39 research outputs found

    Beam division multiple access for millimeter wave massive MIMO: Hybrid zero-forcing beamforming with user selection

    Get PDF
    Massive multiple-input multiple-output (MIMO) systems are considered a promising solution to minimize multiuser interference (MUI) based on simple precoding techniques with a massive antenna array at a base station (BS). This paper presents a novel approach of beam division multiple access (BDMA) which BS transmit signals to multiusers at the same time via different beams based on hybrid beamforming and user-beam schedule. With the selection of users whose steering vectors are orthogonal to each other, interference between users is significantly improved. While, the efficiency spectrum of proposed scheme reaches to the performance of fully digital solutions, the multiuser interference is considerably reduced

    Learning to Compute Ergodic Rate for Multi-cell Scheduling in Massive MIMO

    Get PDF

    An overview of transmission theory and techniques of large-scale antenna systems for 5G wireless communications

    Get PDF
    To meet the future demand for huge traffic volume of wireless data service, the research on the fifth generation (5G) mobile communication systems has been undertaken in recent years. It is expected that the spectral and energy efficiencies in 5G mobile communication systems should be ten-fold higher than the ones in the fourth generation (4G) mobile communication systems. Therefore, it is important to further exploit the potential of spatial multiplexing of multiple antennas. In the last twenty years, multiple-input multiple-output (MIMO) antenna techniques have been considered as the key techniques to increase the capacity of wireless communication systems. When a large-scale antenna array (which is also called massive MIMO) is equipped in a base-station, or a large number of distributed antennas (which is also called large-scale distributed MIMO) are deployed, the spectral and energy efficiencies can be further improved by using spatial domain multiple access. This paper provides an overview of massive MIMO and large-scale distributed MIMO systems, including spectral efficiency analysis, channel state information (CSI) acquisition, wireless transmission technology, and resource allocation

    Implementation of New Multiple Access Technique Encoder for 5G Wireless Telecomunication Networks

    Get PDF
    RÉSUMÉ Les exigences de la connectivité mobile massive de différents appareils et de diverses applications déterminent les besoins des prochaines générations de technologies mobiles (5G) afin de surmonter les demandes futures. L'expansion significative de la connectivité et de la densité du trafic caractérisent les besoins de la cinquième génération de réseaux mobiles. Par conséquent, pour la 5G, il est nécessaire d'avoir une densité de connectivité beaucoup plus élevée et une plus grande portée de mobilité, un débit beaucoup plus élevé et une latence beaucoup plus faible. En raison de l'exigence d'une connectivité massive, de nombreuses nouvelles technologies doivent être améliorées: le codage des canaux, la technique d'accès multiple, la modulation et la diversité, etc. Par conséquent, compte tenu de l'environnement 5G, surcoût de signalisation et de la latence devrait être pris en compte [1]. En outre, l'application de la virtualisation des accès sans fil (WAV) devrait également être considérée et, par conséquent, il est également nécessaire de concevoir la plate-forme matérielle prenant en charge les nouvelles normes pour la mise en œuvre des émetteurs-récepteurs virtuels. L'une des nouvelles technologies possibles pour la 5G est l'accès multiple pour améliorer le débit. Par conséquent, au lieu d'OFDMA utilisé dans la norme LTE (4G), l'application d'une nouvelle technique d'accès multiple appelée Sparse Code Multiple Access (SCMA) est investiguée dans cette dissertation. SCMA est une nouvelle technique d'accès multiple non orthogonale du domaine fréquentiel proposée pour améliorer l'efficacité spectrale de l'accès radio sans fil [2]. L'encodage SCMA est l'un des algorithmes les plus simples dans les techniques d'accès multiple qui offre l'opportunité d'expérimenter des méthodes génériques de mise en oeuvre. En outre, la nouvelle méthode d'accès multiple est supposée fournir un débit plus élevé. Le choix du codage SCMA avec moins de complexité pourrait être une approche appropriée. La cible fixée pour cette recherche était d'atteindre un débit d’encodage de plus de 1 Gbps pour le codeur SCMA. Les implémentations de codage SCMA ont été effectuées à la fois en logiciel et en matériel pour permettre de les comparer. Les implémentations logicielles ont été développées avec le langage de programmation C. Parmi plusieurs conceptions, la performance a été améliorée en utilisant différentes méthodes pour augmenter le parallélisme, diminuer la complexité de calcul et par conséquent le temps de traitement.----------ABSTRACT The demands of massive mobile connectivity of different devices and diverse applications at the same time set requirments for next generations of mobile technology (5G). The significant expansion of connectivity and traffic density characterize the requirements of fifth generation mobile. Therefore, in 5G, there is a need to have much higher connectivity density, higher mobility ranges, much higher throughput, and much lower latency. In pursuance of the requirement of massive connectivity, numerous technologies must be improved: channel coding, multiple access technique, modulation and diversity, etc. For instance, with 5G, the cost of signaling overhead and latency should be taken into account [1]. Besides, applying wireless access virtualization (WAV) should be considered and there is also a need to have effective implementations supporting novel virtual transceiver. One of the possible new technologies for 5G is exploiting multiple access techniques to improve throughput. Therefore, instead of OFDMA in LTE (4G), applying a new multiple access technique called Sparse Code Multiple Access (SCMA) is an approach considered in this dissertation. SCMA is a new frequency domain non-orthogonal multiple access technique proposed to improve spectral efficiency of wireless radio access [2]. SCMA encoding is one of the simplest multiple access technique that offers an opportunity to experiment generic implementation methods. In addition, the new multiple access method is supposed to provide higher throughput, thus choosing SCMA encoding with less complexity could be an appropriate approach. The target with SCMA was to achieve an encoding throughput of more that 1Gbps. SCMA encoding implementations were done both in software and hardware to allow comparing them. The software implementations were developed with the C programing language. Among several designs, the performance was improved by using different methods to increase parallelism, decrease the computational complexity and consequently the processing time. The best achieved results with software implementations offer a 3.59 Gbps throughput, which is 3.5 times more that the target. For hardware implementation, high level synthesis was experimented. In order to do that, the C based functions and testbenches which were developed for software implementations, were used as inputs to Vivado HLS

    MM-Wave HetNet in 5G and beyond Cellular Networks Reinforcement Learning Method to improve QoS and Exploiting Path Loss Model

    Get PDF
    This paper presents High density heterogeneous networks (HetNet) which are the most promising technology for the fifth generation (5G) cellular network. Since 5G will be available for a long time, previous generation networking systems will need customization and updates. We examine the merits and drawbacks of legacy and Q-Learning (QL)-based adaptive resource allocation systems. Furthermore, various comparisons between methods and schemes are made for the purpose of evaluating the solutions for future generation. Microwave macro cells are used to enable extra high capacity such as Long-Term Evolution (LTE), eNodeB (eNB), and Multimedia Communications Wireless technology (MC), in which they are most likely to be deployed. This paper also presents four scenarios for 5G mm-Wave implementation, including proposed system architectures. The WL algorithm allocates optimal power to the small cell base station (SBS) to satisfy the minimum necessary capacity of macro cell user equipment (MUEs) and small cell user equipment (SCUEs) in order to provide quality of service (QoS) (SUEs). The challenges with dense HetNet and the massive backhaul traffic they generate are discussed in this study. Finally, a core HetNet design based on clusters is aimed at reducing backhaul traffic. According to our findings, MM-wave HetNet and MEC can be useful in a wide range of applications, including ultra-high data rate and low latency communications in 5G and beyond. We also used the channel model simulator to examine the directional power delay profile with received signal power, path loss, and path loss exponent (PLE) for both LOS and NLOS using uniform linear array (ULA) 2X2 and 64x16 antenna configurations at 38 GHz and 73 GHz mmWave bands for both LOS and NLOS (NYUSIM). The simulation results show the performance of several path loss models in the mmWave and sub-6 GHz bands. The path loss in the close-in (CI) model at mmWave bands is higher than that of open space and two ray path loss models because it considers all shadowing and reflection effects between transmitter and receiver. We also compared the suggested method to existing models like Amiri, Su, Alsobhi, Iqbal, and greedy (non adaptive), and found that it not only enhanced MUE and SUE minimum capacities and reduced BT complexity, but it also established a new minimum QoS threshold. We also talked about 6G researches in the future. When compared to utilizing the dual slope route loss model alone in a hybrid heterogeneous network, our simulation findings show that decoupling is more visible when employing the dual slope path loss model, which enhances system performance in terms of coverage and data rate
    corecore