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1. Introduction

A principal goal of cognitive scientific research is to explain behavioral and cognitive phenomena 

such as perception, action, categorization, memory, learning, language, and attention. The most in-

fluential account of explanation in cognitive science is due to David Marr (1982). On Marr’s ac-

count, cognitive scientists answer questions at three distinct levels of analysis: the computational 

level, which concerns questions about a particular system’s computational goals and about the ap-

propriateness thereof; the algorithmic level, which is driven by questions about the representations 

and algorithms that are used by the system to achieve these goals; and the implementational level, 

which addresses questions about the way in which these representations and algorithms are physi-

cally realized (Marr 1982: 24ff). According to Marr, questions at all three levels of analysis must be 

answered in order to “completely understand” a cognitive system, and to thereby explain its behav-

ior.2

Although Marr’s account remains influential to this day, there are reasons to be unsatisfied 

about its clarity and scope. First, although it is relatively clear which questions should be asked, it is

not quite as clear how these questions might be answered. Among others, it is unclear what it actu-

ally takes to show that a computational goal is appropriate, and what it means for an algorithm to be

physically realized. Second, because Marr’s account is formulated in terms co-opted from computer

science, rather than in terms endemic to philosophical discussions of scientific explanation, it is dif-

ficult to know how explanations in cognitive science compare to explanations in other disciplines 

that center on e.g. subsumption under law, the development of models, and/or the discovery of 

mechanisms. Finally, many of the terms that play a central role in Marr’s account are far less promi-

nent in cognitive science today than they were at the time of Marr’s writing. In particular, the com-

putationalist research program which predominated in the 1970s and 1980s (Pylyshyn 1980) now 

competes for attention and resources with alternative research programs such as connectionism 

(Rumelhart et al. 1986), dynamicism (van Gelder 1998), and the Bayesian approach (Zednik & 

Jäkel 2016), some of which may not rely on notions of ‘computation’, ‘algorithm’, and ‘implemen-

tation’ at all.
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Despite these reasons to be unsatisfied with Marr’s account  of explanation in cognitive sci-

ence, its lasting influence recommends it as a productive starting point for discussion. Indeed, the 

aim of this chapter is to show that many of the ambiguities in Marr’s account can be resolved, and 

that its scope can be extended, by considering Marr to be an early advocate of mechanistic explana-

tion (Chapter 1). Although Marr’s account was originally designed to capture explanations in com-

putationalist cognitive science, the questions it identifies at each level of analysis are in fact varia-

tions on the types of questions that are asked in any research program that aims to discover and de-

scribe (cognitive) mechanisms. Specifically, questions at the computational level can be construed 

as questions about what a mechanism is doing and why: questions that concern the mechanism’s be-

havior and containing environment. Questions at the algorithmic level, in contrast, are questions 

about how a mechanism does what it does, and concern its component operations. Finally, questions

at the implementational level of analysis can be understood as questions about where a particular 

mechanism’s component operations are carried out—that is, questions about the component parts in 

which such operations might be localized. Although Marr showed how each one of these questions 

might be answered using the concepts and methods of computationalist cognitive science, they are 

also answered in the context of other research programs such as connectionism, dynamicism, and 

the Bayesian approach. In other words, there is reason to believe that all of these research programs 

seek three-level explanations, and moreover, that all of them aspire to discover and describe mecha-

nisms.

This chapter will outline and defend a mechanistic interpretation of Marr’s account of expla-

nation in cognitive science, and thereby attempt to resolve the ambiguities that remain in this ac-

count, as well as to extend its scope. Notably, in line with Marr’s claim that all three levels of analy-

sis are necessary to “completely understand” a cognitive system, on the current interpretation all 

three levels must be addressed in order to provide mechanistic explanations of behavioral or cogni-

tive phenomena.3 In this way, the present interpretation differs from several previous attempts to re-

late Marr’s account to the framework of mechanistic explanation (see e.g. Bechtel & Shagrir 2015; 

Bickle 2015; Kaplan 2011; Milkowski 2013; Piccinini & Craver 2011). Moreover, the present inter-

pretation helps to address a number of philosophical debates concerning e.g. the role of idealization 

in cognitive modeling, the role of abstraction in mechanistic explanation, and the nature of the real-

ization-relationship that obtains between functional processes in the mind and physical structures in 

the brain.
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2. The computational level: “What?” and “Why?”

In Marr’s original formulation, the computational level of analysis is defined by questions about a 

cognitive system’s computational goals, as well as questions about the appropriateness thereof 

(Marr 1982: 24ff). More generally, these can be understood as questions about what a cognitive sys-

tem is doing, and questions about why it does what it does (see also McClamrock 1991; Shagrir 

2010).

What-questions can be answered by describing the relevant system’s behavior. Within the 

computationalist research program, this involves specifying an information-processing function that

maps the system’s (sensory) inputs onto its (behavioral) outputs. That said, recent contributions by 

e.g. dynamicist researchers suggest that many behavioral and cognitive capacities—especially those

that depend on continuous feedback from the environment—cannot be easily described as mappings

between input and output (van Gelder 1995). Rather, these capacities are better described as contin-

uous trajectories through state space, the dimensions of which might correspond to neural activity, a

system’s bodily position or motion, and/or features of the environment (Kelso 1995). Although it 

may be terminologically confusing to associate dynamical state-space trajectories with the “compu-

tational” level of analysis, they are analogous to information-processing functions in that they too 

can be used to describe a cognitive system’s behavior, and thus, to answer questions about what the 

system is doing.

Answers to what-questions play an important role not only in Marr’s account of explanation 

in cognitive science, but also in the framework of mechanistic explanation (see also Chapter 16). 

Descriptions of a cognitive system’s behavior are descriptions of an explanandum phenomenon 

(Cummins 2000). In many scientific disciplines, such descriptions are the starting point of mecha-

nistic explanation: The explanandum phenomenon is identified with the overall behavior of a mech-

anism, and an attempt is made to describe that mechanism’s component parts, operations, and over-

all organization (Bechtel & Richardson 1993; Darden & Craver 2012; Chapter 19). Notably, many 

mechanisms are known whose overall behavior has been described as a form of information-pro-

cessing (Craver 2013; Kaplan 2011), but also mechanisms whose behavior has been more effec-

tively described as a trajectory through state space (Bechtel & Abrahamsen 2010). Therefore, these 

ways of answering what-questions in cognitive science are by no means inconsistent with the prin-

ciples of mechanistic explanation (compare Chemero & Silberstein 2008). That said, merely de-

scribing a mechanism’s overall behavior is insufficient for the purposes of mechanistic explanation 

(Kaplan & Craver 2011; Chapter 20). Indeed, insofar as descriptions of a mechanism’s overall be-

havior often resemble law-like regularities (Chapter 12), they may also feature in other kinds of sci-
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entific explanation (Chemero & Silberstein 2008; Zednik 2011). For this reason, determining 

whether cognitive scientists are in fact in the business of mechanistic explanation requires taking a 

closer look at the way in which they answer questions beyond “what?”.

One such question is the question of “why?”. In the context of his celebrated cash register 

example, Marr deems it important to ask “why the cash register performs addition and not, for in-

stance, multiplication when combining the prices of the purchased items to arrive at a final bill” 

(Marr 1982: 22). Marr claims that such questions are answered by considering the “appropriate-

ness” of the system’s behavior with respect to the “task at hand” (Marr 1982: 24). Whereas many 

previous discussions of Marr overlook this aspect of the computational level, Shagrir (2010) has 

provided a compelling analysis according to which a cognitive system's behavior should be deemed 

appropriate when a mathematical description of that behavior can be mapped onto a relevant (poten-

tially abstract or even counterfactual) property of the system’s environment. One analytic technique 

that is well-suited for answering why-questions in this way is rational analysis (Anderson 1991; 

Oaksford & Chater 2007), which lies at the heart of the recently-influential Bayesian approach in 

cognitive science (Zednik & Jäkel 2016). This technique involves formally characterizing a cogni-

tive system’s task environment as a form of probabilistic inference, and deriving an optimal solution

in the sense prescribed by probability theory. A widely-reported—and initially surprising—finding 

of this approach is that many different kinds of cognition and behavior closely approximate optimal 

solutions (Pouget et al. 2013). Whenever this is the case, why-questions can be answered because 

the optimal solutions describe a cognitive system’s behavior while simultaneously reflecting a 

mathematical property of the system’s environment—namely, the Bayes-optimal solution to a par-

ticular task. Intuitively, the method of rational analysis allows researchers to show that cognitive 

systems behave as they do because that way of behaving is optimal in the sense prescribed by prob-

ability theory (but compare Danks 2008).

Shagrir’s analysis of ‘appropriateness’ implies that answers to why-questions cannot be 

found by looking solely at the cognitive system whose behavior is being explained; it also involves 

looking at the environment in which that behavior unfolds. That said, it is far from obvious how 

looking at properties external to a cognitive system might be conducive to revealing the mecha-

nisms internal to it. Moreover, it is tempting to think of why-questions as pertaining to a teleologi-

cal approach to scientific explanation which is traditionally contrasted with the mechanistic ap-

proach.4 Nevertheless, philosophical proponents of mechanistic explanation have recently argued 

that environmental and teleological considerations play a significant role in mechanistic explana-

tion. In particular, Carl Craver argues that understanding the role a mechanism is supposed to play 
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in a containing environment can greatly facilitate the task of describing that mechanism’s actual be-

havior, and that many investigators for this reason “search for a higher-level mechanism within 

which it has a role” (Craver 2013: 153). Similarly, William Bechtel (2009) argues that mechanistic 

explanation involves “looking up” at the environment in which a mechanism is naturally embedded,

because it greatly facilitates the task of characterizing the mechanism’s actual behavior: It might re-

veal complexities that the mechanism must accommodate, as well as regularities that it might ex-

ploit.

These considerations suggest that answers to why-questions do in fact play a role in mecha-

nistic explanation (see also Chapter 8), and indeed, that they may be instrumental for coming up 

with answers to what-questions. Notably, the Bayesian approach illustrates this kind of dependence 

of the what on the why. Recall that many different kinds of behavior and cognition have been found 

to approximate optimal solutions within a particular task environment. Although initially surprising,

this finding is not accidental. Investigators regularly find discrepancies between an optimal solution 

and the observed behavioral data, but then often go on to tweak the specification of the task envi-

ronment until the optimal solution is closely approximated by the data (Anderson 1991). Although 

some commentators denounce this kind of tweaking as a post-hoc model-fitting exercise of limited 

explanatory value (see e.g. Bowers & Davis 2012), others take it to be an efficient means of deriv-

ing mathematical formalisms that simultaneously answer what- and why-questions at the computa-

tional level of analysis, and that even facilitate the search for answers at lower levels (Zednik & 

Jäkel 2016).

In short, Marr’s computational level of analysis concerns two types of questions: questions 

about what a cognitive system is doing, and questions about why. It is a mistake to consider either 

kind of question to be antithetical to the principles of mechanistic explanation. On the contrary, both

kinds of questions play an important role in the discovery and description of mechanisms in several 

different research programs. But although the computational level of analysis can therefore be seen 

to play a critical role in mechanistic explanation, it is by no means sufficient. Just as Marr deems it 

necessary to answer questions below the computational level for the purposes of “completely under-

standing” a cognitive system and its behavior, mechanistic explanation also involves describing the 

internal features of a mechanism—its component parts, operations, and organization.

3. The algorithmic level: “How?”

Marr’s algorithmic level of analysis is defined by questions about “the representation for the input 

and output”, and about the “algorithm by which the transformation [between them] may actually be 

accomplished” (Marr 1982: 23). Questions of this kind are traditionally answered through cognitive
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modeling, which involves functionally analyzing the complex behavioral or cognitive capacity 

being explained into an organized collection of simpler capacities (Cummins 1983), and 

subsequently describing this collection in formal mathematical or computational terms (Busemeyer 

& Diederich 2010; Luce 1995). In the computationalist research program, cognitive models often 

consist of lists of production rules with which to manipulate symbolic expressions (Pylyshyn 1980).

These models are quite naturally viewed as descriptions of algorithms for transforming 

representations so as to achieve a particular computational goal. That said, cognitive models are a 

commonplace even in non-computationalist research programs. Indeed, some of the most influential

cognitive models today consist of mathematical equations that determine the numerical values of 

output variables (Rumelhart et al. 1986; Nosofsky 1986), the evolution of state variables over time 

(Busemeyer & Townsend 1993), or the probability distribution over a hypothesis space (Pouget et 

al. 2013). It may not always be useful or even possible to think of these models as describing 

representation-transforming algorithms (Ramsey 2007; van Gelder 1995). Nevertheless, insofar as 

they can be used to reproduce a particular input-output transformation or a series of state-changes, 

they can still be said to compute a particular information-processing function or state-space 

trajectory. Insofar as the function or trajectory being computed accurately describes a particular 

cognitive system’s behavior, the relevant cognitive model is a possible answer to a question about 

how that cognitive system does what it does (Marr 1982: 23, see also Cummins 2000; McClamrock 

1991).

Notably, there are often many different ways to compute a particular information-processing 

function or state-space trajectory. For this reason, many different cognitive models may be 

developed to answer a particular how-question, and investigators need a way of distinguishing good

answers from bad ones. Interestingly, Robert Cummins is sometimes interpreted as being unwilling 

or unable to make such a distinction. Consider the following oft-quoted passage:

“Any way of interpreting the transactions causally mediating the input-output connection as 

steps in a program for doing ϕ will, provided it is systematic and not ad hoc, make the 

capacity to ϕ intelligible. Alternative interpretations, provided they are possible, are not 

competitors; the availability of one in no way undermines the explanatory force of another.” 

(Cummins 1983: 43)

Because Cummins attributes the same degree of explanatory force to a (potentially) wide variety of 

models, he has been accused of being unable to distinguish between answers to how-questions that 

capture the way a cognitive system actually does what it does, from answers that merely capture the

way it might possibly do so (Kaplan 2011; Piccinini & Craver 2011). This accusation seems 
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unwarranted, however; it fails to acknowledge Cummins’ demand that cognitive models accurately 

reflect the “transactions causally mediating the input-output connection”. Moreover, Cummins goes 

on to acknowledge that the elements of some cognitive models are more likely than others to be 

instantiated in a particular cognitive system—and that these models are for this reason to be 

preferred (Cummins 1983: 44, see also Feest 2003). Thus, Cummins does in fact outline a criterion 

for distinguishing good answers to how-questions from bad ones: Good answers are provided by 

cognitive models whose elements are in fact instantiated by the cognitive system being investigated,

and that actually reflect the causally relevant factors that contribute to that system’s behavior.

This criterion can be fleshed out by aligning it with the idea that cognitive models should 

accurately describe the internal features of the mechanism responsible for the explanandum 

phenomenon: its component parts, operations, and overall organization. More precisely, cognitive 

models should satisfy what has come to be known as the model-to-mechanism mapping constraint 

(3M):

“In successful explanatory models...(a) the variables in the model correspond to 

components, activities, properties, and organizational features of the target mechanism that 

produces, maintains, or underlies the phenomenon, and (b) the (perhaps mathematical) 

dependencies posited among these variables in the model correspond to the (perhaps 

quantifiable) causal relations among the components of the target mechanism.” (Kaplan & 

Craver 2011: 611, see also Chapter 17)

3M allows for the possibility that many different models have equal explanatory force—as long as 

the rules, symbols, equations and variables posited by each one of these models correspond to the 

features of the target mechanism. Moreover, although 3M requires that the features of a mechanism 

be described correctly, it does not require that they be described completely. In this spirit, Piccinini 

& Craver (2011) argue that cognitive models are designed to provide mechanism sketches, elliptical 

descriptions that correctly, albeit incompletely, describe a mechanism’s component parts, 

operations, and/or organization. Although mechanism sketches satisfy 3M by correctly describing 

some of a mechanism’s features, additional “filling in” is required in order to transform these 

sketches into full-fledged mechanistic explanations (Craver 2007; Machamer et al. 2000, see also 

Section 4 below).

Several commentators have argued that cognitive models can in fact be viewed as 

mechanism sketches. To this end, they have considered examples from a variety of research 

programs (for discussion see e.g. Abrahamsen & Bechtel 2006; Milkowski 2013; Zednik 2011). 
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That said, other commentators have identified counterexamples in the form of models that contain 

idealizations: constructs that do not correspond to any one of a particular mechanism’s features (see

also Chapter 17). For example, Weiskopf (2011) introduces Hummel & Biederman’s (1992) model 

of object-recognition, which contains Fast Enabling Links (FELs) that “possess physically 

impossible characteristics such as infinite speed” (Weiskopf 2011: 331). Similarly, Buckner (2015) 

considers the role of backpropagation learning in connectionist networks, the execution of which 

depends on the biologically implausible “backwards transmission of information across neural 

synapses, the need for prior knowledge of correct output, and the distinct, individualized error 

signals used to adjust the thresholds and weights of each node and link in the network” (Buckner 

2015: 3925). Because FELs and backpropagation learning are psychologically, biologically, and/or 

physically implausible, cognitive models that incorporate these constructs can be known with 

relative certainty to not satisfy 3M.

Although there are counterexamples to the claim that cognitive models generally satisfy 3M,

there is nevertheless reason to believe that these models are constrained by 3M. That is, there is 

reason to believe that FELs and backpropagation learning are subject to replacement by less-

idealized constructs as the explanatory demands on the relevant models increase. Notably, Weiskopf

denies this claim, arguing that FELs are “not clearly intended to be eliminated by any better 

construct in later iterations” (Weiskopf 2011: 331). The key premise in Weiskopf’s argument is that 

FELs allow Hummel & Biederman to understand the unique contribution of synchronous firing to 

object-recognition, independent of other factors such as mutual excitation and/or inhibition. 

However, it is important not to conflate intelligibility with explanation: Although FELs may allow 

investigators to understand the unique contribution of one causally relevant factor, the use of such 

idealizations often comes at the cost of obscuring or altogether neglecting the contribution of other 

factors. Thus, although models that contain idealizations may reproduce gross behavioral trends, 

they are unlikely to capture precise quantitative detail such as reaction-times and learning curves 

that may be of significant explanatory interest. Indeed, as Buckner goes on to argue, it is in order to 

capture just this kind of detail that connectionist researchers often seek to replace backpropagation 

learning with “more biologically plausible training rules” (Buckner 2015: 3925). In general, as the 

explanatory demands on a particular model increase, it seems likely that idealizations will 

eventually be replaced by constructs that more accurately reflect the causal structure of a 

mechanism. Even if the cognitive models being used today do not satisfy 3M, future iterations of 

these models will presumably strive to do so. For this reason, the requirement that cognitive models 

correctly describe mechanisms in the sense of 3M is useful for determining whether these models 

provide good or bad answers to questions about how cognitive systems do what they do.
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4. The implementational level: “Where?”

How-questions at the algorithmic level of analysis are often the primary concern of research 

programs in cognitive science. Nevertheless, it would be a mistake to think that an explanation has 

been provided just as soon as these questions have been answered. As has already been stressed 

repeatedly, on Marr’s account all three levels of analysis are needed to “completely understand” a 

cognitive system and explain its behavior. Accordingly, investigations at the computational and 

algorithmic levels must be supplemented by investigations at the implementational level, which are 

driven by questions about the way in which the constructs of a cognitive model are “realized 

physically” (Marr 1982: 25; see also Polger 2004). Unfortunately, it remains unclear what it actually

takes to show that the production rules, symbols, equations and/or variables specified by a cognitive

model are realized by complex and potentially unruly physical systems such as the brain. The aim 

of this section is to show that this lack of clarity can be remedied by considering what it takes to 

“fill in” a sketchy cognitive model so as to deliver a full-fledged mechanistic explanation.5

In general, “filling in” is a matter of describing a mechanism in greater detail than before 

(Craver 2007; Machamer et al. 2000). Although the present discussion embraces the view that 

cognitive models are mechanism sketches which leave out certain details, it has not yet been 

discussed exactly what kinds of detail are typically left out. Because most cognitive models specify 

mathematical constructs such as lists of production rules or systems of equations, it is tempting to 

think of them as specifing details about a mechanism’s abstract mathematical or computational 

properties, rather than about its concrete physical properties. Indeed, this view is quite widespread 

in the literature, despite often being left implicit (see e.g. Bechtel 2008; Bechtel & Shagrir 2015; 

Chemero & Silberstein 2008; Craver 2007; Danks 2008; McClamrock 1991; Piccinini & Craver 

2011; Shagrir 2010; Stinson 2016). Notably, on this view the details that are included may pertain to

any one or more of a mechanism’s internal features. For example, on this view cognitive models 

may describe a mechanism’s component operations in terms of e.g. their informational properties, 

rather than in terms of neuronal spike trains (Pylyshyn 1980; Weiskopf 2011). They may also 

specify a mechanism’s component parts as e.g. filters, without identifying these with any particular 

neural structures (Stinson 2016). Finally, they might characterize a mechanism’s overall 

organization as a graph, abstracting over anatomical detail (Bechtel & Shagrir 2015; Levy & 

Bechtel 2013).

Thus understood, the realization-relationship that obtains between the algorithmic and 

implementational levels is one of instantiation; “filling in” involves specifying the concrete 

physical properties that instantiate a particular set of abstract mathematical properties. Thus, 
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whereas investigations at both levels describe the same component parts, operations, and/or 

organization of a particular mechanism, they differ with respect to the kinds of properties being 

described: Abstract mathematical properties on the one hand, and concrete physical properties on 

the other. Put differently, although the questions being asked at each level are fundamentally the 

same—they are how-questions in each case—the answers being given differ because they are 

articulated at different levels of abstraction. 

Although this view is relatively widespread in the literature, it faces an important challenge: 

Why should it be necessary to answer a how-question twice? Since a mechanism’s abstract 

mathematical properties are instantiated by its concrete physical properties, why should the former 

need to be cited in an explanation, in addition to the latter? Polger (2004) argues that mechanisms 

can compute information-processing functions or state-space trajectories just in virtue of their 

physical properties, regardless of whether these properties are also said to instantiate any particular 

abstract mathematical properties. In the same vein, Bickle (2015) advances a conception of 

mechanistic explanation in which a characterization of a mechanism’s physical properties suffices 

to explain a wide variety of behavioral and cognitive phenomena; whether or not a cognitive 

mechanism can also be characterized in abstract mathematical terms at the algorithmic level is 

explanatorily irrelevant.

There is reason to be wary of this conclusion, however. For one, it contradicts Marr’s highly 

influential claim that all three levels of analysis are needed to “completely understand” a cognitive 

system’s behavior. For another, it calls into question the explanatory relevance of cognitive 

modeling, a practice that is widely considered to be the centerpiece of cognitive scientific research 

(see statements to this effect by e.g. Busemeyer & Diederich 2010; Cummins 1983; 2000; Luce 

1995; Stinson 2016; Weiskopf 2011). Unfortunately, several previous attempts to avoid this 

conclusion fall short. Consider, for example, Bechtel & Shagrir’s recent claim that cognitive models

facilitate the identification of design principles that “produce the same results across a wide range 

of different implementations” (Bechtel & Shagrir 2015: 318). Although Bechtel & Shagrir show 

that the description of design principles can render a particular mechanism’s organization 

intelligible and generalizable (see also Levy & Bechtel 2013), they do little to argue that these 

principles actually produce anything over and above the physical properties in which they are 

instantiated. In other words, design principles are subject to Kim’s (1993) causal exclusion 

argument, according to which realized properties possess no causal powers over and above their 

realizers. If the abstract design principles identified at the algorithmic level cannot be thought to 

possess causal powers over and above the concrete properties that instantiate them, it is unclear why
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cognitive models are needed to answer questions about how a mechanism does what it does. A 

similarly unsuccessful response is given by Craver, who argues that the algorithmic level describes 

“realized properties [that] figure in unique causal relevance relations”—relations that, on his 

manipulationist account of constitutive relevance, “are true of realized properties and are not true of

their realizers” (Craver 2007: 220). Recent challenges to Craver’s manipulationist account suggest 

that interventions always affect realized and realizing properties simultaneously (Baumgartner & 

Gebharter 2015), thereby calling into question the claim that there can actually be any such unique 

causal relevance relations. Thus, the explanatory relevance of the algorithmic level remains 

uncertain.

These unsuccessful responses to the challenge of explanatory irrelevance are weighed down 

by the view of cognitive models as descriptions of a mechanism’s abstract mathematical properties. 

But there is an alternative view that has yet to receive serious consideration in the literature: Rather 

than consider cognitive models as describing a subset of a mechanism’s properties, they might 

instead be thought to describe a subset of its internal features.6 Specifically, cognitive models can be

thought to describe a mechanism’s component operations as well as their functional organization, 

rather than its component parts and their structural organization. Indeed, insofar as cognitive models

are developed by functionally analyzing the behavioral or cognitive capacity being explained, it 

should come as no surprise that they are concerned primarily or even exclusively with a 

mechanism’s component operations. Piccinini & Craver appear to have this in mind when they 

observe that cognitive models are mechanism sketches “in which some structural aspects of a 

mechanistic explanation are omitted” (Piccinini & Craver 2011: 284, emphasis added). 

Nevertheless, they do not go far enough: Cognitive models may in fact be mechanism sketches in 

which all structural aspects are left out. For sure, many cognitive models contain constructs that are 

labeled with nouns such as ‘filter’, ‘channel’, or ‘representation’. Nevertheless, these constructs are 

nearly always defined functionally: A filter is something that filters, a channel is something that 

channels, and a representation is something that represents.7 Notably, on this view the fact that a 

cognitive model’s constructs are specified in mathematical or computational terms is irrelevant to 

its ability to explain; in line with the 3M constraint discussed previously, the production rules, 

symbols, equations or variables that typically feature in such a model have just as much explanatory

relevance as any other description—abstract or concrete—of the relevant mechanism’s component 

operations. That is, it is misleading to align Marr’s levels of analysis with levels of abstraction.

On this alternative view, “filling in” is a matter of localizing the production rules, symbols, 

equations or variables of a cognitive model by identifying them with a particular mechanism’s 
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component parts (Bechtel & Richardson 1993). Thus, implementational-level questions about the 

way in which certain mathematical or computational constructs are “realized physically” are not 

questions about how, but are in fact questions about where a mechanism’s component operations are

carried out. A cognitive mechanism’s component parts may be situated at several different levels of 

organization—from the level of molecules to the level of organisms (Bechtel 2008; Craver 2007)—

and they may be highly distributed within any particular level—spanning whole neural populations, 

the brain as a whole, but also spanning the physical boundaries between brain, body and world 

(Kaplan 2012; Zednik 2011). Like a mechanism’s component operations, its component parts can be

described in abstract mathematical or concrete physical terms: Molecules, nerve cells, neural 

populations, bodily limbs and tools in the environment can all be described in full anatomical or 

physical detail, but may also be characterized schematically or abstractly, e.g. as lattice-like 

structures, geometric shapes, or graphical topologies. In general, no matter whether they emphasize 

abstract mathematical properties or concrete physical ones, descriptions of operations and their 

functional organization answer how-questions at the algorithmic level of analysis, while 

descriptions of parts and their structural organization answer where-questions at the 

implementational level.

In closing, it is worth highlighting an important corollary of this alternative view of the 

realization-relationship that obtains between the algorithmic and implementational levels: It is 

wrong to assume that cognitive models at the algorithmic level are explanatorily autonomous 

(compare Feest 2003; Weiskopf 2011). Investigators have recourse to a plethora of analytic and 

experimental techniques with which to characterize the component operations of a cognitive 

mechanism, as well as to test the accuracy of any particular characterization. For sure, some of 

these techniques are driven by purely behavioral methods, and may be independent of the 

possibility of localizing operations in a mechanism’s component parts (Busemeyer & Diederich 

2010; Cummins 1983). Nevertheless, the fact that cognitive models are subject to norms that do not 

involve localization has no bearing on the issue of whether localization—or more generally, the 

ability to identify the physical structures that are involved in the production of a cognitive or 

behavioral phenomenon—is also important (compare Stinson 2016). Moreover, it is important not 

to exaggerate the ability to describe a mechanism’s component operations independently of its 

component parts. There are many historical examples in which the successful characterization of a 

mechanism’s component operations was greatly facilitated or even enabled by the prior 

identification of its component parts (Bechtel 2008; Bechtel & Richardson 1993; Craver 2013). 

Indeed, as technological advances amplify investigators’ ability to individuate structures in the brain

and to characterize their functional properties, it seems reasonable to expect that how-questions at 
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the algorithmic level and where-questions at the implementational levels will become increasingly 

intertwined (see also Boone & Piccinini 2015).

5. Conclusion

The primary aim of this chapter has been to resolve ambiguities in Marr’s account of explanation in 

cognitive science by subsuming it under the framework of mechanistic explanation. To this end, it 

was argued that Marr’s three levels can be individuated by the different types of questions that are 

typically asked about a cognitive system, and that ambiguities concerning the way in which these 

questions are posed by Marr can be resolved by aligning each question with a specific aspect of 

mechanistic explanation. Computational-level questions about a system’s computational goals are in

fact what-questions that can be answered by describing a mechanism’s behavior, and questions 

about these goals’ appropriateness are in fact why-questions that can be answered by situating the 

mechanism in a containing environment. At the algorithmic level, questions about how a certain 

computational goal is achieved are in fact questions about a mechanism’s component operations. Fi-

nally, at the implementational level, questions about the way in which algorithms and representa-

tions are physically realized are in fact where-questions that can be answered by identifying the rel-

evant mechanism’s component parts. Construed in this way, no single level of analysis bears sole 

responsibility for delivering mechanistic explanations of behavior and cognition; all three levels are 

involved in the discovery and description of cognitive mechanisms.

A secondary aim of this chapter has been to show that several different research programs—

not just the computationalist approach in which Marr was himself embedded—seek to deliver an-

swers to questions at all three levels of analysis. Thus, the scope of Marr’s account is much wider 

than traditionally assumed, encompassing many different areas and traditions in contemporary cog-

nitive scientific research. Insofar as researchers across cognitive science answer questions about the 

what, why, how and where of behavior and cognition, they are all in the business of mechanistic ex-

planation.

Notes
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1 The author is indebted to Frank Jäkel, Holger Lyre, the volume editors, and conference audiences in 

Düsseldorf and Warsaw for helpful feedback on earlier versions of this chapter.

2 Whereas Marr sometimes speaks of explanations at individual levels of analysis, here the term ‘ex-

planation’ will be reserved for a full three-level account, i.e. the kind of account that Marr deems 

necessary for “complete understanding” (Marr 1982: 4ff). This is not meant to be a commitment to 

any particular account of the relationship between explanation and understanding, however.

3 Levels of analysis must not be confused with levels of organization within a mechanism (see also 

Bechtel 2008; Craver 2007). Whereas the former are individuated by the kinds of questions an in-

vestigator might ask about a cognitive system, the latter are individuated by constitution-relations 

within a mechanism. Notably, insofar as many real-world cognitive mechanisms are hierarchical 

(Bechtel & Richardson 1993; Craver 2007), it may often be profitable to apply all three levels of 

analysis at several different levels of organization within a single mechanism.

4 Indeed, some proponents of the Bayesian approach take themselves to be delivering teleological ex-

planations rather than mechanistic explanations (see e.g. Oaksford & Chater 2007). The accuracy of

this characterization has been questioned, however, with some claiming that the Bayesian approach 

does not provide explanations at all (Bowers & Davis 2012; Danks 2008), and others arguing that it 

does in fact explain in a way that centers on the discovery of mechanisms (Zednik & Jäkel 2016).

5 The present discussion concerns only the realization-relationship that is relevant to Marr’s account 

of explanation in cognitive science. No commitment will here be made regarding the realization-re-

lationship in other contexts (see e.g. Kim 1993). Moreover, the present contribution will not explore 

the question of whether the realization-relationship that obtains between the implementational and 

algorithmic levels also obtains between the algorithmic and computational levels.

6 Intriguingly, Glennan (2010) has called it a “category mistake” to attribute a mechanism’s causal 

powers to its properties, instead of to its component parts, operations and/or overall organization. 

The view advanced here of the relationship that obtains between the algorithmic and implementa-

tional levels is consistent with Glennan’s.

7 The view outlined here is consistent with the proposal that what a particular representation repre-

sents may be secondary to the causal-functional role it plays in a cognitive system (see e.g. Fodor 

1980). A particular representation’s causal-functional role is akin to a mechanistic operation, rather 

than e.g. a part.
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