4 research outputs found

    The Neglected Pieces of Designing Collective Decision-Making Processes

    Get PDF
    Autonomous decision-making is a fundamental requirement for the intelligent behavior of individual agents and systems. For artificial systems, one of the key design prerequisites is providing the system with the ability to make proper decisions. Current literature on collective artificial systems designs decision-making mechanisms inspired mostly by the successful natural systems. Nevertheless, most of the approaches focus on voting mechanisms and miss other fundamental aspects. In this paper, we aim to draw attention to the missed pieces for the design of efficient collective decision-making, mainly information processes in its two types of stimuli and options set

    Adaptive foraging in dynamic environments using scale-free interaction networks

    Get PDF
    Group interactions are widely observed in nature to optimize a set of critical collective behaviors, most notably sensing and decision making in uncertain environments. Nevertheless, these interactions are commonly modeled using local (proximity) networks, in which individuals interact within a certain spatial range. Recently, other interaction topologies have been revealed to support the emergence of higher levels of scalability and rapid information exchange. One prominent example is scale-free networks. In this study, we aim to examine the impact of scale-free communication when implemented for a swarm foraging task in dynamic environments. We model dynamic (uncertain) environments in terms of changes in food density and analyze the collective response of a simulated swarm with communication topology given by either proximity or scale-free networks. Our results suggest that scale-free networks accelerate the process of building up a rapid collective response to cope with the environment changes. However, this comes at the cost of lower coherence of the collective decision. Moreover, our findings suggest that the use of scale-free networks can improve swarm performance due to two side-effects introduced by using long-range interactions and frequent network regeneration. The former is a topological consequence, while the latter is a necessity due to robot motion. These two effects lead to reduced spatial correlations of a robot's behavior with its neighborhood and to an enhanced opinion mixing, i.e., more diversified information sampling. These insights were obtained by comparing the swarm performance in presence of scale-free networks to scenarios with alternative network topologies, and proximity networks with and without packet loss

    Robot swarm democracy: the importance of informed individuals against zealots

    Get PDF
    Abstract: In this paper we study a generalized case of best-of-n model, which considers three kind of agents: zealots, individuals who remain stubborn and do not change their opinion; informed agents, individuals that can change their opinion, are able to assess the quality of the different options; and uninformed agents, individuals that can change their opinion but are not able to assess the quality of the different opinions. We study the consensus in different regimes: we vary the quality of the options, the percentage of zealots and the percentage of informed versus uninformed agents. We also consider two decision mechanisms: the voter and majority rule. We study this problem using numerical simulations and mathematical models, and we validate our findings on physical kilobot experiments. We find that (1) if the number of zealots for the lowest quality option is not too high, the decision-making process is driven toward the highest quality option; (2) this effect can be improved increasing the number of informed agents that can counteract the effect of adverse zealots; (3) when the two options have very similar qualities, in order to keep high consensus to the best quality it is necessary to have higher proportions of informed agents
    corecore