5,453 research outputs found

    Newton's lemma for differential equations

    Get PDF
    The Newton method for plane algebraic curves is based on the following remark: the first term of a series, root of a polynomial with coefficients in the ring of series in one variable, is a solution of an initial equation that can be determined by the Newton polygon. Given a monomial ordering in the ring of polynomials in several variables, we describe the systems of initial equations that satisfy the first terms of the solutions of a system of partial differential equations. As a consequence, we extend Mora and Robbiano’s Groebner fan to differential ideals

    Power Series Solutions of Non-Linear q-Difference Equations and the Newton-Puiseux Polygon

    Get PDF
    Adapting the Newton-Puiseux Polygon process to nonlinear q-difference equations of any order and degree, we compute their power series solutions, study the properties of the set of exponents of the solutions and give a bound for their q−q-Gevrey order in terms of the order of the original equation

    On the complexity of solving ordinary differential equations in terms of Puiseux series

    Full text link
    We prove that the binary complexity of solving ordinary polynomial differential equations in terms of Puiseux series is single exponential in the number of terms in the series. Such a bound was given by Grigoriev [10] for Riccatti differential polynomials associated to ordinary linear differential operators. In this paper, we get the same bound for arbitrary differential polynomials. The algorithm is based on a differential version of the Newton-Puiseux procedure for algebraic equations

    Model reduction of biochemical reactions networks by tropical analysis methods

    Full text link
    We discuss a method of approximate model reduction for networks of biochemical reactions. This method can be applied to networks with polynomial or rational reaction rates and whose parameters are given by their orders of magnitude. In order to obtain reduced models we solve the problem of tropical equilibration that is a system of equations in max-plus algebra. In the case of networks with nonlinear fast cycles we have to solve the problem of tropical equilibration at least twice, once for the initial system and a second time for an extended system obtained by adding to the initial system the differential equations satisfied by the conservation laws of the fast subsystem. The two steps can be reiterated until the fast subsystem has no conservation laws different from the ones of the full model. Our method can be used for formal model reduction in computational systems biology

    Reconstructing WKB from topological recursion

    Get PDF
    We prove that the topological recursion reconstructs the WKB expansion of a quantum curve for all spectral curves whose Newton polygons have no interior point (and that are smooth as affine curves). This includes nearly all previously known cases in the literature, and many more; in particular, it includes many quantum curves of order greater than two. We also explore the connection between the choice of ordering in the quantization of the spectral curve and the choice of integration divisor to reconstruct the WKB expansion.Comment: 68 pages, 9 figures. v2: published version (improved presentation
    • …
    corecore