84 research outputs found

    What does semantic tiling of the cortex tell us about semantics?

    Get PDF
    Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the cortex. Although this impressive research establishes distributed cortical areas active during the conceptual processing that underlies semantics, it tells us little about the nature of this processing. While mapping concepts between Marr's computational and implementation levels to support neural encoding and decoding, this approach ignores Marr's algorithmic level, central for understanding the mechanisms that implement cognition, in general, and conceptual processing, in particular. Following decades of research in cognitive science and neuroscience, what do we know so far about the representation and processing mechanisms that implement conceptual abilities? Most basically, much is known about the mechanisms associated with: (1) features and frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based inference, (4) concept composition, and (5) conceptual flexibility. Rather than explaining these fundamental representation and processing mechanisms, semantic tiles simply provide a trace of their activity over a relatively short time period within a specific learning context. Establishing the mechanisms that implement conceptual processing in the brain will require more than mapping it to cortical (and sub-cortical) activity, with process models from cognitive science likely to play central roles in specifying the intervening mechanisms. More generally, neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that contribute essential explanations to how the brain works, going beyond simply establishing the brain areas that respond to various task conditions

    Mechanisms in Cognitive Science

    Get PDF
    This chapter subsumes David Marr’s levels of analysis account of explanation in cognitive science under the framework of mechanistic explanation: Answering the questions that define each one of Marr’s three levels is tantamount to describing the component parts and operations of mechanisms, as well as their organization, behavior, and environmental context. By explicating these questions and showing how they are answered in several different cognitive science research programs, this chapter resolves some of the ambiguities that remain in Marr’s account, and shows that many different areas and traditions of cognitive scientific research can be unified under the mechanistic framework

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc

    Mind as Machine: Can Computational Processes Be Regarded As Explanatory of Mental Processes?

    No full text
    The aim of the thesis is to evaluate recent work in artificial intelligence (AI). It is argued that such evaluation can be philosophically interesting, and examples are given of areas of the philosophy of AI where insufficient concentration on the actual results of AI has led to missed opportunities for the two disciplines — philosophy and AI — to benefit from cross-fertilization. The particular topic of the thesis is the use of AI techniques in psychological explanation. The claim is that such techniques can be of value in psychology, and the strategy of proof is to exhibit an area where this is the case. The field of model-based knowledge-based system (KBS) development is outlined; a type of model called a conceptual model will be shown to be psychologically explanatory of the expertise that it models. A group of major philosophies of explanation are examined, and it is discovered that such philosophies are too restrictive and prescriptive to be of much value in evaluating many areas of science; they fail to apply to scientific explanation generally. The importance of having sympathetic yardsticks for the evaluation of explanatory practices in arbitrary fields is defended, and a series of such yardsticks is suggested. The practice of providing information processing models in psychology is discussed. A particular type of model, a psychological competence model, is defined, and its use in psychological explanation defended. It is then shown that conceptual models used in model-based KBS development are psychological competence models. It follows therefore that such models are explanatory of the expertise they model. Furthermore, since KBSs developed using conceptual models share many structural characteristics with their conceptual models, it follows that a limited class of those systems are also explanatory of expertise. This constitutes an existence proof that computational processes can be explanatory of mental processes

    Mechanisms in Cognitive Science

    Get PDF
    This chapter subsumes David Marr’s levels of analysis account of explanation in cognitive science under the framework of mechanistic explanation: Answering the questions that define each one of Marr’s three levels is tantamount to describing the component parts and operations of mechanisms, as well as their organization, behavior, and environmental context. By explicating these questions and showing how they are answered in several different cognitive science research programs, this chapter resolves some of the ambiguities that remain in Marr’s account, and shows that many different areas and traditions of cognitive scientific research can be unified under the mechanistic framework

    The challenges of purely mechanistic models in biology and the minimum need for a 'mechanism-plus-X' framework

    Get PDF
    Ever since the advent of molecular biology in the 1970s, mechanical models have become the dogma in the field, where a "true" understanding of any subject is equated to a mechanistic description. This has been to the detriment of the biomedical sciences, where, barring some exceptions, notable new feats of understanding have arguably not been achieved in normal and disease biology, including neurodegenerative disease and cancer pathobiology. I argue for a "mechanism-plus-X" paradigm, where mainstay elements of mechanistic models such as hierarchy and correlation are combined with nomological principles such as general operative rules and generative principles. Depending on the question at hand and the nature of the inquiry, X could range from proven physical laws to speculative biological generalizations, such as the notional principle of cellular synchrony. I argue that the "mechanism-plus-X" approach should ultimately aim to move biological inquiries out of the deadlock of oft-encountered mechanistic pitfalls and reposition biology to its former capacity of illuminating fundamental truths about the world

    Bayesian modeling of biological motion perception in sport

    Full text link
    La perception d’un mouvement biologique correspond à l’aptitude à recueillir des informations (comme par exemple, le type d’activité) issues d’un objet animé en mouvement à partir d’indices visuels restreints. Cette méthode a été élaborée et instaurée par Johansson en 1973, à l’aide de simples points lumineux placés sur des individus, à des endroits stratégiques de leurs articulations. Il a été démontré que la perception, ou reconnaissance, du mouvement biologique joue un rôle déterminant dans des activités cruciales pour la survie et la vie sociale des humains et des primates. Par conséquent, l’étude de l’analyse visuelle de l’action chez l’Homme a retenu l’attention des scientifiques pendant plusieurs décennies. Ces études sont essentiellement axées sur informations cinématiques en provenance de différents mouvements (comme le type d’activité ou les états émotionnels), le rôle moteur dans la perception des actions ainsi que les mécanismes sous-jacents et les substrats neurobiologiques associés. Ces derniers constituent le principal centre d’intérêt de la présente étude, dans laquelle nous proposons un nouveau modèle descriptif de simulation bayésienne avec minimisation du risque. Ce modèle est capable de distinguer la direction d’un ballon à partir d’un mouvement biologique complexe correspondant à un tir de soccer. Ce modèle de simulation est inspiré de précédents modèles, neurophysiologiquement possibles, de la perception du mouvement biologique ainsi que de récentes études. De ce fait, le modèle présenté ici ne s’intéresse qu’à la voie dorsale qui traite les informations visuelles relatives au mouvement, conformément à la théorie des deux voies visuelles. Les stimuli visuels utilisés, quant à eux, proviennent d’une précédente étude psychophysique menée dans notre laboratoire chez des athlètes. En utilisant les données psychophysiques de cette étude antérieure 3 et en ajustant une série de paramètres, le modèle proposé a été capable de simuler la fonction psychométrique ainsi que le temps de réaction moyen mesurés expérimentalement chez les athlètes. Bien qu’il ait été établi que le système visuel intègre de manière optimale l’ensemble des indices visuels pendant le processus de prise de décision, les résultats obtenus sont en lien avec l’hypothèse selon laquelle les indices de mouvement sont plus importants que la forme dynamique dans le traitement des informations relatives au mouvement. Les simulations étant concluantes, le présent modèle permet non seulement de mieux comprendre le sujet en question, mais s’avère également prometteur pour le secteur de l’industrie. Il permettrait, par exemple, de prédire l’impact des distorsions optiques, induites par la conception de verres progressifs, sur la prise de décision chez l’Homme. Mots-clés : Mouvement biologique, Bayésien, Voie dorsale, Modèle de simulation hiérarchique, Fonction psychométrique, Temps de réactionThe ability to recover information (e.g., identity or type of activity) about a moving living object from a sparse input is known as Biological Motion perception. This sparse input has been created and introduced by Johansson in 1973, using only light points placed on an individual's strategic joints. Biological motion perception/recognition proves to play a significant role in activities that are critical to the survival and social life of humans and primates. In this regard, the study of visual analysis of human action had the attention of scientists for decades. These studies are mainly focused on: kinematics information of the different movements (such as type of activity, emotional states), motor role in the perception of actions and underlying mechanisms, and associated neurobiological substrates. The latter being the main focus of the present study, a new descriptive risk-averse Bayesian simulation model, capable of discerning the ball’s direction from a set of complex biological motion soccer-kick stimuli is proposed. Inspired by the previous, neurophysiologically plausible, biological motion perception models and recent studies, the simulation model only represents the dorsal pathway as a motion information processing section of the visual system according to the two-stream theory, while the stimuli used have been obtained from a previous psychophysical study on athletes. Moreover, using the psychophysical data from the same study and tuning a set of parameters, the model could successfully simulate the psychometric function and average reaction time of the athlete participants of the aforementioned study. 5 Although it is established that the visual system optimally integrates all available visual cues in the decision-making process, the results conform to the speculations favouring motion cue importance over dynamic form by only depending on motion information processing. As a functioning simulator, the present simulation model not only introduces some insight into the subject at hand but also shows promise for industry use. For example, predicting the impact of the lens-induced distortions, caused by various lens designs, on human decision-making. Keywords: Biological motion, Bayesian, Dorsal pathway, Hierarchical simulation model, Psychometric function, Reaction tim

    From surfaces to objects : Recognizing objects using surface information and object models.

    Get PDF
    This thesis describes research on recognizing partially obscured objects using surface information like Marr's 2D sketch ([MAR82]) and surface-based geometrical object models. The goal of the recognition process is to produce a fully instantiated object hypotheses, with either image evidence for each feature or explanations for their absence, in terms of self or external occlusion. The central point of the thesis is that using surface information should be an important part of the image understanding process. This is because surfaces are the features that directly link perception to the objects perceived (for normal "camera-like" sensing) and because surfaces make explicit information needed to understand and cope with some visual problems (e.g. obscured features). Further, because surfaces are both the data and model primitive, detailed recognition can be made both simpler and more complete. Recognition input is a surface image, which represents surface orientation and absolute depth. Segmentation criteria are proposed for forming surface patches with constant curvature character, based on surface shape discontinuities which become labeled segmentation- boundaries. Partially obscured object surfaces are reconstructed using stronger surface based constraints. Surfaces are grouped to form surface clusters, which are 3D identity-independent solids that often correspond to model primitives. These are used here as a context within which to select models and find all object features. True three-dimensional properties of image boundaries, surfaces and surface clusters are directly estimated using the surface data. Models are invoked using a network formulation, where individual nodes represent potential identities for image structures. The links between nodes are defined by generic and structural relationships. They define indirect evidence relationships for an identity. Direct evidence for the identities comes from the data properties. A plausibility computation is defined according to the constraints inherent in the evidence types. When a node acquires sufficient plausibility, the model is invoked for the corresponding image structure.Objects are primarily represented using a surface-based geometrical model. Assemblies are formed from subassemblies and surface primitives, which are defined using surface shape and boundaries. Variable affixments between assemblies allow flexibly connected objects. The initial object reference frame is estimated from model-data surface relationships, using correspondences suggested by invocation. With the reference frame, back-facing, tangential, partially self-obscured, totally self-obscured and fully visible image features are deduced. From these, the oriented model is used for finding evidence for missing visible model features. IT no evidence is found, the program attempts to find evidence to justify the features obscured by an unrelated object. Structured objects are constructed using a hierarchical synthesis process. Fully completed hypotheses are verified using both existence and identity constraints based on surface evidence. Each of these processes is defined by its computational constraints and are demonstrated on two test images. These test scenes are interesting because they contain partially and fully obscured object features, a variety of surface and solid types and flexibly connected objects. All modeled objects were fully identified and analyzed to the level represented in their models and were also acceptably spatially located. Portions of this work have been reported elsewhere ([FIS83], [FIS85a], [FIS85b], [FIS86]) by the author

    The emergence of active perception - seeking conceptual foundations

    Get PDF
    The aim of this thesis is to explain the emergence of active perception. It takes an interdisciplinary approach, by providing the necessary conceptual foundations for active perception research - the key notions that bridge the conceptual gaps remaining in understanding emergent behaviours of active perception in the context of robotic implementations. On the one hand, the autonomous agent approach to mobile robotics claims that perception is active. On the other hand, while explanations of emergence have been extensively pursued in Artificial Life, these explanations have not yet successfully accounted for active perception.The main question dealt with in this thesis is how active perception systems, as behaviour -based autonomous systems, are capable of providing relatively optimal perceptual guidance in response to environmental challenges, which are somewhat unpredictable. The answer is: task -level emergence on grounds of complicatedly combined computational strategies, but this notion needs further explanation.To study the computational strategies undertaken in active perception re- search, the thesis surveys twelve implementations. On the basis of the surveyed implementations, discussions in this thesis show that the perceptual task executed in support of bodily actions does not arise from the intentionality of a homuncu- lus, but is identified automatically on the basis of the dynamic small mod- ules of particular robotic architectures. The identified tasks are accomplished by quasi -functional modules and quasi- action modules, which maintain transformations of perceptual inputs, compute critical variables, and provide guidance of sensory -motor movements to the most relevant positions for fetching further needed information. Given the nature of these modules, active perception emerges in a different fashion from the global behaviour seen in other autonomous agent research.The quasi- functional modules and quasi- action modules cooperate by estimating the internal cohesion of various sources of information in support of the envisaged task. Specifically, such modules basically reflect various computational facilities for a species to single out the most important characteristics of its ecological niche. These facilities help to achieve internal cohesion, by maintaining a stepwise evaluation over the previously computed information, the required task, and the most relevant features presented in the environment.Apart from the above exposition of active perception, the process of task - level emergence is understood with certain principles extracted from four models of life origin. First, the fundamental structure of active perception is identified as the stepwise computation. Second, stepwise computation is promoted from baseline to elaborate patterns, i.e. from a simple system to a combinatory system. Third, a core requirement for all stepwise computational processes is the comparison between collected and needed information in order to insure the contribution to the required task. Interestingly, this point indicates that active perception has an inherent pragmatist dimension.The understanding of emergence in the present thesis goes beyond the distinc- tion between external processes and internal representations, which some current philosophers argue is required to explain emergence. The additional factors are links of various knowledge sources, in which the role of conceptual foundations is two -fold. On the one hand, those conceptual foundations elucidate how various knowledge sources can be linked. On the other, they make possible an interdisci- plinary view of emergence. Given this two -fold role, this thesis shows the unity of task -level emergence. Thus, the thesis demonstrates a cooperation between sci- ence and philosophy for the purpose of understanding the integrity of emergent cognitive phenomena
    • …
    corecore