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1. Introduction

Since it is unlikely that there is a characterization of all those graphs which contain a Hamilton
cycle it is natural to ask for sufficient conditions which ensure Hamiltonicity. One of the most general
of these is Chvatal’s theorem [9] that characterizes all those degree sequences which ensure the
existence of a Hamilton cycle in a graph: Suppose that the degrees of the graph are dq <--- <d. If
n>3andd;>i+1ord,_ j >n—iforalli<n/2 then G is Hamiltonian. This condition on the degree
sequence is best possible in the sense that for any degree sequence violating this condition there is
a corresponding graph with no Hamilton cycle. More precisely, if d; <--- <dp is a graphical degree
sequence (i.e. there exists a graph with this degree sequence) then there exists a non-Hamiltonian
graph G whose degree sequence d} <---<d; is such that d; >d; for all 1 <i<n.

A special case of Chvatal's theorem is Dirac’s theorem, which states that every graph with n >3
vertices and minimum degree at least n/2 has a Hamilton cycle. An analogue of Dirac’s theorem for
digraphs was proved by Ghouila-Houri [10]. (The digraphs we consider do not have loops and we
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allow at most one edge in each direction between any pair of vertices.) Nash-Williams [22] raised the
question of a digraph analogue of Chvatal's theorem quite soon after the latter was proved.

For a digraph G it is natural to consider both its outdegree sequence d+,.‘.,dn+ and its inde-
gree sequence di,...,d; . Throughout this paper we take the convention that dl+ <---<df and
dy <---<dy without mentioning this explicitly. Note that the terms d,.Jr and d;” do not necessarily
correspond to the degree of the same vertex of G.

Conjecture 1. (See Nash-Williams [22].) Suppose that G is a strongly connected digraph on n > 3 vertices such
that foralli <n/2

T>it+1ord

n—
i+1lord

(i)
(if)

dr > >
d- > >

i
Then G contains a Hamilton cycle.

No progress has been made on this conjecture so far (see also [4]). It is even an open problem
whether the conditions imply the existence of a cycle through any pair of given vertices (see [5]).

As discussed in Section 2, one cannot omit the condition that G is strongly connected. At first sight
one might also try to replace the degree condition in Chvatal’s theorem by

However, Bermond and Thomassen [5] observed that the latter conditions do not guarantee Hamil-
tonicity. Indeed, consider the digraph obtained from the complete digraph K on n — 2 > 4 vertices by
adding two new vertices v and w which both send an edge to every vertex in K and receive an edge
from one fixed vertex u € K.

The following example shows that the degree condition in Conjecture 1 would be best possible
in the sense that for all n > 3 and all k < n/2 there is a non-Hamiltonian strongly connected di-
graph G on n vertices which satisfies the degree condition except that d+, d, >k+1 are replaced by
d ,d >k in the kth pair of conditions. To see this, take an independent set I of size k <n/2 and a
complete digraph K of order n — k. Pick a set X of k vertices of K and add all possible edges (in both
directions) between I and X. The digraph G thus obtained is strongly connected, not Hamiltonian and

Lkn—1—-k ...n—1—-kn—-1,...,n—1
N—_——
k times n—2k times k times

is both the out- and indegree sequence of G. A more detailed discussion of extremal examples is
given in Section 2.
In this paper we prove the following approximate version of Conjecture 1 for large digraphs.

Theorem 2. For every n > 0 there exists an integer no = no(n) such that the following holds. Suppose G is a
digraph on n > nq vertices such that for alli <n/2

e dt

i+nnord
+nnord’

d nlnn>
o d =

g
ozt

n—i—nn

Then G contains a Hamilton cycle.

Instead of proving Theorem 2 directly, we will prove the existence of a Hamilton cycle in a digraph
satisfying a certain expansion property (Theorem 16). We defer the precise statement to Section 6.

The following weakening of Conjecture 1 was posed earlier by Nash-Williams [20,21]. It would
yield a digraph analogue of Pdsa’s theorem which states that a graph G on n > 3 vertices has a
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Hamilton cycle if its degree sequence dj, ...,d, satisfies d; > i+ 1 for all i < (n — 1)/2 and if addi-
tionally dpn/27 > [n/2] when n is odd [23]. Note that this is much stronger than Dirac’s theorem but
is a special case of Chvatal’s theorem.

Conjecture 3. (See Nash-Williams [20,21].) Let G be a digraph on n > 3 vertices such that dl.+, d; >i+1 for
alli < (n —1)/2 and such that additionally d?;m , d(_nm > [n/27] whenn is odd. Then G contains a Hamilton
cycle.

The previous example shows that the degree condition would be best possible in the same sense
as described there. The assumption of strong connectivity is not necessary in Conjecture 3, as it fol-
lows from the degree conditions. The following approximate version of Conjecture 3 is an immediate
consequence of Theorem 2.

Corollary 4. For every n > 0 there exists an integer ng = no(n) such that every digraph G on n > ng vertices
with dl*, d,._ > i+ nnforalli <n/2 contains a Hamilton cycle.

In Section 4 we give a construction which shows that for oriented graphs there is no analogue of
Pésa’s theorem. (An oriented graph is a digraph with no 2-cycles.)

It will turn out that the conditions of Theorem 2 even guarantee the digraph G to be pancyclic,
i.e. G contains a cycle of length ¢t for all t=2,...,n.

Corollary 5. For every n > 0 there exists an integer no = no(n) such that the following holds. Suppose G is a
digraph on n > ng vertices such that for all i <n/2

T _ .
° di >l+nnordn_i_nn>n—l,

— . + .
° di >l+nnordn_i_nn>n—l.

Then G is pancyclic.

Thomassen [25] proved an Ore-type condition which implies that every digraph with minimum
in- and outdegree > n/2 is pancyclic. (The complete bipartite digraph whose vertex class sizes are
as equal as possible shows that the latter bound is best possible.) Alon and Gutin [1] observed that
one can use Ghouila-Houri’s theorem to show that every digraph G with minimum in- and outdegree
>n/2 is even vertex-pancyclic. Here a digraph G is called vertex-pancyclic if every vertex of G lies on
a cycle of length t for all t =2,...,n. In Proposition 9 we show that one cannot replace pancyclicity
by vertex-pancyclicity in Corollary 5. Minimum degree conditions for (vertex-) pancyclicity of oriented
graphs are discussed in [15].

Our result on Hamilton cycles in expanding digraphs (Theorem 16) is used as a tool in [16] to
prove an approximate version of Sumner’s universal tournament conjecture. Theorem 16 also has
an application to a conjecture of Thomassen on tournaments. A tournament is an orientation of a
complete graph. We say that a tournament is regular if every vertex has equal in- and outdegree.
Thus regular tournaments contain an odd number n of vertices and each vertex has in- and outdegree
(n—1)/2. It is easy to see that every regular tournament contains a Hamilton cycle. Thomassen [27]
conjectured that even if we remove a number of edges from a regular tournament G, the remaining
oriented graph still contains a Hamilton cycle.

Conjecture 6. (See Thomassen [27].) If G is a regular tournament on n vertices and A is any set of less than
(n —1)/2 edges of G, then G — A contains a Hamilton cycle.

In Section 7 we prove Conjecture 6 for sufficiently large regular tournaments. Note that Conjec-
ture 6 is a weakening of the following conjecture of Kelly (see e.g. [4,6,19]).
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Fig. 1. An extremal example for Conjecture 1.

Conjecture 7 (Kelly). Every regular tournament on n vertices can be decomposed into (n — 1) /2 edge-disjoint
Hamilton cycles.

In [18] we showed that every sufficiently large regular tournament can be ‘almost’ decomposed
into edge-disjoint Hamilton cycles, thus giving an approximate solution to Kelly’s conjecture.

This paper is organized as follows. We first give a more detailed discussion of extremal examples
for Conjecture 1. After introducing some basic notation, in Section 3 we then deduce Corollary 5
from Theorem 2 and show that one cannot replace pancyclicity by vertex-pancyclicity. Our proof of
Theorem 2 uses the Regularity lemma for digraphs which, along with other tools, is introduced in
Section 5. The proof of Theorem 2 is included in Section 6. It relies on a result (Lemma 12) from
joint work [12] of the first two authors with Keevash on an analogue of Dirac’s theorem for oriented
graphs. A related result was proved earlier in [14].

It is a natural question to ask whether the ‘error terms’ in Theorem 2 and Corollary 4 can be
eliminated using an ‘extremal case’ or ‘stability’ analysis. However, this seems quite difficult as there
are many different types of digraphs which come close to violating the conditions in Conjectures 1
and 3 (this is different e.g. to the situation in [12]). As a step in this direction, very recently it was
shown in [7] that the degrees in the first parts of the conditions in Theorem 2 can be capped at n/2,
i.e. the conditions can be replaced by
in{i + nn,n/2} or dni,.ﬂn1
in{i + nn,n/2} or d” >n—i.

n—i—nn =

i
d

° >n—i,

> m
Ql>m

The proof of this result is considerably more difficult than that of Theorem 2. A (parallel) algorithmic
version of Chvatal’s theorem for undirected graphs was recently considered in [24] and for directed
graphs in [8].

2. Extremal examples for Conjecture 1 and a weaker conjecture

The example given in the Introduction does not quite imply that Conjecture 1 would be best
possible, as for some k it violates both (i) and (ii) for i = k. Here is a slightly more complicated
example which only violates one of the conditions for i =k (unless n is odd and k = |n/2]).

Suppose n > 5 and 1 <k <n/2. Let K and K’ be complete digraphs on k—1 and n —k — 2 vertices
respectively. Let G be the digraph on n vertices obtained from the disjoint union of K and K’ as
follows. Add all possible edges from K’ to K (but no edges from K to K’) and add new vertices u
and v to the digraph such that there are all possible edges from K’ to u and v and all possible edges
from u and v to K. Finally, add a vertex w that sends and receives edges from all other vertices of G
(see Fig. 1). Thus G is strongly connected, not Hamiltonian and has outdegree sequence

k—1,....,k—1,k,k,kn—1,....,.n—1

k—1 times n—k—1 times
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and indegree sequence

n—-k—2,...n—-k—-2n—-k—1n—-k—1,n-1,...,n—1.
——
n—k—2 times k times

Suppose that either n is even or, if n is odd, we have that k < |n/2]. One can check that G then
satisfies the conditions in Conjecture 1 except that dlj =k and d,_, =n—k— 1. (When checking
the conditions, it is convenient to note that our assumptions on k and n imply n —k — 1 > [n/2].
Hence there are at least [n/2] vertices of outdegree n — 1 and so (ii) holds for all i <n/2.) If n
is odd and k = |n/2] then conditions (i) and (ii) both fail for i = k. We do not know whether a
similar construction as above also exists for this case. It would also be interesting to find an analogous
construction as above for Conjecture 3.

Here is also an example which shows that the assumption of strong connectivity in Conjecture 1
cannot be omitted. Let n > 4 be even. Let K and K’ be two disjoint copies of a complete digraph
on n/2 vertices. Obtain a digraph G from K and K’ by adding all possible edges from K to K’ (but
none from K’ to K). It is easy to see that G is neither Hamiltonian, nor strongly connected, but
satisfies the condition on the degree sequences given in Conjecture 1.

As it stands, the additional connectivity assumption means that Conjecture 1 does not seem to be
a precise digraph analogue of Chvatal’s theorem: in such an analogue, we would ask for a complete
characterization of all digraph degree sequences which force Hamiltonicity. However, it turns out that
it makes sense to replace the strong connectivity assumption with an additional degree condition
(condition (iii) below). If true, the following conjecture would provide the desired characterization.

Conjecture 8. Suppose that G is a digraph on n > 3 vertices such that for all i <n/2

(if) di

(i) df >i+1ord,_
P

;=zn—i,
i+lord!  >n—i

and such that (iii) d;'/z >n/2or dn_/2 >n/2 ifnis even. Then G contains a Hamilton cycle.

Conjecture 8 would actually follow from Conjecture 1. To see this, it of course suffices to check
that the conditions in Conjecture 8 imply strong connectivity. This in turn is easy to verify, as the
degree conditions imply that for any vertex set S with |S| <n/2 we have [IN7(S) U S| > |S| and
INT(S)US| > |S|. (We need (iii) to obtain this assertion precisely for those S with |S| =n/2.)

It remains to check that Conjecture 8 would indeed characterize all digraph degree sequences
which force a Hamilton cycle. Unless n is odd and k = |n/2], the construction at the beginning of the
section already gives non-Hamiltonian graphs which satisfy all the degree conditions (including (iii))
except (i) for i = k. To cover the case when n is odd and k = [n/2], let G be the digraph obtained
from two disjoint cliques K and K’ of orders [n/27] and |n/2] by adding all edges from K to K’. If
i=k=|n/2] then G satisfies (ii) (because d,tk =n—1) but not (i). For all other i, both conditions are
satisfied. Finally, the example immediately preceding Conjecture 8 gives a graph on an even number n
of vertices which satisfies (i) and (ii) for all i <n/2 but does not satisfy (iii).

Nash-Williams observed that Conjecture 1 would imply Chvatal's theorem. (Indeed, given an undi-
rected graph G satisfying the degree condition in Chvatal’s theorem, obtain a digraph by replacing
each undirected edge with a pair of directed edges, one in each direction. This satisfies the degree
condition in Conjecture 1. It is also strongly connected, as it is easy to see that G must be con-
nected.) A disadvantage of Conjecture 8 is that it would not imply Chvatal’s theorem in the same
way: consider a graph G which is obtained from Kj/2 n/2 by removing a perfect matching and adding
a spanning cycle in one of the two vertex classes. The degree sequence of this G satisfies the con-
ditions of Chvatal’s theorem. However, the digraph obtained by doubling the edges of G does not
satisfy (iii) in Conjecture 8.
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3. Notation and the proof of Corollary 5

We begin this section with some notation. Given two vertices x and y of a digraph G, we write xy
for the edge directed from x to y. The order |G| of G is the number of its vertices. We denote
by Ng(x) and N (x) the out- and the inneighbourhood of x and by d‘GL(x) and d; (x) its out- and
indegree. We will write N™(x) for example, if this is unambiguous. Given S C V (G), we write Ng(S)
for the union of Né’(x) for all x € S and define N (S) analogously. The minimum semi-degree 5%(G)
of G is the minimum of its minimum outdegree §*(G) and its minimum indegree 5~ (G).

Proof of Corollary 5. Our first aim is to prove the existence of a vertex x € V(G) such that d*(x) +
d~(x) > n. Such a vertex exists if there is an index j with djf + dnij >n. Indeed, at least n — j + 1
vertices of G have outdegree at least d+ and at least j+ 1 vertices have indegree at least dn__j. Thus
there will be a vertex x with d*(x) > clJr and d=(x) >d,_ i

To prove the existence of such an 1ndex j, suppose first that there is an i with 2 <i <n/2 and

such that df | >i but d” =i. Then d,_ ; >n—i and so d]" +d,_; >n as required. The same argument
works if there is an i Wlth 2<i< n/2 and such that d;_; > i but d; =1i. Suppose next that d+
Thend, ; >n—1 and so d;r =1. Thus we can take j:=1. Again, the same argument works if d}’ g 1.
Thus we may assume that d[n/21 1’d[_r1/21 1 = [n/2]. But in this case we can take j:= |n/2].
Now let x be a vertex with dT(x) +d~(x) >n, set G':=G —x and n’ :=|G’|. Let cl] ¢y
and d1 Crrees dn’.G’ denote the out- and the indegree sequences of G’. Given some i <n’ and s > 0, if
dfr > s then at least n +1 — i vertices in G have outdegree at least s. Thus at least n —i=n'+1—1
vertices in G’ have outdegree at least s — 1 and so d > s — 1. Thus for all i <n/2 the degree
sequences of G’ satisfy

d+

+
Od,-yc/>1+77"—101'dn i rmG’>n_l_1'
ocliqc,>z+nn—lordn imgng =N —i—1
and so
+ . —
edfc, zi+nn'/2ord,_ i 2.6 = !
— /
° d[!G, >i+nn'/2 or dn’—i o /2,6 P

Hence we can apply Theorem 2 with n replaced by 1/2 to obtain a Hamilton cycle C =x1...xy
in G’. We now apply the same trick as in [1] to obtain a cycle (through x) in G of the desired length,
t say (where 2 <t < n): Since dg(x) +d;(x) >n>n’ there exists an i such that x; € Ng(x) and
Xiyt—2 € N (x) (where we take the indices modulo n’). But then xx; ... Xj4¢_»x is the required cycle of
length t. O

Note that the proof of Corollary 5 shows that if Conjecture 1 holds and G is a strongly 2-connected
digraph with

edf>i+2o0rd, _;, ,>n
. dl_>1+2 ordn i 12
for all i <n/2 then G is pancyclic.

The next result implies that we cannot replace pancyclicity with vertex-pancyclicity in Corollary 5.

Proposition 9. Given any k > 3 there are n = n(k) > 0 and ng = no(k) such that for every n > ng there exists
a digraph G on n vertices with dl ,di > i+mnn foralli <n/2, but such that some vertex of G does not lie on
a cycle of length less than k.
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Proof. Let 1 :=1/(k3%) and suppose that n is sufficiently large. Let G be the digraph obtained from
the disjoint union of k — 2 independent sets V1, ..., Vx_» with |V;| =3i[yn] and a complete di-
graph K onn—1—|V;U-.-UV,_;]| vertices as follows. Add a new vertex x which sends an edge to
all vertices in V1 and receives an edge from all vertices in K. Add all possible edges from V; to V4
(but no edges from V;,q to V;) for each i < k — 3. Finally, add all possible edges going from vertices
in K to other vertices and add all edges from Vi_, to K. Then d; > |K| > 2n/3 and di+ >1i+nn for
all i <n/2 with room to spare. However, if C is a cycle containing x then the inneighbour of x on C
must lie in K. But the shortest path from x to K has length k — 1 and so |C| >k, as required. O

4. Degree sequences for Hamilton cycles in oriented graphs

In Section 1 we mentioned Ghouila-Houri’s theorem which gives a bound on the minimum semi-
degree of a digraph G guaranteeing a Hamilton cycle. A natural question raised by Thomassen [26]
is that of determining the minimum semi-degree which ensures a Hamilton cycle in an oriented
graph. Haggkvist [11] conjectured that every oriented graph G of order n > 3 with §°(G) > (3n —4)/8
contains a Hamilton cycle. The bound on the minimum semi-degree would be best possible. The
first two authors together with Keevash [12] confirmed this conjecture for sufficiently large oriented
graphs.

Pésa’s theorem implies the existence of a Hamilton cycle in a graph G even if G contains a signif-
icant number of vertices of degree much less than n/2, i.e. of degree much less than the minimum
degree required to force a Hamilton cycle. In particular, Pésa’s theorem is much stronger than Dirac’s
theorem. In the same sense, Conjecture 3 would be much stronger than Ghouila-Houri’s theorem.
The following proposition implies that we cannot strengthen Haggkvist's conjecture in this way:
there are non-Hamiltonian oriented graphs which contain just a bounded number of vertices whose
semi-degree is (only slightly) smaller than 3n/8. To state this proposition we need to introduce the
notion of dominating sequences: Given sequences X1, ...,X, and y1,..., ¥, of numbers we say that
Y1, ..., Yn dominates x1,...,x, if x; <y; forall 1 <i<n.

Proposition 10. For every 0 < o < 3/8, there is an integer ¢ = c(«) and infinitely many oriented graphs G
whose in- and outdegree sequences both dominate

«|Gl,...,a|G|,3|G|/8,...,3|G|/8
N e’
c times

but such that G does not contain a Hamilton cycle.

Proof. Define c := 4t where t € N is chosen such that 3 — 1/t > 8«. Let n be sufficiently large and
such that 8¢ divides n and define vertex sets A, B, C, D and E of sizes n/4,n/8,n/8 —1,n/4+ 1 and
n/4 respectively.

Let G be the oriented graph obtained from the disjoint union of A, B,C, D and E by defining the
following edges: G contains all possible edges from A to B, Bto C,C to D, Ato C, Bto D and D
to A. E sends out all possible edges to A and B and receives all possible edges from C and D. B and C
both induce tournaments that are as regular as possible (see Fig. 2). So certainly dg(x), d;(x) >3n/8
for all x € BUC U E. Furthermore, currently, df (@) =n/4 — 1, d; (@) =n/2 + 1, df(d) =n/2 and
d;(d)=n/4—1forallac A and all d € D.

Partition A into A’ and A” where |A”| =c and thus |A’| =n/4—c. Write A’ =: {X1, X2, ..., Xn/8—c/2,
Y1,¥2, ., Ynss—c2} and A” =:{z1,...,22¢, W1, ..., wp}. Let A’ induce a tournament that is as reg-
ular as possible. In particular, every vertex in A’ sends out at least n/8 — c/2 — 1 edges to other
vertices in A’. We define the edges between A’ and A” as follows: Add the edges x;zj, yiw; to G
for all 1<i<n/8—c/2 and 1< j < 2t. Note that we can partition both {xq,...,xn/8-c/2} and
{¥1,....Yn/8—cs2} into t sets of size s:=n/(2c) — 2. For each 0 <i <t —1 add all possible edges
from {Xsi11, ..., Xsi+1)} t0 {Waig1, Waig2} and from {ysiy1, ..., ¥sis1)) t0 {2241, 22i42). If @’ € A’ and
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Fig. 2. The oriented graph G in Proposition 10.

a” € A” are such that the edge a’a” has not been included into G so far then add the edge a”a’ to G.
Thus, dé(a’) >m/4—1)+n/8—c/2—1)+c/2+2=3n/8 for all a’ € A’ and

di(a”) > m/4—1)+ /8 —c/2—5)=3n/8—c/2—n/Q2c)+1>an

for all a” € A”.

Partitioning D into D’ and D” (where |D”| = c) and defining edges inside D in a similar fashion
to those inside A, we can ensure that d (d’) > 3n/8 for all d’ € D’ and d (d”) > an for all d” € D".
So indeed G has the desired degree sequences.

E is an independent set, so if G contains a Hamilton cycle H then the inneighbour of each vertex
in E on H must lie in C U D while its outneighbour lies in AU B. So H contains at least |E| =n/4
disjoint edges going from AU B to C U D. However, all such edges in G have at least one endvertex
in BUC. So there are at most |B| + |C| =n/4 — 1 < |E| such disjoint edges in G. Thus G does not
contain a Hamilton cycle (in fact, G does not contain a 1-factor). O

5. The Diregularity lemma and other tools

In the proof of Theorem 2 we will use the directed version of Szemerédi’s Regularity lemma.
Before we can state it we need some more definitions. The density of an undirected bipartite graph
G = (A, B) with vertex classes A and B is defined to be

ec(A, B
dota. = ilsy

We will write d(A, B) if this is unambiguous. Given any ¢ > 0 we say that G is &-regular if for all
X CAand Y C B with |X| > ¢|A| and |Y| > €|B| we have that |[d(X,Y) —d(A, B)| < e.

Given disjoint vertex sets A and B in a digraph G, we write (A, B)g for the oriented bipartite
subgraph of G whose vertex classes are A and B and whose edges are all the edges from A to B in G.
We say (A, B)¢ is e-regular and has density d if the underlying bipartite graph of (A, B)¢ is &-regular
and has density d. (Note that the ordering of the pair (A, B) is important here.)

The Diregularity lemma is a variant of the Regularity lemma for digraphs due to Alon and
Shapira [2]. Its proof is similar to the undirected version. We will use the degree form of the Di-
regularity lemma which is derived from the standard version in the same manner as the undirected
degree form (see e.g. the survey [17] for a sketch of the undirected version).

Lemma 11 (Degree form of the Diregularity lemma). For every € € (0, 1) and every integer M’ there are
integers M and ng such that if G is a digraph on n > ng vertices and d € [0, 1] is any real number, then there is
a partition of the vertex set of G into Vg, V1, ..., Vy and a spanning subdigraph G’ of G such that the following
holds:

e M'<k<M,
o |Vo|<en,
o [Vi|=---=|Vi|=:m,
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o df,(x) > dE(x) — (d+ &)n for all vertices x € V (G),

o d; (%) >d; (x) — (d +¢&)n for all vertices x € V (G),

e foralli=1,..., kthe digraph G'[V;] is empty,

o forall1<i, j <kwithi# jthe pair (V;, V)¢ is e-regular and has density either 0 or density at least d.

We call V1q,..., Vy clusters, Vq the exceptional set and the vertices in Vo exceptional vertices. We
refer to G’ as the pure digraph. The last condition of the lemma says that all pairs of clusters are
e-regular in both directions (but possibly with different densities). The reduced digraph R of G with
parameters €, d and M’ is the digraph whose vertices are Vy,..., Vi and in which V;V; is an edge
precisely when (V;, V)¢ is &-regular and has density at least d.

Given 0 < v < 7 < 1, we call a digraph G a (v, 7)-outexpander if [N*(S)| > |S| + v|G| for all
S € V(G) with 7|G| < |S| < (1 — 7)|G|. The main tool in the proof of Theorem 2 is the following
result from [12].

Lemma 12. Let M’, ng be positive integers and let €, d, n, v, T be positive constants such that 1/ng < 1/M’ <
& «d<kv<T«n<1. Let G be an oriented graph on n > nq vertices such that 8°(G) > 2nn. Let R be the
reduced digraph of G with parameters ¢, d and M’. Suppose that there exists a spanning oriented subgraph R*
of R with 8°(R*) > n|R*| which is a (v, T)-outexpander. Then G contains a Hamilton cycle.

Here we write 0 < a; < az < as <1 to mean that we can choose the constants ai, az,as from
right to left. More precisely, there are increasing functions f and g such that, given a3, whenever we
choose some a; < f(as) and a; < g(ay), all calculations needed in the proof of Lemma 12 are valid.

Our next aim is to show that any digraph G as in Theorem 2 is an outexpander. In fact, we will
show that even the ‘robust outneighbourhood’ of any set S C V(G) of reasonable size is significantly
larger than S. More precisely, let 0 < v < t < 1. Given any digraph G and S C V(G), the v-robust
outneighbourhood RNIG(S) of S is the set of all those vertices x of G which have at least v|G| in-

neighbours in S. G is called a robust (v, T)-outexpander if |RNIG(S)| > |S| 4+ v|G| for all S C V(G)
with 7|G| < |S| < (1 — 1)|G].

Lemma 13. Let ng be a positive integer and t, n) be positive constants such that 1/ng < T < n < 1. Let G be
a digraph on n > ng vertices with

(i) df >i+nnor dy i gp=n—i,
(ii) d; >i+nnor d:ﬁiinn >n—i

foralli <n/2. Then 8°(G) > nn and G is a robust (t2, T)-outexpander.

Proof. Clearly, if df > 1+ nn then §*(G) > nn. If d} <1+ nn then (i) implies that Ay >n—1.
Thus G has at least nn + 1 vertices of indegree n — 1 and so §7(G) > nn. It follows similarly that
§(G) = nn.

Consider any non-empty set S C V(G) with tn < |S| < (1 —7)n and |S| #n/2 + | Tn]. Let us first
deal with the case when d\Jg\—LrnJ > |S| — Ltn] +nn > |S| 4+ nn/2. Then S contains a set X of |7n]
vertices, each having outdegree at least |S| + nn/2. Let Y be the set of all those vertices of G that
have at least 72n inneighbours in X. Then

IXI(IS1+nn/2) < IYIIXI+ (n = 1Y) T*n < |Y[IX] + %0
and so |RNT+2 OB N +272n.
So suppose next that d?;l—[rnj < |S| — LTn] + nn. Since §7(G) > nn we may assume that |S| <
(1—-n+1t)n<n—1—nn+ |zn] (otherwise RN:r2 c(8)=V(G) and we are done). Thus

d >n—|S|+[tn] >n—|S|+1t°n

by (i) and (ii). (Here we use that |S|#n/2 4+ |tn].)

n—|S|+|tn]—nn
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So G contains at least |S| — |Tn] 4+ nn > |S| 4+ nn/2 vertices x of indegree at least n — |S| + 2n. If
|RNT2 (I <IS| +212n then V(G) \ RN+ .(S) contains such a vertex x. But then x has at least 2n

neighbours in S, i.e. x € RN (S) a contradlctlon

If |S|=n/2+ [tn] then con51der1ng the outneighbourhood of a subset of S of size |S| — 1 shows
that |RNT cOI=181-1 +2t%n>|S|+1%n. O

The next result implies that the property of a digraph G being a robust outexpander is ‘inherited’
by the reduced digraph of G. For this (and for Lemma 15) we need that G is a robust outexpander,
rather than just an outexpander.

Lemma 14. Let M’, ng be positive integers and let €,d, n, v, T be positive constants such that 1/ng < & <
d <« v, 7,1 <1 and such that M’ < ng. Let G be a digraph on n > ng vertices with §°(G) > nn and such
that G is a robust (v, T)-outexpander. Let R be the reduced digraph of G with parameters €, d and M’. Then
8%(R) > n|R|/2 and R is a robust (v/2, 2T)-outexpander.

Proof. Let G’ denote the pure digraph, k := |R|, let V1, ..., Vi be the clusters of G (i.e. the vertices
of R) and Vg the exceptional set. Let m:=|Vq|="--=|Vk|. Then

8°(R) = (8°(G") — |Vol)/m = (8°(G) — (d + 2&)n) /m = nk/2.
Consider any S C V(R) with 27k < |S| < (1—27)k. Let S’ be the union of all the clusters belonging
to S. Then Tn < |S'] < (1 —27)n. Since [N, (x) N S| = [N () N'S'| — (d + &)n > vn/2 for every x €
RN;G(S/) this implies that

RN 5 6/(S)] = RN ()] = |S'] + v = |S|m + vmk.

However, in G’ every vertex x € RNV/2 G,(S/)\Vo receives edges from vertices in at least [N, (x) N
S’'|/m > (vn/2)/m > vk/2 clusters V; € S. Thus by the final property of the partmon in Lemma 11
the cluster V; containing x is an outneighbour of each such V; (in R). Hence V € RNU/Z,R(S)‘ This in
turn implies that

‘RN:F/Z,R(S)’ ’RNv/z (S /)‘ —|Vol)/m = |S| + vk/2,

as required. 0O

The strategy of the proof of Theorem 2 is as follows. By Lemma 13 our given digraph G is a robust
outexpander and by Lemma 14 this also holds for the reduced digraph R of G. The next result gives us
a spanning oriented subgraph R* of R which is still an outexpander. The somewhat technical property
concerning the subdigraph H C R in Lemma 15 will be used to guarantee an oriented subgraph G*
of G which has linear minimum semi-degree and such that R* is a reduced digraph of G*. (G* will be
obtained from the spanning subgraph of the pure digraph G’ which corresponds to R* by modifying
the neighbourhoods of a small number of vertices.) Finally, we will apply Lemma 12 with R* playing
the role of both R and R* and G* playing the role of G to find a Hamilton cycle in G* and thus in G.

Lemma 15. Given positive constants v < T < 1, there exists a positive integer ng such that the following holds.
Let R be a digraph on n > nq vertices which is a robust (v, t)-outexpander. Let H be a spanning subdigraph
of R with 8°(H) > nn. Then R has a spanning oriented subgraph R* which is a robust (v/12, T)-outexpander
and such that 8°(R* N H) > nn/4.

Proof. Consider a random spanning oriented subgraph R* of R obtained by deleting one of the edges
Xy, yx (each with probability 1/2) for every pair x, y € V(R) for which xy, yx € E(R), independently
from all other such pairs. Given a vertex x of R, we write N (x) for the set of all those vertices
of R which are both out- and inneighbours of x and define NiE (x) similarly. Let H* := H N R*. Clearly,
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d (%), dy. (X) > qn/4 if [N (x)] < 3nn/4. So suppose that [N (x)| = 3nn/4. Let X := [N (x) "N} (X)].
Then EX > 3nn/8 and so a standard Chernoff estimate (see e.g. [3, Cor. A.14]) implies that

P(d}. (x) < nn/4) <P(X < nn/4) < P(X < 2EX/3) < 2e X < 2e730mM/8,
where ¢ is an absolute constant (i.e. it does not depend on v, T or n). Similarly it follows that
P(dy. (x) < nn/4) < 2e3¢1/8,
Consider any set S € V(R*) = V(R). Let ERNU/3 r(S) = RNV/3 r(S)\'S and define ERNV/12 7+ (S)
similarly. We say that S is good if all but at most vn/6 vertices in ERNU/iR(S) are contained in
ERN;“/Q,R*(S). Our next aim is to show that

IP(S is not good) < e™". (M

To prove (1), write ERNi(S) for the set of all those vertices x € ERNV/3 r(S) for which |Ni(x) ns| >
vn/4. Note that every vertex in ERNV/3 RN\ ERNi(S) will automatically lie in ERNV/12 r«(5). We
say that a vertex x € ERNi(S) fails if x ¢ ERNV/12 g+ (S). The expected size of Np.(x) N Ni(x) NS is
at least vn/8. So as before, a Chernoff estimate gives

P(x fails) <P(|[Ng. () N NE(x) N S| <vn/12) <2e V8 =i p.

Let Y be the number of all those vertices x € ERN% (S) which fail. Then EY < p|ERN7(S)| <

Note that the failure of distinct vertices is independent (which is the reason we are only con51dermg
vertices in the external neighbourhood of S). So we can apply the following Chernoff estimate (see
e.g. [3, Theorem A.12]): If C > e? we have

P(Y > CEY) < e(C—CInOEY < e~ CUNOEY/2.
Setting C :=vn/(6EY) > v/(6p) this gives

PP(S is not good) = P(Y > vn/6) =P(Y > CEY) < e CUNOEY/2 _ o—vn(n0)/12
<e™
(The last inequality follows since p < v if n is sufficiently large.) This completes the proof of (1).
Since 4ne=3¢M/8 4 2"e~" ~ 1 (if n is sufficiently large) this implies that there is an outcome
for R* such that §°(R* N H) > nn/4 and such that every set S C V(R) is good. We will now
show that the latter property implies that such an R* is a robust (v/12, 7)- outexpander So con-
sider any set S C V(R) with tn < |S| < (1 — 7)n. Let EN := ERN" RS and N :=RNT »R(S)NS. So
ENUN = RNjR(S) Since S is good and EN C ERNU/3 r(S) all but at most vn/6 vertices in EN are
contained in ERNV/12 (8 S RNU/12 g+ (S).
Now consider any partition of S into S1 and S; such that every vertex x € N satisfies [Ny (x)NS;| >
vn/3 for i =1, 2. (The existence of such a partition follows by considering a random partition.) Then
S1NNC ERNU/3 z(S2). But since S is good this implies that all but at most vn/6 vertices in S1 NN

are contained in ERN re(52) € RNU/12 g+(S). Similarly, since Sy is good, all but at most vn/6

v/12,
vertices in So N N are contained in ERNV/12 r<(S1) € RNV/12 r+(S). Altogether this shows that

IRN 12,2+ ()| = [ENU(S1INN)U (S2NN)| = — = |RN} x(S)| — =~ > S| + 2
as required. O
6. Proof of Theorem 2
As indicated in Section 1, instead of proving Theorem 2 directly, we will prove the following

stronger result. It immediately implies Theorem 2 since by Lemma 13 any digraph G as in Theorem 2
is a robust outexpander and satisfies §°(G) > nn.
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Theorem 16. Let ng be a positive integer and v, T, 1) be positive constants such that 1/np K v<t<Kn<1.
Let G be a digraph on n > ng vertices with §°(G) > nn which is a robust (v, T)-outexpander. Then G contains
a Hamilton cycle.

Proof. Pick a positive integer M’ and additional constants &, d such that 1/ng K 1/M' € ¢ €d K V.
Apply the Regularity lemma (Lemma 11) with parameters ¢, d and M’ to G to obtain clusters
V1, ..., Vi, an exceptional set Vg and a pure digraph G’. Then 89(G’) > (n — (d + &))n by Lemma 11.
Let R be the reduced digraph of G with parameters &, d and M’. Lemma 14 implies that §°(R) > nk/2
and that R is a robust (v/2, 2t)-outexpander.

Let H be the spanning subdigraph of R in which V;V; is an edge if V;V; € E(R) and the density
d¢ (Vi, V) of the oriented subgraph (V;, V)¢ of G is at least /4. We will now give a lower bound
on 8§ (H). So consider any cluster V; and let m := |V;|. Writing e¢(V;, V(G) \ Vo) for the number of
all edges from V; to V(G) \ Vg in G, we have

Y. do(Vi,Vpm® =eq (Vi V(G)\ Vo) = 8°(G')m — [Volm > (5 — 2d)nm.
VieNF (Vi)

It is easy to see that this implies that there are at least nk/4 outneighbours V; of V; in R such that
dg/(Vi, Vj) = n/4. But each such V; is an outneighbour of V; in H and so §*(H) > nk/4. 1t follows
similarly that 6~ (H) > nk/4. We now apply Lemma 15 to find a spanning oriented subgraph R* of R
which is a (robust) (v/24, 2t)-outexpander and such that §°(R* N H) > nk/16. Let H* := H N R*.

Our next aim is to modify the pure digraph G’ into a spanning oriented subgraph of G having
minimum semi-degree at least 7%n/100. Let G* be the spanning subgraph of G’ which corresponds
to R*. So G* is obtained from G’ by deleting all those edges xy that join some cluster V; to some
cluster V; with V;V; € E(R) \ E(R*). Note that G* — Vg is an oriented graph. However, some vertices
of G* — Vo may have small degrees. We will show that there are only a few such vertices and we
will add them to Vg in order to achieve that the out- and indegrees of all the vertices outside Vg
are large. So consider any cluster V;. For any cluster V; e N,J;*(Vi) at most em vertices in V; have
less than (d¢/(Vy, Vj) —&)m > nm/5 outneighbours in V; (in the digraph G’). Call all these vertices
of V; useless for V;. Thus on average any vertex of V; is useless for at most 8|N;*(V,-)| clusters
Vie Nﬁ*(v,-). This implies that at most </em vertices in V; are useless for more than \/§|N§*(V,~)|
clusters V; € NZ*(V,-). Let U,.+ C V; be a set of size \/em which consists of all these vertices and some
extra vertices from V; if necessary. Similarly, we can choose a set U;” C V;\ UiJr of size i/em such
that for every vertex x € V;\ U; there are at most VEING (V)| clusters Vj € Ny, (V;) such that x has
less than nm/5 inneighbours in V. For each i =1, ...,k remove all the vertices in Ui+ UU; and add
them to Vo. We still denote the subclusters obtained in this way by V1, ..., Vy and the exceptional
set by Vy. Thus we now have that |Vg| < 3./én. Moreover,

0(c* nm o nm nk n’n
8°(C" = Vo) = (1 = Ve)s* (H") = Vol > - 5 —3ven > 5.
We now modify G* by altering the neighbours of the exceptional vertices: For every x € Vo we select
a set of nn/2 outneighbours of x in G and a set of nn/2 inneighbours such that these two sets are
disjoint and add the edges between x and the selected neighbours to G*. We still denote the oriented
graph thus obtained from G* by G*. Then 8%°(G*) > 1?n/100. Since the partition Vo, Vq,..., V of
V(G*) is as described in the Regularity lemma (Lemma 11) with parameters 3./¢, d — & and M’
(where G* plays the role of G’ and G) we can say that R* is a reduced digraph of G* with these
parameters. Thus we may apply Lemma 12 with R* playing the role of both R and R* and G* playing
the role of G to find a Hamilton cycle in G* and thus in G. O

7. Hamilton cycles in regular tournaments

In this section we prove Conjecture 6 for sufficiently large regular tournaments. The following
observation of Keevash and Sudakov [13] will be useful for this.
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Proposition 17. Let 0 < ¢ < 10™* and let G be an oriented graph on n vertices such that §°(G) > (1/2 — c)n.
Then for any (not necessarily disjoint) S, T € V (G) of size at least (1/2 — c)n there are at least n® /60 directed
edges fromStoT.

We now show that Theorem 16 implies Conjecture 6 for sufficiently large regular tournaments.

Corollary 18. There exists an integer ng such that the following holds. Given any regular tournament G on
n > ng vertices and a set A of less than (n — 1)/2 edges of G, then G — A contains a Hamilton cycle.

Proof. Let 0 < v < T < 1 K 1. It is not difficult to show that G is a robust (v, T)-outexpander. Indeed,
if SCV(G) and (1/2+ t)n < |S| < (1 — T)n then RN;G(S) =V(G).If tn <|S| < (1/2 — 7)n then it
is easy to see that |RNIG(S)| > (1—1)n/2 > S|+ vn. So consider the case when (1/2 — 7)n < |S| <
(1/2 + 7)n. Suppose |RN:r,G(S)| < |S|+vn < (1/2 4+ 27)n. Then by Proposition 17 there are at least
n®/60 directed edges from S to V(G)\RN ;(S). By definition each vertex x € V(G)\RN{ ;(S) has

less than vn inneighbours in S, a contradiction. So |RNIG(S)| > |S| + vn as desired.

Since |A| < (n—1)/2 and n is sufficiently large, G — A must be a robust (v/2, t)-outexpander. Thus
if 3°(G — A) > nn then by Theorem 16, G — A contains a Hamilton cycle.

If $°(G — A) < nn then there exists precisely one vertex x € V(G — A) such that either daA(x) <nn

or d;_,(x) < nn. Without loss of generality we may assume that défA(x) < nn. Note that défA(x) >1
and let y € N(J;ZA(X). Let G’ be the digraph obtained from G — A by removing x and y from G — A and
adding a new vertex z so that N£,(z) := N{_,(y) and N, (2) := Ng_,(x). So 8°(G') > nn — 2 > nyn/2
and G’ is a robust (v/3, 27)-outexpander. Thus by Theorem 16 G’ contains a Hamilton cycle which
corresponds to one in G. O
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