w_{0}^{\prime}$. Then $V_{0} \cap V(C) \rightarrow b$, and the successor w_{0} of b on C^{\prime} is in $V_{0} \backslash V(C)$, as in (A.2) of Figure 3. Since $w_{0} \rightarrow V_{1} \cap V(C)$, we can extend C by inserting the arc $b w_{0}$ between two consecutive vertices in V_{0} and V_{1} on C. The case that we cannot find any vertex $b_{0}^{\prime} \in V(C) \cap V_{3}$ such that $b_{0}^{\prime} \rightarrow w$ can be handled similarly.

Now suppose that C^{\prime} is extended as in (B) of Figure 2. Assume that we can choose w_{0}, w_{1}, b_{0} and b_{1} in such a way that they all be on C, as in (B.1) of Figure 4. Then $\left|V_{i}\right| \geq 2$, and we can further find $w_{0}^{\prime} \in V(C) \cup V_{0} \backslash\left\{w_{0}\right\}, w_{1}^{\prime} \in V(C) \cap V_{2} \backslash\left\{w_{1}\right\}$ and $b_{0}^{\prime}, b_{1}^{\prime} \in V(C) \cap V_{3}$. Let P be a Hamiltonian path starting from a vertex in V_{0} and ending at a vertex in V_{3} in the subgraph $T[V(C) \backslash U]$, where $U=\left\{w_{i}, b_{i}, w_{i}^{\prime}, b_{i}^{\prime}: i=0,1\right\}$. Then $w_{0} b w_{1} b_{0}^{\prime} w_{0}^{\prime} b_{0} w b_{1} w_{1}^{\prime} b_{1}^{\prime} P w_{0}^{\prime}$ is a cycle with set $V(C) \cup\{w, b\}$.

Now suppose that we cannot choose at least one of w_{0}, w_{1}, b_{0} or b_{1} so that it is on C.

Figure 2: The two possible ways to extend C^{\prime}

Figure 3: Based on (A) of Figure 2 to extend C^{\prime}, we extend C.

Figure 4: Based on (B) of Figure 2 to extend C^{\prime}, we extend C.

If we cannot choose b_{0} so that it is on C, then $w \rightarrow V(C) \cap V_{1}$ and $b_{0} \in V_{1} \backslash V(C)$, as in (B.2) of Figure 4. However, since $V_{0} \cap V(C) \rightarrow b_{0}$, we can extend C by inserting the arc $b_{0} w$ between two consecutive vertices in V_{0} and V_{1} on C. If we cannot choose b_{1} so that it is on C, then $V(C) \cap V_{1} \rightarrow w$ and $b_{1} \in V_{1} \backslash V(C)$, as in (B.3) of Figure 4. Similarly to the above we can extend C by inserting $w b_{1}$ between two consecutive vertices in V_{0} and V_{1} on C. If we cannot choose $w_{0} \in V(C) \cap V_{0}$ such that $w_{0} \rightarrow b$, then $b \rightarrow V(C) \cap V_{0}$ and $w_{0} \in V(C) \backslash V_{0}$. Similarly, we can extend C by inserting $w_{0} b$ between two consecutive vertices in V_{3} and V_{0} on C. The last case that we cannot choose $w_{1} \in V(C)$ can be handled similarly. Hence in all cases we can extend C, contradicting that C is not extendable and prove our claim.

Let $C=u_{0} u_{1} \ldots u_{2 m-1} u_{0}$, where $u_{2 i} \in W$ and $u_{2 i+1} \in B, 0 \leq i \leq m-1$.
Claim 2. If $T-V(C)$ has a spanning cycle Q, then $|Q|=4$ and $T=T(r, r, r, r)$ for some integer $r \geq 2$.
Proof. Suppose the condition holds. Let $Q=v_{0} v_{1} \ldots v_{2 k-1} v_{0}$, where $v_{2 j} \in W$ and $v_{2 j+1} \in B, 0 \leq j \leq$ $k-1$. Since T is Hamiltonian, there is at least one arc from C to Q. Without loss of generality we may assume that $u_{0} \rightarrow v_{1}$.
Firstly we assume that $|Q| \geq 6$, i.e. $k \geq 3$. By Claim 1 , there cannot be any non-Hamiltonian cycle longer than C and containing all vertices of C. Therefore,
(a) if we have $u_{2 i} \rightarrow v_{2 j-1}$, we must have (the subscripts of u_{i} are modulo $2 m$ and the subscripts of v_{j} are modulo $2 k$, and the same below)

$$
u_{2 i+1} \rightarrow v_{2 j}, u_{2 i+1} \rightarrow v_{2 j+2}, \ldots, u_{2 i+1} \rightarrow v_{2 j-4}, \text { and }
$$

(b) if we have $u_{2 i-1} \rightarrow v_{2 j}$, we must have

$$
u_{2 i} \rightarrow v_{2 j+1}, u_{2 i} \rightarrow v_{2 j+3}, \ldots, u_{2 i} \rightarrow v_{2 j-3} .
$$

Since $k \geq 3$ and $u_{0} \rightarrow v_{1}$, by (a) we have $u_{1} \rightarrow v_{2}$ and $u_{1} \rightarrow v_{4}$. Then, by (b) we deduce that u_{2} sends an arc to every vertex in $V(Q) \cap B$. Again by (a) we have that u_{3} send an arc to every vertex in $V(Q) \cap W$. Applying (a) and (b) alternatively, we can finally deduce that every vertex on C sends an arc to every vertex on Q in different color class of it. Then, there is no arc from Q to C, contradicting that T is hamiltonian. Therefore $|Q|=4$, and so $Q=v_{0} v_{1} v_{2} v_{3} v_{0}$. Then (a) and (b) become
(a^{\prime}) if we have $u_{2 i} \rightarrow v_{2 j-1}$, we must have $u_{2 i+1} \rightarrow v_{2 j}$, and
(b^{\prime}) if we have $u_{2 i-1} \rightarrow v_{2 j}$, we must have $u_{2 i} \rightarrow v_{2 j+1}$.
Now we prove that m is even, i.e. $|C|$ is divisible by 4.
Suppose that m is odd. Applying (a^{\prime}) and (b^{\prime}), by $u_{0} \rightarrow v_{1}$ we have $u_{1} \rightarrow v_{2}$, and by $u_{1} \rightarrow v_{2}$ we have $u_{2} \rightarrow v_{3}$. Repeating the process, we then have $u_{2 m-1} \rightarrow v_{2}$, since m is odd. And by $u_{2 m-1} \rightarrow v_{2}$ we have $u_{0} \rightarrow v_{3}$. Applying (a^{\prime}) and (b^{\prime}) repeatedly, by $u_{0} \rightarrow v_{1}$ and $u_{0} \rightarrow v_{3}$ we will finally deduce that every vertex on C sends an arc to every vertex on Q in different color class of it, again contradicting that T is Hamiltonian. Hence m is even.

Let $U_{i}=\left\{u_{4 t+i}, 0 \leq t \leq m / 2-1\right\}, i \in\{0,1,2,3\}$. By $u_{0} \rightarrow v_{1}$, repeatedly applying (a^{\prime}) and (b^{\prime}), we have $U_{0} \rightarrow v_{1}, U_{1} \rightarrow v_{2}, U_{2} \rightarrow v_{3}$ and $U_{3} \rightarrow v_{0}$. By above discussion, without loss of generality, we have $v_{3} \rightarrow u_{0}$, and by similar arguments we have $v_{3} \rightarrow U_{0}, v_{0} \rightarrow U_{1}, v_{1} \rightarrow U_{2}$ and $v_{2} \rightarrow U_{3}$.

Note that we have $u_{0} \rightarrow v_{1}$ and $v_{1} \rightarrow u_{2}$. Replacing u_{1} with v_{1} on C we have a cycle $C_{1}=$ $u_{0} v_{1} u_{2} \ldots u_{2 m-1} u_{0}$. Consider the arc $u_{1} v_{2}$. For any $1 \leq t \leq m / 2-1$, we have $v_{2} \rightarrow u_{4 t+3}$. If $u_{4 t+2} \rightarrow u_{1}$ for some $t(1 \leq t \leq m / 2-1)$, then we have a cycle

```
u}\mp@subsup{u}{0}{}\mp@subsup{v}{1}{}\mp@subsup{u}{2}{}\ldots\mp@subsup{u}{4t+2}{}\mp@subsup{u}{1}{}\mp@subsup{v}{2}{}\mp@subsup{u}{4t+3}{}\ldots\mp@subsup{u}{0}{}
```

which extends C, a contradiction. Therefore, $u_{1} \rightarrow u_{4 t+2}$ for all $1 \leq t \leq m / 2-1$. Together with $u_{1} \rightarrow u_{2}$, we have $u_{1} \rightarrow U_{2}$. By similar arguments we conclude that $U_{i} \rightarrow U_{i+1}$, for all $0 \leq i \leq 3$ $\left(U_{4}=U_{0}\right)$. Together with Q and the arcs between Q and C we see that $T=T(r, r, r, r)$, where $r=m / 2+1$. And by $2 m=|C| \geq 4$, we have $r \geq 2$.

Claim 3. Let Q be a non-spanning cycle in $T-V(C)$, then either all arcs between C and Q are from C to Q, or all arcs between C and Q are from Q to C.

Proof. Suppose the conclusion does not hold, then there is at least one arc from C to Q and at least one arc from Q to C. Then $T^{\prime}=T[V(C) \cup V(Q)]$ is strong. By Theorem 1.2, T^{\prime} must be Hamiltonian. But a Hamiltonian cycle of T^{\prime} is a non-Hamiltonian cycle of T, which contains all vertices of C and is longer than C, contradicting Claim 1.

From now on we assume that $T \neq T(r, r, r, r)$ for any $r \geq 2$.
Let H be a Hamiltonian cycle of T and let $H \cap C$ denote the digraph with vertex set $V(C)$ and arcs belonging to both C and H. Observe that $H \cap C$ consists of disjoint paths, some of which may be just single vertices. We call these paths common paths of H and C, or just common paths when no ambiguity is caused. Suppose there are k common paths; we denote them by $S_{0}, S_{1}, \ldots, S_{k-1}$, according to the order in which they appear on C. After removing all arcs and internal vertices of the common paths from C, the remaining arcs are all the arcs from the terminal vertex of S_{i} to the starting vertex of S_{i+1}, $0 \leq i \leq k-1$ (the subscripts modulo k, and the same below). We call them C-arcs, and denote an arc from the terminal vertex of S_{i} to the initial vertex of S_{i+1} as $a_{C}(i, i+1)$. Note that two C-arcs may be consecutive arcs on C. Removing all arcs and internal vertices of the common paths from H, we obtain k paths, which are called H-paths. An H-path starts with the terminal vertex of S_{i} and terminates with the initial vertex of S_{j}, for some $0 \leq i, j \leq k-1$. We denote such an H-path as $S_{H}(i, j)$. H-paths are internally disjoint, but the initial vertex of one H-path may be the terminal vertex of another H-path. If an H-path contains no internal vertex we say that it is trivial, else we say that it is nontrivial. Note that the number of C-arcs and the number of H-paths are also k.

Claim 4. Let $S=u_{i} v_{0} \ldots v_{t-1} u_{j}, 0 \leq i, j \leq 2 m-1$, be a nontrivial H-path, then $t \leq 3$.
Proof. Suppose to the contrary that $t \geq 4$.
If t is even, consider the arc between v_{0} and v_{t-1}. If $v_{0} \rightarrow v_{t-1}$, we can replace $v_{0} v_{1} \ldots v_{t-1}$ with the arc $v_{0} v_{t-1}$ on H, and obtain a non-Hamiltonian cycle which contains all vertices of C and is longer than C, contradicting Claim 1. If $v_{t-1} \rightarrow v_{0}$, we have a cycle $Q=v_{0} v_{1} \ldots v_{t-1} v_{0}$ in $T-V(C)$, with one arc from C to Q and one arc from Q to C. By Claim 3, Q must be a spanning cycle of $T-V(C)$. But then by Claim 2, we must have $T=T(r, r, r, r)$ for some integer $r \geq 2$, contradicting our assumption.

If t is odd, consider the arc between v_{0} and v_{t-2}, and the arc between v_{1} and v_{t-1}. If $v_{0} \rightarrow v_{t-2}$ or $v_{1} \rightarrow v_{t-1}$, by arguments similar to the above, we can obtain a non-Hamiltonian cycle which contains all vertices of C and is longer than C, again contradicting Claim 1. Hence we have $v_{t-2} \rightarrow v_{0}$ and $v_{t-1} \rightarrow v_{1}$. Then we have two cycles $Q_{0}=v_{0} v_{1} \ldots v_{t-2} v_{0}$ and $Q_{1}=v_{1} v_{2} \ldots v_{t-1} v_{1}$ in $T-V(C)$, which are not spanning cycles of $T-V(C)$. Since there is one arc from C to Q_{0}, by Claim 3, all arcs between C and Q_{0} are from C to Q_{0}. Similarly, all arcs between Q_{1} and C are from Q_{1} to C. However, this is impossible, since v_{1} is on both Q_{0} and Q_{1}.

Therefore, we cannot have an H-path with more than three internal vertices. Since there are at least four vertices in $T-V(C)$, there are at least two nontrivial H-paths.

Claim 5. Let $S_{H}(i, j), 0 \leq i, j \leq k-1$, be an H-path, then $j \neq i+1$.
Proof. If $S_{H}(i, j)$ is trivial and $j=i+1$, then it is also a C-arc $a_{C}(i, i+1)$, contradicting the definition of an H-path. Suppose that $S_{H}(i, j)$ is nontrivial, and $j=i+1$. We can replace the C-arc $a_{C}(i, i+1)$ with $S_{H}(i, i+1)$ on C, obtaining a cycle C^{\prime}, such that $V(C) \subseteq V\left(C^{\prime}\right)$ and $\left|C^{\prime}\right| \geq|C|+2$. Furthermore, by the above discussion, there is at least one more nontrivial H-path, whose internal vertices are not contained in $V\left(C^{\prime}\right)$, so C^{\prime} is non-Hamiltonian. This contradicts Claim 1. So $j \neq i+1$.

Let $P=u_{i} v_{0} v_{1} v_{2} u_{j}, 0 \leq i, j \leq 2 m-1$, be an H-path with three internal vertices. If $v_{1} \rightarrow u_{i+1}$, then C can be extended to $u_{i} v_{0} v_{1} u_{i+1} C u_{i}$, a contradiction. Therefore $u_{i+1} \rightarrow v_{1}$, and similarly $u_{i+2} \rightarrow v_{2}$, $v_{1} \rightarrow u_{j-1}$ and $v_{0} \rightarrow u_{j-2}$. Hence, each of v_{0}, v_{1} and v_{2} sends and receives some arcs from C. Similarly, we can prove that every internal vertex of any nontrivial H-paths sends and receives some arcs from C. So, every vertex in $T-V(C)$ sends and receives some arcs from C.

Now we can show the following two claims.
Claim 6. There is no cycle in $T-V(C)$.

Proof. Suppose that there is a cycle Q in $T-V(C)$. If Q is spanning, then by Claim $2, B=T(r, r, r, r)$ for some integer $r \geq 2$, contradicting our assumption. If Q is not spanning, by Claim 3, either all arcs between C and Q are from C to Q, or all arcs between C and Q are from Q to C. However, we have just proved that every vertex in $T-V(C)$ sends and receives some arcs from C.

Claim 7. There cannot exist a cycle subgraph F of T, such that $V(C) \subset V(F) \subset V(T)$, where \subset stands for proper inclusion.

Proof. Suppose such a cycle subgraph F exists. Since every vertex in $T-V(C)$ sends and receives arcs from $C, T[V(F)]$ must be strong. By Theorem $1.2, T[V(F)]$ is hamiltonian. Then $V(C)$ is covered by the Hamiltonian cycle of $T[V(F)]$, contradicting Claim 1.

We will use Claim 6 and Claim 7 frequently in our subsequent proof.
We claim that $k \geq 3$. By the above discussion, there are at least two nontrivial H-paths, so $k \geq 2$. If $k=2$, then there are only two common paths S_{0} and S_{1}. The two C-arcs must be $a_{C}(0,1)$ and $a_{C}(1,0)$, and the two nontrivial H-paths must be $S_{H}(0,1)$ and $S_{H}(1,0)$, contradicting Claim 5 .

We define a contraction operation on $C \cup H$. We contract every common path S_{i} into a vertex i, $0 \leq i \leq k-1$. Then, we contract every H-path $S_{H}(i, j)$ into an arc (i, j). The resulting digraph consists of two arc-disjoint cycles on the vertices $\{0,1, \ldots, k-1\}$. One is $C_{0}=(0,1, \ldots, k-1,0)$, obtained from C by contracting the common paths. The other one, denoted by C_{1}, is formed by all arcs obtained by contracting H-paths. Formally, we define a mapping η from the set of common paths, C-arcs and H-paths of $C \cup H$, to the vertex set and arc set of $C_{0} \cup C_{1}$, where

$$
\eta\left(S_{i}\right)=i, \eta\left(a_{C}(i, i+1)\right)=(i, i+1), \text { and } \eta\left(S_{H}(i, j)\right)=(i, j)
$$

Let F be a subgraph of $C_{0} \cup C_{1}$, we use $\eta^{-1}(F)$ to denote the subdigraph of $C \cup H$, which consists of the preimages of the vertices and arcs of F. We also say that $\eta^{-1}(F)$ is the preimage of F.

Let F_{0} be a cycle factor of $C_{1} \cup C_{0}$. Then $\eta^{-1}\left(F_{0}\right)$ is a cycle subdigraph of $C \cup H$ which covers $V(C)$. Let F_{1} be a 1-path-cycle factor of $C_{1} \cup C_{0}$, in which the path is from vertex i to vertex j. Then $\eta^{-1}\left(F_{1}\right)$ is a 1-path-cycle subgraph of $C \cup H$ covering $V(C)$, in which the path starts with S_{i} and terminates with S_{j}.

Let $L=L_{i o}\left(C_{0} \cup C_{1}\right)$ be the in-out graph of $C_{0} \cup C_{1}$. We will work on L to gain structural properties of $C_{0} \cup C_{1}$ and $C \cup H$ in the rest of our proof. We show in Figure 5 an example of $C \cup H, C_{0} \cup C_{1}$ and $L_{i o}\left(C_{0} \cup C_{1}\right)$.

Figure 5: An Example: $C \cup H, C_{0} \cup C_{1}$ and $L_{i o}\left(C_{0} \cup C_{1}\right)$

Claim 8. All arcs of C_{1} whose preimages are nontrivial H-paths must be on the same cycle, denoted by Q, of L.

Proof. Suppose to the contrary that there exist two arcs a_{0} and a_{1} of C_{1} whose preimages are nontrivial H-paths, where a_{0} and a_{1} are on different cycles of L. By Theorem 4.1, there exists a cycle factor F of $C_{0} \cup C_{1}$, which contains a_{0} but does not contain a_{1}. However, $\eta^{-1}(F)$ is a cycle subgraph of $C \cup H$, which covers $V(C)$ but does not cover the internal vertices of $\eta^{-1}\left(a_{1}\right)$, contradicting Claim 7 .

Let $S_{H}\left(i, j_{0}\right)$ and $S_{H}\left(i_{0}, j\right)$ be two different nontrivial H-paths. Let v be an internal vertex of $S_{H}\left(i, j_{0}\right)$ and w be an internal vertex of $S_{H}\left(i_{0}, j\right)$ such that there is an arc from v to w. We traverse $S_{H}\left(i, j_{0}\right)$ from the initial vertex of it to v, then go through $v w$, and traverse $S_{H}\left(i_{0}, j\right)$ from w to the terminating vertex of it to obtain a path, which is uniquely determined by the arc $v w$ and denoted by $P(v w)$ (if the arc is from w to v, the path obtained is denoted by $P(w v))$.

Claim 9. $P(v w)$ must cover all internal vertices of $S_{H}\left(i, j_{0}\right)$ and $S_{H}\left(i_{0}, j\right)$.
Proof. Let $S_{H}\left(i, j_{0}\right)$ and $S_{H}\left(i_{0}, j\right)$ be mapped to the $\operatorname{arcs}\left(i, j_{0}\right)$ and $\left(i_{0}, j\right)$ by η, respectively. By Claim 8 , both $\left(i, j_{0}\right)$ and $\left(i_{0}, j\right)$ must be on Q. And by Theorem 4.1, we can find a 1-path-cycle factor F of $C_{0} \cup C_{1}$ in which the path is a (j, i)-path. Then, $\eta^{-1}(F)$ is a 1-path-cycle subgraph of $C \cup H$ covering $V(C)$, in which the path P starts with S_{j} and terminates with S_{i}. Then $P(v w) \cup P$ is a cycle of $C \cup H$. However, $(F \backslash P) \cup\{P(v w) \cup P\}$ is a cycle subgraph of $C \cup H$ covering $V(C)$, and by Claim 7, it must be a cycle factor of T. Therefore, $P(v w)$ must cover all internal vertices of $S_{H}\left(i, j_{0}\right)$ and $S_{H}\left(i_{0}, j\right)$.

Let $S=u_{i} v_{0} v_{1} v_{2} u_{j}, 0 \leq i, j \leq 2 m-1$, be an H-path with three internal vertices. Without loss of generality, we may assume that $v_{1} \in B$. Suppose there exists another nontrivial H-path which contains an internal vertex $w \in W$. Since T is a bipartite tournament, either $v_{1} \rightarrow w$ or $w \rightarrow v_{1}$. However, the path $P\left(v_{1} w\right)$ does not cover v_{2}, and the path $P\left(w v_{1}\right)$ does not cover v_{0}, both contradicting Claim 9. Hence, all other nontrivial H-paths must contain only one internal vertex which is in B. To keep T balanced, there must be only one such H-path S^{\prime}, the internal vertex of which is denoted by v_{3}. Applying Claim 9 on S and S^{\prime}, we have $v_{3} \rightarrow v_{0}$ and $v_{2} \rightarrow v_{3}$. But then $v_{0} v_{1} v_{2} v_{3} v_{0}$ is a cycle in $T-V(C)$, contradicting Claim 6. Therefore, there cannot be a nontrivial H-path with three internal vertices.

Let $S=u_{i} v_{0} v_{1} u_{j}, 0 \leq i, j \leq 2 m-1$, be an H-path with two internal vertices. Without loss of generality, we may assume that $v_{0} \in W$ and $v_{1} \in B$. Assume that there is another nontrivial H-path $S^{\prime}=u_{i^{\prime}} v_{2} v_{3} u_{j^{\prime}}\left(0 \leq i^{\prime}, j^{\prime} \leq 2 m-1\right)$ with two internal vertices. Suppose $v_{2} \in B$ and $v_{3} \in W$. Since T is a bipartite tournament, either $v_{1} \rightarrow v_{3}$ or $v_{3} \rightarrow v_{1}$. However, the path $P\left(v_{1} v_{3}\right)$ does not cover v_{2}, and the path $P\left(v_{3} v_{1}\right)$ does not cover v_{0}, both contradicting Claim 9. If $v_{2} \in W$ and $v_{3} \in B$, applying Claim 9 on S and S^{\prime}, we must have $v_{1} \rightarrow v_{2}$ and $v_{3} \rightarrow v_{0}$. But then $v_{0} v_{1} v_{2} v_{3} v_{0}$ is a cycle in $T-V(C)$, contradicting Claim 6. Therefore, there is at most one nontrivial H-path with two internal vertices. Furthermore, by $|T|-|C| \geq 4$, there are at least two nontrivial H-paths with one internal vertex.

Figure 6: An Example: $C \cup H$ with black and white colors on the vertices, $C_{0} \cup C_{1}$ and $L_{i o}\left(C_{0} \cup C_{1}\right)$ with labels on the vertices and colors on the edges (denoted by the labels "g" and "r"on the edges)

To further analyze the structure of $C_{0} \cup C_{1}$ and $C \cup H$, we label the vertices of L. Let a be a vertex of L, which is an arc of $C_{0} \cup C_{1}$. The preimage of $a, \eta^{-1}(a)$, is a path (which may degenerate to an arc) in T. We assign the labels l_{0} and l_{1}, denoted as $l_{0} l_{1}$, to a, where $l_{0}, l_{1} \in\{B, W\}$, the initial vertex of $\eta^{-1}(a)$ is in color class l_{0} of T and the terminal vertex of $\eta^{-1}(a)$ is in color class l_{1} of T. We call l_{0} the first label and l_{1} the second label of a, and call a vertex with labels $l_{0} l_{1}$ an $l_{0} l_{1}$-vertex. See Figure 6 for an example.
Recall that an edges of L is colored red (green) when the two endvertices of it share a common head (tail) in $C_{0} \cup C_{1}$. Therefore, if two vertices are joined by a red (green) edge, then they have the same second (first) label.

We list some properties of the edge colors and vertex labels in L below. For Property (3), we give a detailed proof.
(1) Since two adjacent vertices in L must have at least one label in common, a $B B$-vertex can never be adjacent to a $W W$-vertex, and a $B W$-vertex can never be adjacent to a $W B$-vertex.
(2) An arc $a=(i, i+1)$ of C_{0} must be labeled $B W$ or $W B, 0 \leq i \leq k-1$ (addition modulo k). A $W W$-vertex or a $B B$-vertex of L must be an arc of C_{1}, whose preimage is an H-path with one internal vertex in $C \cup H$. By Claim 8, all $W W$ - and $B B$-vertices must be on Q. A $W W$ - or $B B$-vertex must be adjacent to one $W B$-vertex and one $B W$-vertex.
(3) If we traverse Q in one direction, $W W$-vertices and $B B$-vertices must appear alternatively. And hence the number of $B B$-vertices and $W W$-vertices must be the same on Q.

Proof. If there are no $W W$ - or $B B$-vertex on Q, then the statement holds. Without loss of generality, we may assume that we have a $W W$-vertex a_{0} on Q, and we traverse Q from a_{0} in one direction such that the next vertex on Q is a $W B$-vertex, which is adjacent to a_{0} by a green edge. By (1), a $W B$-vertex can never be adjacent to a $B W$-vertex, therefore, we will keep meeting $W B$-vertex before we meet the next $W W$ - or $B B$-vertex. By (2), the other neighbor of a_{0} is a $B W$-vertex, so we must have at least one $W W$ - or $B B$-vertex other than a_{0}. We denote the first $W W$ - or $B B$-vertex we meet after a_{0} by a_{1}.

Since the vertices on Q correspond to arcs on C_{1} and C_{0} alternatively, and all $W W$ - and $B B$-vertices must correspond to arcs on C_{1}, a_{1} must be at an even distance from a_{0} on Q. And since red edge and green edge appear alternatively on Q, a_{1} must be adjacent to a $W B$-vertex by a red edge. But then the second label of a_{1} must be B, and therefore it must be a $B B$-vertex.
(4) If we traverse Q in one direction, by the discussion in the proof of (3), the vertices between a $W W$-vertex and a $B B$-vertex that appear consecutively must all be $W B$ - or $B W$-vertices. We call the segment of Q consisting of all such vertices a $W B$-path (a $B W$-path), if all these vertices are $W B$-vertices ($B W$-vertices). By (2), a $W W$ - or $B B$-vertex must be adjacent to one $W B$-vertex and one $B W$-vertex. Therefore, $W B$-paths and $B W$-paths must appear alternatively on Q.
(5) Let a be a $W W$-vertex on Q. If we traverse Q from a so that the next vertex is a $W B$-vertex, then we will meet a $W W$-vertex, a $W B$-path, a $B B$-vertex, and a $B W$-path successively and recursively, until we return to a. Therefore, take any $W W$-vertex a_{0} and any $B B$-vertex a_{1}, if we delete a_{0} and a_{1} from Q, we have two paths P_{0} and P_{1}, where P_{0} starts and terminates with $W B$-vertices, and P_{1} starts and terminates with $B W$-vertices. We call P_{0} the $(W B, W B)$-path for a_{0} and a_{1}, and P_{1} the $(B W, B W)$-path for a_{0} and a_{1}.

By the above discussion, in $C \cup H$ there are at most one nontrivial H-path with two internal vertices, and at least two nontrivial H-paths with one internal vertex. Therefore, there are at least one $W W$-vertex and one $B B$-vertex on Q.

Claim 10. Let $a_{0}=\left(i_{0}, j_{1}\right)$ be a $B B$-vertex and $a_{1}=\left(i_{1}, j_{0}\right)$ be a $W W$-vertex on Q. Denote the internal vertex of $S_{H}\left(i_{0}, j_{1}\right)\left(S_{H}\left(i_{1}, j_{0}\right)\right)$ by $v_{0}\left(v_{1}\right)$. Then, $v_{0} \rightarrow v_{1}\left(v_{1} \rightarrow v_{0}\right)$, if and only if all vertices in $V(Q) \backslash\left\{a_{0}, a_{1}\right\}$ whose preimages are nontrivial H-paths are on the $(B W, B W)$-path (($\left.W B, W B\right)$-path) for a_{0} and a_{1}.

Proof. Firstly, since $|T|-|C| \geq 4$, there are at least one more vertex in $V(Q) \backslash\left\{a_{0}, a_{1}\right\}$ whose preimage under η is a nontrivial H-path.

Assume that $v_{0} \rightarrow v_{1}$. By the proof of Theorem 4.1, we can obtain a 1-path-cycle factor F of $C_{0} \cup C_{1}$ such that the path is from j_{0} to i_{0}. To get F, we delete the edges $\left(i_{0}, j_{1}\right)-\left(i_{0}, i_{0}+1\right)$ and $\left(i_{1}, j_{0}\right)-\left(j_{0}-1, j_{0}\right)$
from Q. Then, we have two paths P_{0}, from $\left(i_{0}, j_{1}\right)$ to $\left(i_{1}, j_{0}\right)$, and P_{1}, from $\left(i_{0}, i_{0}+1\right)$ to $\left(j_{0}-1, j_{0}\right)$, which is actually the $(B W, B W)$-path for a_{0} and a_{1}. And we take the arcs in $V\left(P_{0}\right) \cap A\left(C_{0}\right)$ and $V\left(P_{1}\right) \cap A\left(C_{1}\right)$, together with the arcs from other cycles of L to constitute F.

The only path P in $\eta^{-1}(F)$ starts with $S_{j_{0}}$ and terminats with $S_{i_{0}}$. And $P \cup P\left(v_{0} v_{1}\right)$ is a cycle in $C \cup H$. Then, $F^{\prime}=\left(\eta^{-1}(F) \backslash P\right) \cup\left\{P \cup P\left(v_{0} v_{1}\right)\right\}$ is a cycle subgraph of T, which covers $V(C)$, and contains at least the vertices v_{0} and v_{1}, which are in $V(T) \backslash V(C)$. By Claim $7, F^{\prime}$ must be a cycle factor of T. However, F does not contain any arc in $V\left(P_{0}\right) \cap A\left(C_{1}\right)$, therefore F^{\prime} does not contain the preimage of any arc in $V\left(P_{0}\right) \cap A\left(C_{1}\right)$. So, the preimage of an arc in $V\left(P_{0}\right) \cap A\left(C_{1}\right)$ must not be a nontrivial H-path. In other word, all vertices in $V(Q) \backslash\left\{a_{0}, a_{1}\right\}$ whose preimages are nontrivial H-paths must be on P_{1}, which is the $(B W, B W)$-path for a_{0} and a_{1}.

Similarly, if $v_{1} \rightarrow v_{0}$, we can conclude that all vertices in $V(Q) \backslash\left\{a_{0}, a_{1}\right\}$ whose preimages are nontrivial H-paths must be on the $(W B, W B)$-path for a_{0} and a_{1}.
Now assume that all vertices in $V(Q) \backslash\left\{a_{0}, a_{1}\right\}$ whose preimage are nontrivial H-paths are on the $(B W, B W)$-path for a_{0} and a_{1}. Since T is a bipartite tournament, exactly one of $v_{0} \rightarrow v_{1}$ and $v_{1} \rightarrow v_{0}$ holds. If $v_{1} \rightarrow v_{0}$ holds, by above discussion, all vertices in $V(Q) \backslash\left\{a_{0}, a_{1}\right\}$ whose preimages are nontrivial H-paths must be on the $(W B, W B)$-path for a_{0} and a_{1}, a contradiction. Therefore, $v_{0} \rightarrow v_{1}$.

The only case left can be proved similarly.
Suppose there are at least six $W W$ - or $B B$-vertices on Q. Let a_{0} be a $W W$-vertex on Q. Traverse Q in one direction from a_{0}, and denote the first six $W W$ - or $B B$-vertices we meet by $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5}, according to the order they appear. Then, by (3), a_{3} must be a $B B$-vertex. However, there are $W W$ - and $B B$-vertices on both the $(B W, B W)$-path and the $(W B, W B)$-path for a_{0} and a_{3}, contradicting Claim 10. Therefore, there are at most four $W W$ - or $B B$-vertices on Q. Equivalently, there are at most four nontrivial H-paths with one internal vertex in $C \cup H$.

Suppose there are four $W W$ - or $B B$-vertices on Q, which are a_{0}, a_{1}, a_{2} and a_{3}, according to the order they appear in one direction, say clockwise. Denote the internal vertices of $\eta^{-1}\left(a_{i}\right)$ as $v_{i}, 0 \leq i \leq 3$. Without loss of generality, we may assume that a_{0} and a_{2} are $W W$-vertices, a_{1} and a_{3} are $B B$-vertices, and if we traverse Q clockwise, the path between a_{0} and a_{1} is a $(W B, W B)$-path for a_{0} and a_{1}. Then, a_{2} and a_{3} are on the $(B W, B W)$-path for a_{0} and a_{1}. By Claim 10, we have $v_{0} \rightarrow v_{1}$. Similarly, we have $v_{1} \rightarrow v_{2}, v_{2} \rightarrow v_{3}$ and $v_{3} \rightarrow v_{0}$. But then we have a cycle $v_{0} v_{1} v_{2} v_{3} v_{0}$ in $T-V(C)$, contradicting Claim 6.

Therefore, we can have only one $B B$-vertex a_{0} and one $W W$-vertex a_{1} on Q. By the above discussion, we have one $W B$ - or $B W$-vertex a_{2}, whose preimage is a nontrivial H-path with two internal vertices. Denote the internal vertices of $\eta^{-1}\left(a_{0}\right)$ and $\eta^{-1}\left(a_{1}\right)$ by v_{0} and v_{1}, respectively. Then, $v_{0} \in W$ and $v_{1} \in B$. Without loss of generality, we may assume that a_{2} is a $B W$-vertex, and denote the internal vertices of $\eta^{-1}\left(a_{2}\right)$ by $v_{2} \in W$ and $v_{3} \in B$, where $v_{2} \rightarrow v_{3}$. Applying Claim 9 on a_{0} and a_{2}, we have $v_{3} \rightarrow v_{0}$. Applying Claim 9 on a_{1} and a_{2}, we have $v_{1} \rightarrow v_{2}$. Further, a_{2} is on the ($B W, B W$)-path for a_{0} and a_{1}, and hence by Claim $10, v_{0} \rightarrow v_{1}$. However, we have a cycle $v_{0} v_{1} v_{2} v_{3} v_{0}$ in $T-V(C)$ then, contradicting Claim 6.

Every possible case above has led to contradiction. This completes the proof of Theorem 1.4.

6 Open Problems

As in bipartite tournaments, Hamiltonicity in multipartite tournaments can also be decided in polynomial time [3, 27], but finding a characterization of Hamiltonian multipartite tournaments remains an open problem. It would be interesting to characterize (vertex-)pancyclic multipartite tournaments.

Since multipartite tournaments contain both bipartite and non-bipartite graphs, it does not make sense to study cycle extendability for the whole family of multipartite tournaments. Instead, it would be interesting to characterize Hamiltonian multipartite tournaments T such that for every non-Hamiltonian cycle C in T there is a cycle C^{\prime} such that $V(C) \subseteq V\left(C^{\prime}\right)$, and $\left|C^{\prime}\right|=|C|+1$ or $\left|C^{\prime}\right|=|C|+2$.

Note that the (vertex-)pancyclicity problem above was solved for a subclass of multipartite tournaments, that is, extended tournaments. In fact, it was solved for a larger class of extended semicomplete digraphs [15]. A digraph is semicomplete if it is obtained from a tournament T by adding to T arcs $\left\{y x: x y \in A^{\prime}\right\}$, where A^{\prime} is a subset of $A(T)$. An extended semicomplete digraph is a digraph obtained from a semicomplete digraph by replacing every vertex x with a set I_{x} of independent vertices such that
the out- and in-neighbors of every vertex in I_{x} are the same as those of x and $I_{x} \cap I_{y}=\emptyset$ as long as $x \neq y$. We say that a digraph D is triangular with partition V_{0}, V_{1} and V_{2}, if the vertex set of D can be partitioned into three disjoint sets V_{0}, V_{1} and V_{2}, with $V_{i} \rightarrow V_{i+1}$ and there is no arc from V_{i+1} to V_{i} ($0 \leq i \leq 2$ and the subscripts are taken modulo 3).

Theorem 6.1. (Gutin [15]) Let D be a Hamiltonian extended semicomplete digraph of order $n \geq 5$ with k partite sets $(k \geq 3)$. Then
(a) D is pancyclic if and only if D is not triangular with a partition V_{0}, V_{1} and V_{2}, two of which induce digraphs with no arcs, such that either $\left|V_{0}\right|=\left|V_{1}\right|=\left|V_{2}\right|$ or no $D\left[V_{i}\right](i=0,1,2)$ contains a path of length 2.
(b) D is vertex-pancyclic if and only if it is pancyclic and either $k>3$ or $k=3$ and D contains two cycles Z and Z^{\prime} of length 2 such that $Z \cup Z^{\prime}$ has vertices in the three partite sets.

References

[1] Abueida, A., \& Sritharan, R. (2006). Cycle extendability and Hamiltonian cycles in chordal graph classes. SIAM J. Discrete Math., 20(3), 669-681.
[2] Bang-Jensen, J., \& Gutin, G. (2009). Digraph: theory, algorithms and applications. 2nd Ed., Springer-Verlag, London.
[3] Bang-Jensen, J., Gutin, G., \& Yeo, A. (1998). A polynomial algorithm for the Hamiltonian cycle problem in semicomplete multipartite digraphs. J. Graph Theory, 29(2), 111-132.
[4] Bang-Jensen, J. \& Havet, F. (2018), Tournaments and Semicomplete Digraphs, Chapter 2 in Classes of Directed Graphs (J. Bang-Jensen and G. Gutin, eds), Springer, 2018.
[5] Beineke, L. W., \& Little, C. H. (1982). Cycles in bipartite tournaments. J. Combin. Theory, Ser. B, 32(2), 140-145.
[6] Bondy, J. A. (1971). Pancyclic graphs I, J. Combin. Theory Ser. B 11 (1971) 80-84.
[7] Camion, P. (1959). Chemins et circuits hamiltoniens des graphes complets. Comptes Rendus Hebdomadaires des Séances de l' Académie des Sciences, 249(21), 2151-2152.
[8] Chen, G., Faudree, R. J., Gould, R. J., \& Jacobson, M. S. (2006). Cycle extendability of Hamiltonian interval graphs. SIAM J. Discrete Math., 20(3), 682-689.
[9] Dirac, G. A. (1952). Some theorems on abstract graphs. Proc. London Math. Soc., 3(1), 69-81.
[10] Gould, R. J. (1991). Updating the Hamiltonian problem - a survey. J. Graph Theory, 15(2), 121-157.
[11] Gould, R. J. (2003). Advances on the Hamiltonian problem - a survey. Graphs and Combinatorics, 19(1), 7-52.
[12] Gould, R. J. (2014). Recent advances on the Hamiltonian problem: Survey III. Graphs and Combinatorics, 30(1), 1-46.
[13] Gutin, G. (1984). A criterion for complete bipartite digraphs to be Hamiltonian. Vestsī Acad. Navuk BSSR Ser. Fīz.-Mat. Navuk, No. 1, 99-100 (In Russian).
[14] Gutin, G. (1993). Paths and cycles in directed graphs. Ph.D. Thesis, University of Tel-Aviv.
[15] Gutin, G. (1995). Characterizations of vertex pancyclic and pancyclic ordinary complete multipartite digraphs. Discrete Math., 141(1), 153-162.
[16] Häggkvist, R., \& Manoussakis, Y. (1989). Cycles and paths in bipartite tournaments with spanning configurations. Combinatorica, 9(1), 33-38.
[17] Hendry, G. R. T. (1985). On paths, factors and cycles in graphs. Doctoral Thesis. Aberdeen University, 1985.
[18] Hendry, G. R. T. (1989). Extending cycles in directed graphs. J. Combin. Theory, Ser. B, 46(2), 162-172.
[19] Jackson, B. (1981). Long paths and cycles in oriented graphs. J. Graph Theory, 5(2), 145-157.
[20] Kühn, D., \& Osthus, D. (2012). A survey on Hamilton cycles in directed graphs. European J. Combin., 33(5), 750-766.
[21] Lafond, M., \& Seamone, B. (2015). Hamiltonian chordal graphs are not cycle extendable. SIAM J. Discrete Math., 29(2), 877-887.
[22] Manoussakis, Y. \& Tuza Z. (1990). Polynomial algorithms for finding cycles and paths in bipartite tournaments. SIAM J. Discrete Math., 3(4), 537-543.
[23] Meierling, D. (2010). Solution of a conjecture of Tewes and Volkmann regarding extendable cycles in in-tournaments. J. Graph Theory, 63(1), 82-92.
[24] Harary, F. and Moser, L. (1966). The theory of round robin tournaments. Amer. Math. Monthly, 73, 231-246.
[25] Moon, J. W. (1968). Topics on Tournaments. Holt, Rinehart and Winston, N.Y..
[26] Tewes, M., \& Volkmann, L. (2001). Vertex pancyclic in-tournaments. J. Graph Theory, 36(2), 84104.
[27] Yeo, A. (1999). A polynomial time algorithm for finding a cycle covering a given set of vertices in a semicomplete multipartite digraph. J. Algorithms, 33(1), 124-139.
[28] Yeo, A. (2018), Semicomplete Multipartite Digraphs, Chapter 7 in Classes of Directed Graphs (J. Bang-Jensen and G. Gutin, eds), Springer, 2018.
[29] Zhang, Z.-B., Zhang, X., \& Wen, X. (2013). Directed hamilton cycles in digraphs and matching alternating hamilton cycles in bipartite graphs. SIAM J. Discrete Math., 27(1), 274-289.
[30] Zhang, Z.-B., Zhang, X., Broersma, H. \& Lou, D. (2017). Extremal and Degree Conditions for Path Extendability in Digraphs. SIAM J. Discrete Math., 31(3), 1990-2014.

[^0]: *This research is partially supported by NSFC (11471342, 11871280 and 11471003), the China Scholarship Council (201508440189), Qinglan Project, the Natural Science Foundation of Guangdong Province (2016A030313829), Talent Project of Guangdong Industry Polytechnic (RC2016-004), Science and Technology Project of Guangdong Province (2015A020214025), and Royal Society Wolfson Research Merit Award.
 \dagger Email address: eltonzhang2001@gmail.com
 \ddagger Corresponding Author. Email address: royxyzhang@gmail.com, zhangxiaoyan@njnu.edu.cn
 §Email address: g.gutin@rhul.ac.uk
 『 Email address: issldj@mail.sysu.edu.cn

[^1]: ${ }^{1}$ The vertices $(i, i+1)$ and $(j-1, j)$ may coincide if $j=i+1$.

