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Abstract—In this paper, we investigate multi-cell scheduling
for massive multiple-input-multiple-output (MIMO) communica-
tions with only statistical channel state information (CSI). The
objective of multi-cell scheduling is to activate a subset of users
so as to maximize the ergodic sum rate subject to per-cell total
transmit power constraint. By adopting beam division multiple
access based on the statistical CSI, i.e., channel-coupling matrix
(CCM), we simplify multi-cell scheduling as a power control
problem in the beam domain, by which the ergodic sum rate is
maximized. To reduce the computational burden on finding the
ergodic sum rate, we propose a learning-to-compute strategy,
which directly computes the complex ergodic rate function from
CCMs via a deep neural network. Specifically, by modeling the
probability density function of the ordered eigenvalues of the
Hermitian CCM matrices as exponential family distributions,
a properly designed hybrid neural network makes the ergodic
rate computation feasible. With the learning-to-compute strategy,
the online computational complexity of multi-cell scheduling is
substantially reduced compared with the existing Monte Carlo or
deterministic equivalent (DE) based methods while maintaining
nearly the same performance.

Index Terms—Beam division multiple access, massive MIMO,
neural network, statistical CSI, mulit-cell scheduling

I. INTRODUCTION

The massive MIMO powered wireless communication sys-
tems have attracted extensive interests in the last decade
[2], [3], which improves spectral and energy efficiency by
deploying a large number of antennas [4]. The successful
applications of massive MIMO [5]-[7] show its promising
prospects for future communication networks. With the large-
scale antenna arrays at the base station (BS), massive MIMO
can serve multiple mobile terminals by reusing time-frequency
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physical resource block (PRB), which at the same time also
increases the complexity of signal processing.

The availability of CSI at the BS has a significant impact
on the throughput of massive MIMO [8], [9]. With channel
reciprocity in TDD systems, the downlink channel information
is the same as the uplink, which can be estimated through the
uplink training. For frequency-division duplex (FDD) systems,
instantaneous downlink CSI is usually obtained through down-
link training and estimation followed by uplink channel feed-
back. Meanwhile, the required number of independent pilot
symbols for CSI acquisition and the feedback overhead scale
with the number of antennas as the BS [10]. As users’ mobility
increases, channel coherence time becomes relatively short,
which imposes more challenges on CSI acquisition. Short
coherence time/frequency requires frequent uplink training for
TDD and uplink feedback for FDD to adapt to the change
of channels. It usually takes a much longer time to acquire
accurate CSI in massive MIMO. On the contrary, channel
statistics capture the long-term channel characteristics such as
spatial correlation. As such, exploiting the statistical CSI for
transmission is reasonable, especially in fast fading channels.

Exploiting only statistical CSI for massive MIMO has been
investigated recently [11], including beam division multiple
access (BDMA) [12] for a single cell. In [12], multiple users
with non-overlapping beams are selected for transmission
simultaneously. These beams correspond to the eigenmodes
of channel transmit covariance matrices, which are asymp-
totically unique and independent of users’ identities, as the
number of BS antennas tends to infinity [13], [14]. Multi-cell
scheduling aims to activate a subset of users whose beams are
not overlapping so that the ergodic sum rate is maximized.
However, there are two challenges: (1) Multi-cell scheduling
has a combinatorial nature, whose computational complexity
scales exponentially with the number of users; (2) No closed-
form expressions exist for the computation of ergodic sum rate
as a function of CCMs, and thus the performance evaluation
of different scheduling strategies incurs prohibitively high
complexity. While the existing deterministic equivalent [15]
based method achieves the ergodic sum rate approximation
with certain accuracy and computational efficiency, the com-
putational complexity and data dependence prohibit it from
the real-time user selection scenarios. This motivates us to
investigate a learning-to-compute strategy for ergodic rate
computation with statistical CSI.

In this paper, we formulate the multi-cell scheduling in mas-
sive MIMO as an ergodic rate maximization problem subject
to per-cell total transmit power constraint, where the users with
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positive power allocation are scheduled for transmission. To
make this optimization problem more tractable, we transfer
the per-cell power constraint to equal on-off power allocation
in the beam domain, i.e., each beam is either allocated with a
fixed power (ON) or zero power (OFF), which translates multi-
cell scheduling into a beam assignment problem. The perfor-
mance loss resulted from transferring the original problem into
an on-off power allocation one is insignificant as shown in
[12]. By this transfer, the follow-up computation of ergodic
rate contributes to most of the computational complexity.
Thus, we use a neural network to approximate the ergodic
rate function from the CCMs to reduce the computational
complexity. To summarize, our contributions in this paper are
three-fold.

e We develop a learning-to-compute strategy to find the
ergodic sum rate by an end-to-end neural network. Dif-
ferent from the approach based on ordered eigenvalues
of Wishart matrices in [16], the Hermitian matrix in
our work is more complicated than uncorrelated central
Wishart matrices. We model the ordered eigenvalues as
exponential family distributions, where the rate compu-
tation can therefore be addressed by the designed neural
networks.

o We formulate a combinatorial optimization problem for
multi-cell scheduling, maximizing the weighted ergodic
sum rate subject to proper beam assignment that avoids
beam overlapping across selected users. Due to the non-
linearity of the objective function, we instead develop a
greedy approach to solve the integer program efficiently.

¢ In addition to the maximum sum rate criterion, we take
into account the fairness and further propose multi-cell
scheduling, compromising efficiency and fairness simul-
taneously. The corresponding non-convex multi-objective
optimization problem maximizes the sum rate and the
Jain’s index of rate simultaneously.

Simulation results demonstrate the accuracy of the learning-
to-compute strategy for ergodic sum rate computation. Our
strategy significantly reduces the computational complexity
compared with the existing methods but is with near-optimal
accuracy. Furthermore, we propose a fairness criterion to en-
sure fairness with less sum rate loss compared with the existing
proportional fairness criterion. Our framework combines the
above modules and can schedule users efficiently and fairly.

The rest of this paper is organized as follows. In Section
II, we present the system model with beam division multiple
access. In Section III, we propose a learning-to-compute strat-
egy for ergodic rate computation, including a hybrid neural
network for the general case and a specific neural network for
dual-antenna users. In Section IV, we design the scheduling
criterion with fairness consideration and propose a K-Best
algorithm (KBA) for greedy scheduling. Simulation results are
presented in Section V and the paper is concluded in Section
VI

Some of the notations used in this paper are listed as
follows:

o Upper and lower case boldface letters denote matrices
and column vectors, respectively.

o CMXN (RMXNYy denotes the M x N dimensional com-
plex (real) vector space.

e Iy denotes the N x N identity matrix and the subscript
is sometimes omitted for brevity.

« 0 denotes the all-zero vector (matrix) and (-), ()T, and
(-)* denote conjugate transpose, transpose, and complex
conjugate operations, respectively.

o E{-} denotes the expectation operation, tr(-) and det(:)
represent matrix trace and determinant operations, respec-
tively.

o bdiag{Aj,..., A, } denotes a block diagonal matrix with
A4, ..., A, on the diagonal.

o []; and [], ; denote the i-th element of vector and the
(4, 7)-th element of matrix, respectively.

o [A], denotes the i-th column vector of A and [A],
denotes the sub-matrices of A consisting of columns
specified in B. vec(A) denotes the vectorized form of
matrix A.

e CN (a,B) denotes the circular symmetric complex
Gaussian distribution with mean o« and covariance B.
\ denotes set subtraction operation and || denotes the
cardinality of set 5.

e The symbol ® denotes the Hadamard product of two
matrices and the inequality A > 0 means that A is
Hermitian positive semi-definite.

T

II. MULTI-CELL SCHEDULING FORMULATION

After introducing signal model, we formulate the optimiza-
tion problem for multi-cell scheduling in this section.

A. Signal Model

Consider downlink transmission of multi-cell multi-user
massive MIMO in Fig. 1, consisting of L cells, each with
one BS with M transmit antennas. K users are randomly
distributed in each cell, where each user is equipped with N
receiving antennas. Denote by xj ¢ € CMx1 the transmitted
signal for the k-th user in the ¢-th cell. The received signal of
the k-th user in the j-th cell is given by

L
Y= Hyjixe+mn,,; € CV (1)
=1

where x, = Zle X,¢ is the transmitted signal of the /-th
BS, Hy, j» € CV*M denotes the channel from the /-th BS to
the k-th user in the j-th cell and ny ; ~ CN (0,Iy) is the
corresponding additive white Gaussian noise vector.

In this paper, we employ the widely-adopted jointly corre-
lated MIMO channel model [17], for which the channel matrix
can be decomposed into

) H
Hpje = Ukj,eHre 50 Vi e (2)

where Hy,, j,¢ 1s arandom matrix whose entries are independent
with zero mean, Uy ;, € CV*N and Vy, ;, € CM*M gare
the eigen matrices on the user side and the base station side,
respectively, which are unitary.

With a large scale uniform linear array (ULA) deployed
at the BS, Vy, ¢, Vk,j,¢ can be approximated as a unitary
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Fig. 1. Downlink transmission of multi-cell multi-user massive MIMO.

discrete Fourier transform (DFT) matrix F € CM*M [18]. As
demonstrated in [19], the correlation matrix, Uy, ; ¢, Vk, §, ¢, in
massive MIMO can be regarded as an identity matrix. Thus,
we can rewrite the channel matrix in (2) and define the beam
domain channel matrix as

ﬁk,j,e =Hy ; /F. €))

It has been shown that BDMA transmission is more prefer-
able for massive MIMO when only statistical CSI is available
at the BS [18]. The statistical CSI, i.e. eigenmode channel-
coupling matrix in the beam domain [20], is defined as

Qe = B {Hise o (Fre) |, )

where €y, j , € CV*M_ The coefficient, [Q4 ], . indicates
the average amount of energy that is coupled from the m-
th eigenvector of the ¢-th BS to the n-th eigenvector of the
k-th user in the j-th cell. We assume that statistical channel
information is available globally at all base stations.
Assumption 1: For multi-cell scheduling, each BS only has
access to the channel coupling matrices Qy ; , Vk, j, £.
For beam domain transmission, the received signal can be
rewritten as
L
Yk = Z Hy j ¢se + 1y 5, )]
=1
where s; = Ffx, (s = Ffx; ) is the transmitted signal
vectors in the beam domain. In (5), the covariance matrix
of the transmitted signals, E {sws,@ = Ay, is diagonal,
whose entries indicate the transmit powers allocated onto each
eigenmode. As in [21], the following ergodic achievable rate
for the k-th user in the j-th cell can be derived

L
Ry, = IE{ log det (I + Z I:Ik,j,eAeﬁkH,j,é)}
=1

L
— E{ log det (I + ;::1 Hk,j,@AZ\(k,j)H]Ig_{jyz) }7 (6)

where the expectation takes over the beam domain channel
matrix Hy o, Ay = Z§=1 Ay satisfying the per-cell total

3
power constraint tr(A,) < P, and
Ay, L# g,
Anig) =9 o, 7 )
Ag — Ak,j7 E =7

B. Problem Formulation

The objective of multi-cell scheduling is to find a set of
power allocation matrices A ..., Ag, ; that maximizes the
weighted ergodic sum rate as follows

A1.1I,r<l~-a:)/§K,L Rsum = ;wk,ijdﬂ (8a)
st. tr(Ag) < Py, (8b)
Aps =0, (80)

where wy; > 0 indicates the priorities of the users for
scheduling, and P is the total power budget of the ¢-th cell. It
is worth noting that the scheduling parameters are embedded
in the power allocation matrices, e.g., the (k,j)-th user is
switched off if no power is allocated, i.e., Ay ; = 0.

It has been shown in [18] that the sum rate maximization in
the beam domain requires that the activated beams for different
users should be non-overlapping, which also applies to the
weighted sum rate maximization. Thus, we similarly have the
following theorem.

Theorem 1 ([18]): To maximize the weighted ergodic rate
in the beam domain, the activated beams for different users
should be non-overlapping, i.e., the optimal power allocation
in the beam domain of problem (8) satisfies

ApeAp =0, VE#K, 9
where the elements of the diagonal matrix Ay ¢ indicate the
power allocation to the corresponding beams.

Theorem 1 indicates that the beams assigned to both users
with non-zero power must be non-overlapping if both users
k and k' are scheduled for transmission. For simplicity, we
consider equal power allocation across beams. That is, the
non-zero elements of power allocation matrix A, are equal.
Denote indices of the non-zero elements of Ay, as set By g,
which represents the transmission beam set for the k-th user
in the ¢-th cell. Therefore, we can rewrite the user rate as

L
Ry = E{ log det (I + Z P [I:Ik,j,g} By [I:Ikyjyz] g[)}
=1
L
— E{ log det (I + Z pe [I:Ik,j,l} By [I:Ik,j,é]gz\(kd)) }»
=1
(10

where By = Uszl Bye is the selected beam set of the /-th

cell with
B€7

Bi\Bk,j,

{5,
B (k.5) = éij (11)
and p, = P,/ |Be| is the equal power allocated to each beam
in the /-th cell. In addition, considering the fairness of all
selected users, we introduce the max number of beams for
each user By, to prevent the users from activating too many
beams.

As well-known in the massive MIMO literature [12], users

are separable in angle domain if their angle-of-arrivals (AoAs)
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are not overlapping. Thus, the maximization problem in (8)
can therefore be reformulated in the following way such that
no users with overlapping beam sets are scheduled simultane-

ously, i.e.,
g, X ;Wk,ij,j (12a)
J
sit.  Bre C Arye, Yk L (12b)
BeeNBroe=0, k#K, (12¢)
|Bk,é| < Bmaxa (12d)

where Ay, = {m|>, Q% ¢elnm > e} denotes the set
of beams whose energy exceeds a specific threshold ey,
introduced to avoid trivial connection.

There are two challenges on solving this optimization
problem. First, multi-cell scheduling is a combinatorial op-
timization problem [12], [22] and there exists no polynomial-
time complexity algorithm to solve it accurately [23]. Second,
accurately computing ergodic rate is intractable because of
the unknown joint distribution of channel statistics. Since the
ergodic sum rate should be computed repeatedly, it contributes
to the majority of complexity for existing numerical methods,
such as the deterministic equivalent [15] based method. To
address the challenge, we develop a learn-to-compute strategy
in Section III to find ergodic rate for scheduling.

III. LEARNING-TO-COMPUTE STRATEGY FOR ERGODIC
RATE COMPUTATION

In this section, we develop the efficient learning-to-compute
strategy for ergodic rate computation based on neural network-
s, including a hybrid neural network for general case and a
specific neural network for dual-antenna users.

A. General Strategy: Hybrid Neural Network

We focus on the general case for ergodic rate computation
and learn a function to approximate (6), which includes (10)
as a special case. Let A, = bdiag {A4,..., Ap} € CMEXML
Ay = bdiag{As\j), - Ay} € CHMEME

] ] ) NXML
[Hml Hijo o Hijn| € CVOU5 Oy =

H,;, =
(k1 Qe jo o Qe jr] € CV*ML and the rate of the k-

th user in the j-th cell in (6) can also be written as
Ry.; = E {logdet (T+ Hi ;AH ) |

—E {log det (I + I:Ik7jAs\(k7j)I:Igj) } .

The objective is to approximate the common ergodic rate

Ti; (A) =E {1og det (I + ﬂk,jAﬂg{j) } :

)

13)

(14)

given the power allocation matrix A and the corresponding
CSI Qy ;. Due to the element-wise correspondence between
the elements of Hy, ; and Q ;, the objective Zj, ; (A) is only
relevant to the matrix obtained by multiplying CCM by the
corresponding power, i.e., the matrix €2 ;A. We omit £ and
7 in the subscript hereafter for brevity.

In this paper, we focus on the Rayleigh fading. However,
the results can be easily extended to other channel models.

For example, for the Rician fading, the only difference in
ergodic rate computation is that the input of the neural net-
work involves additional channel mean information while the
structure of neural networks remains unchanged. To simplify
neural network design, we introduce the matrix X € CNxML
as

X = fx (2,A) = QA. (15)

A common approach on function approximation using deep
neural networks (e.g., feed-forward neural network (FNN) and
convolutional neural network (CNN) [24] ) is to learn the
weight parameters by training the network with sample input
X and the corresponding labels/output Z. The feasibility of
such an approach has been demonstrated by the universal
approximation theorem [25], [26], for which a single hidden
layer feed-forward network with a sufficiently large number
of neurons can approach arbitrary continuous function well on
the compact subset of R™. Similarly, the convolutional neural
network can approximate arbitrary continuous function with
arbitrary accuracy as long as the depth of the neural network
is large enough [27]. Both of the above neural networks are
pure data-driven, where the approximation performance highly
depends on the training data, i.e., channel matrix samples.

On the contrary, the ergodic rate function is continuous
over the probability space of channel statistics, such that the
finite sampled channel matrices are not able to characterize
it accurately. Thus, it is not surprising that the generalization
performance using sampled channel matrices as the training
data set is unsatisfactory. In addition, simply using channel
matrices as input and rate as output totally ignores channel
characteristics, which is the dominant factor of the ergodic
rate function. Thus, pure data-driven networks usually require
deeper and wider architectures for the purpose of over param-
eterization.

In order to alleviate the limitation, we propose a model-
driven neural network architecture, which consists of two
major components: 1) instead of using instantaneous channel
matrices samples, we apply channel statistics (i.e., £, ;) as the
input; 2) we extract internal features with implicit probability
distribution information from channel statistics, followed by
ergodic rate computation through these internal features. In
doing so, we do not need to generate a large size of channel
matrices for training, and the internal feature extraction lends
itself to a simpler network architecture with higher accuracy.
Before the network design, in what follows we first describe
how we extract the internal features. The ergodic rate in (14)
can be rewritten as

N
()= / log(1+A)p (M) dn,s  (16)
n=1

where \,, denotes the n-th eigenvalues of HAH* and p (An)
is the probability density function of \,. These eigenval-
ues are arranged in the descending order. The distribution
of eigenvalues, \,’s, encompass all information of CSI to
compute the ergodic rate. However, due to the complexity
of the probability distribution of the matrix HAHY  there
is no analytical method available in the literature to esti-
mate p(\,) directly. According to the well-known Pitman-
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Koopman-Darmois Theorem [28], exponential is the only
family of probability distributions with domain independent
of the estimated parameter with a sufficient statistic that is
dimension-bounded as sample size increases. As the input X
is finite in dimension, we model )\, as an exponential family
distribution, which can be written in the form

P(An) =q(An)g(n) )}7

where ¢ (\,,) is called the underlying measure, 7 is called the
natural parameter, g (n) = 1/ [ q(An) exp {nTt (\,) }dx, is
a normalization factor, and t () is the sufficient statistic of
the distribution. Thus, the origin moment vector

m; = E{t (\,)}

encompasses all of the information regarding the data related
to the parameter 7. According to Taylor series, we introduce
the first P-order origin moment to approximate t(\,), i.e.,

exp {n"t(\, (17)

(18)

t () & [A A2 AE]T (19)
where P is an adjustable parameter. Denote m =
[m{ m? ... m%]T € CVP*Land ¢ = [e1¢o...en] €

CN*1, where c, represents the ergodic rate component corre-
sponding to the n-th ordered eigenvalue

Cp = /log(l + A)p (M) da,.

Since the two-dimensional input matrix X is sparse as the
beam is energy-concentrated and the power differs in beams
due to different channel conditions, we adopt a CNN for
feature extraction. The convolutional neural networks process
data with a grid-like structure [24] and have been tremendously
successful in practical applications [29]. The CNN consists
of several convolution modules, a flatten layer and several
fully-connected layers. Each convolution module is composed
of a convolution layer, a activation layer that removes neg-
ative values to increase non-linearity, e.g. rectified linear
unit (ReLU) [30], and a pooling layer for non-linear down-
sampling, e.g., max pooling [31]. Finally, the fully-connected
layers accomplish advanced reasoning. The objective function
is also relevant to SNR, so it functions as an input of the
neural network at the fully-connected layer. In addition, as the
statistics vector, m, is generally not sparse and its dimension is
relatively low, we utilize FNN to realize the part of ergodic rate
computation. As such, we construct a hybrid neural network
(HNN), as shown in Fig. 2, by appending an FNN to a CNN
to approximate the ergodic rate function.

Thus, the computation of ergodic rate can be decomposed
into two steps:

1) Encoder: A CNN to encode the input matrix X as hidden
layer feature m, i.e., the statistics of eigenvalues.

2) Decoder: An FNN to decode the hidden layer feature m
as rate vector ¢, whose elements can then be added up to
get the ergodic rate 7.

(20)

By decomposing the objective function into two relatively
simple ones and reducing the complexity of the learning
model, the number of neurons and training data required
can be reduced. Compared with two pure data-driven neural

networks, the proposed network not only improves generaliza-
tion performance but also considerably reduces computational
complexity. Noting that the hybrid neural network can be
adapted to various antennas, cells, and users configurations.

Denote by Zj(wp,X) the sum of the HNN output,
where the set of all weight and bias parameters have been
grouped together into a vector wj. Once parameters vec-
tor, wy, is trained, we can obtain the approximated func-
tion of ergodic rate. To this end, we first generate two
training sets & = {(X® m®)|i=1,.,Nc} and D =
{(m(i), c(i)) i=1,...,Np } by the Monte-Carlo method (see
section V-A). Second, the neural networks will be trained
based on £ and D, respectively, to obtain the optimal weights
vector, wy . The loss functions are given by

1 & 1 &
Le=— Hmm —m Lp=— Hc(i) —eW
ey

where (i) and ¢ are the predicted results of the encoder
and the decoder. In order to improve generalization perfor-
mance, a large training set is required but simultaneously
results in expensive computational cost. Thus, we employ the
widely-used stochastic gradient descent (SGD) [24], which
extracts a minibatch of samples uniformly from the training
set during each iteration. Further, the procedures of dropout
[32] are used to avoid over-fitting.
Finally, with the reshaped input data as

Xok = fx (g As) s X\ (k) = fx (g, A

the ergodic rate of the k-th user in the j-th cell can be
computed immediately by

Rhnn

2

Seg)) s (22)

Tn (Wi, X j) —

In (wr, X\ (k) - (23)

B. Specific Neural Network for Dual-Antenna Users

Dual-antenna user terminals are perhaps more popular than
any other case. For dual-antenna users, i.e., N = 2, we propose
a refined input by mining in-depth statistical characteristics
to further reduce the computational complexity. The refined
inputs are due to the following theorem, proved in Appendix
A.

Theorem 2: When N = 2, the first-order statistic of matrix
HAHY satisfies the following equations.

=22 X
IDERSYIC

Remark 1: Theorem 2 establishes the relation between the
refined input (i.e., first-order statistic of matrix HAHH ) and
the original one (i.e, statistical CSI and power allocation). As
such, we define the refined input as

s= fs (2,A) = [E(\ + Ao) EA)]" €

By choosing the origin moment order P = 1, which is accurate
enough to approximate p () from the simulation in III-A, the
learning objective turns

E(\ + /\2 (24)

E(MA2) = (25)

C2t. (26)

m = [E(\;) E(\)]" € L. 27)
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Fig. 2. The proposed hybrid neural network for ergodic rate computation.

One feasible method is to compute the objective, m, from
the vector, s. The refined input has several attractive benefits.
The most important one is that its dimension is independent of
the number of the BS antennas, M and the number of cells, L.
Thanks to this characteristic, the neural network will remain
on a small scale, which reduces not only the complexity of
offline training and saves storage costs, but also that of online
computing. When N = 2, HNN reduces to a fully connected
NN, i.e., the specific neural network (SNN) shown in Fig. 3.
Both of the encoder and decoder are realized by FNN because
of the low dimension of input s and statistics vector m. Notice
that the number of units in the hidden layers can usually be
relatively small. Noting that the SNN is specifically designed
for dual-antenna users. In other cases, we can still utilize HNN
to achieve the near-optimal sum rate while maintaining the
relatively low computational complexity.

Denote by Z;(ws,s) the sum of the output of SNN given
the weights vector w, and the input vector s. First, gener-
ate two training sets S = {(s®),m@)}i=1,..,Ns} and
D = {(m®,c®)|i=1,..,Np} utilizing the Monte-Carlo
method. Second, train the neural networks based on S and
D respectively to obtain the optimal weights vector wo and
thus obtain the approximated ergodic rate function, Z(w?,s).
Finally, with the reshaped input data as

Soej =8 (e As) 8\ (k) =S (g As\ (k) » - (28)

the rate of k-th user in the j-th cell can be computed
immediately by

RiM =T (WS saky) — Ls (WS sak)) - (29)

IV. EFFICIENT AND FAIR SCHEDULING

With ergodic rate computation in Section III, we can address
the scheduling problem discussed in Section II. To strike a
balance between overall system performance and user fairness,
a common approach is to adopt proportional fairness criterion
[33], [34] with the weights wy ; as aiming at the sum rate
maximization incurs some unfairness issues, e.g., the users
with poor channel quality may not be served in an enough
period. Recent works have proposed several approaches to bal-
ance efficiency and fairness [35], [36]. In [37], five axioms for
fairness measures in resource allocation are presented together
with a family of fairness measures satisfying the axioms,
providing an analytical way of choosing the fairness measures.
Beyond weighted sum rate maximization, we formulate the

multi-cell scheduling taking both max-min and Jain’s fairness
into consideration in this section.

A. Weighted Sum Rate Maximization

In order to translate the qualitative formulation in (12) into
a quantitative one, we introduce a set of binary variables
{#m,k,¢} to indicate if the m-th beam of the ¢-th BS is active
for the k-th user, i.e.,

_ 17 if [Ak,é]m,m > 0;
Zmkol = { 0, otherwise. (30)
Further, we introduce a binary matrix A, € {0, 1}M*X to

capture the strong user-beam links for which the effective
channel quality of users on such beams exceeds a predeter-
mined threshold. As such, the optimization problem in (12) can
be reformulated into a quantitative nonlinear integer program.

{gnlii} %wMRW, (31a)
s.it. Zmge < [Ag]m,k, VYm, k, £, (31b)
> zmke <1, Vm,, (3lc)

k
> Zmkt < Bazs kL, (31d)
z:,k’e € {0,1},Vm, k, ¢, (31e)

where (31b) guarantees that only user-beam links with high
quality can be the candidates for assignment, (31c) ensures
that each beam can only be assigned to at most one user for
which the users with no beam assigned will be switched off,
(31d) ensures that each user can only occupy at most B4
beams to prohibit a user from occupying too many resources,
and the ergodic rate I ; can be rewritten as

Ry, = ]E{ log det (I + Z PZEm,k,j,ZZm,kl)}
m, k¢

— IE{ log det (I + Z Z plEch,j,ZZm,k’,l) }, (32)

m (k" 0)#(k,J)

where pPr = Pg/ Zm,k Zmk b Evmk,j,f = hm,k7j,€hﬁ7k,j)g and
hy, k. j.¢ is the m-th column of Hy, ; .

It is not hard to verify that (31) is equivalent to (12). Thanks
to the ergodic rate maximization, multi-cell scheduling is
implicitly done through beam assignment, where the users with
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Fig. 3. The proposed specific neural network diagram for ergodic rate computation with N = 2.

less contribution to ergodic rate will not be assigned any beams
and therefore not be scheduled. It turns out such an implicit
multi-cell scheduling is effective because the beam-centric
assignment strategy pushes user selection towards ergodic rate
maximization.

Algorithm 1 KBA for multi-cell scheduling

Input: The eigenmode channel-coupling matrix Q ; ¢, Vk, 7, £.
Output: The user set ¢/ and beam indices z,, i ¢-

1: Initialize user set & = () and beam indices z, ¢ = 0,Vm, k, £.
2: for |U| < KL do

3: for u ¢ U do
4: for b < Bpqz do
S: Assign b energy-strongest inactive beams to wu.
6 Compute the ergodic rates Ry ;U U {u}),Vk,j by the
properly trained hybrid neural network.
: Compute the objective f, and constraint f. for evaluation
8: if fo decreases then
9: break
10: end if
11: end for
12: end for
13: if problem (33) has solution then
14: Update U < U U {u}
15: Set 2y, k¢ = 1 according to the beam assignment
16: else
17: Goto 20
18: end if
19: end for

20: Return U and {zp, 1,0 }-

A closer inspection reveals that the constraints in reformu-
lation (31) are those of bipartite b-matching problems (also
known as semi-assignment problems) [38], a special case of
the transportation problem for which there exists strongly
polynomial algorithms [39]. However, the objective function
in (31) is nonlinear and involves a neural network for ergodic
rate computation, and therefore it is extremely challenging to
solve it accurately. Instead, we employ the low-complexity K-
Best algorithm (KBA) as shown in Algorithm 1, which adds
users in a greedy fashion until the sum rate no longer increases,
ie.,

o= Rsum uu ’
maxf (U U {u})

where f, and f. denote the objective and the constraint
function in each iteration, Ry, (U) denotes the sum rate of
the users in set U. The k-th user in the j-th cell is active if
Zm Zm,k,; > 0 and the m-th beam of the /-th cell is active if

> & Zm,k,¢ > 0. During the iterations, each user selects several
beams with the strongest energy. The index of the energy-
strongest beam of the j-BS for the k-th user in the j-th cell
is defined as

Mp ;. = a1g max Z[ﬂk,j,j]nw (34)

B. Max-Min Fairness

In order to ensure the fairness, we maximize the achiev-
able rate of the worst-case user [40]. Thus, the optimization
problem can be formulated as

A (@B,
st tr(Ay) < Py, (35)
Ay > 0.

To analyze the optimal solution to the above problem, the
following lemma, proved in Appendix B, is essential.

Lemma 1: Let A, B, and C be positive definite N x N
matrices.

i) The function

f(z) =logdet(B + zA) (36)
increases monotonously with = on > 0;
ii) The function
g(z) = logdet(B + zA) — logdet(C +zA)  (37)

decreases monotonously with z on x > 0, if B > C.

Based on Lemma 1, we can obtain the following lemma for
analyzing the optimal solution to problem (35) in Appendix
C.

Lemma 2: All users have the same weighted rate by max-
min fairness, i.e., the optimal rates {R,?’ ;1 in (35) satisfy

wr, Ry ;= wi e Ry, Yk, j, i, L. (38)

Lemma 2 shows that if all users have the same priority, max-
min fairness prefers to schedule all users. The characteristic
of equal rate can be utilized in the measurement of fairness
subsequently.

C. Jain’s Fairness

While max-min fairness is prone to the balance between the
individual rate and the priorities/weights, it may not lead to
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maximal sum rate because of the lack of multi-cell scheduling.
Therefore, we introduce Jain’s fairness, which satisfies a series
of axioms consisting of continuity and homogeneity, etc. [37].

Definition 1 (Jain’s Index [41]): Jain’s index of rate is given

by
Jr = (Zm Rk’j>2/(KL Zk,j Ri’j)'

The Jain’s index of rate measures fairness by indicating the
proportion of the users who are scheduled with the equal rate.
Note that maximizing Jain’s index alone will lead to max-min
fairness. Thus, to avoid that, we maximize the sum rate at
the same time subject to multi-cell scheduling, i.e., maximize
the objectives (Rsum, Jr). Multi-objective optimization tar-
gets Pareto optimal solutions/points, for which increasing one
objective will inevitably decrease another one. We have Pareto
points [42] defined as follows.

(39)

Definition 2 (Pareto Points): User set U and beam sets
BY,i € U is a Pareto point if there are no other U and
Bi,i € Us, such that the corresponding sum rate and Jain’s
index simultaneously satisfy Ry, > RS, and Jgp > Jg,
where the equalities do not hold simultaneously.

Definition 2 indicates that none of the objective functions
can be improved in value without degrading some of the other
objective values. There are several methods on finding the
Pareto points of a multi-objective problem, e.g., weighted sum
method, Epsilon-constraint method and Hybrid method [43].
Employing the Epsilon-constraint method, we reformulate the
maximization problem as

max JR,
{Z'm,k,é}gz R
s.t. Rewm > Rin. (40)

where set Z denotes the domain satisfying (31b)-(31e), Ryp
is the minimal sum rate demanded for these cells of interest.
Given the minimum sum rate guarantee, we aim to ensure
fairness for the communication system. In addition, various
sum rate requirements can be adapted by dynamically adjust-
ing constraint R;;,. Notice that all Pareto points can be found
by changing the constraint R;y,.

Problem (40) can also be solved by applying Algorithm 1.
We first search user and beam set to maximize the sum rate and
then add users in a greedy fashion before the sum rate drops
below the threshold. In this step, we can obtain the maximum
sum rate, R,,qz, as a reference value for threshold setting. In
the update process, we maximize Jain’ index under the sum
rate constraint, i.e., change the update condition in (33) as

max fo = JrU U{u}),

st. fe = Rin — Reum (U U {u}) <0. 41)

The larger Ry, is, the more inclined the algorithm is to
maximize the sum rate while the smaller R;;, motivates the
algorithm concern more with the fairness. When R, exceeds
the maximum sum rate R,,,,, the KBA degenerates to sum
rate maximization.

V. SIMULATION RESULTS

In this section, we present the simulation results to eval-
vate the performance of the proposed algorithms using the
WINNER II channel model [44], which has been validated by
measured data and commonly used to train neural networks
in wireless communication applications [22]. In particular,
we consider a wide band system consisting of L = 3 cells,
each with one base station (BS) with M = 128 antennas.
K = 40 users are randomly distributed in each cell, where
each user is equipped with N = 2 antennas. The CCMs are
obtained through 12 samples and 1200 sub-carriers, which
is enough for accuracy shown in [12]. For the WINNER II
model, we consider the C1 (Suburban) simulation scenario in
[44] and utilize the DFT matrix to transform channels into
beam domain.

A. Data Set Generation: Monte-Carlo Method

We generate channel samples by widely-used WINNER II,
which is enough to capture the feature of the practical wireless
channels. The labels are computed by Monte-Carlo methods,
which solves deterministic problems with randomness. The
set of training and test samples are different subsets of
the generated CCM set. The computational process can be
summarized into three main steps:

1) Modeling: According to the first and second orders
of channel statistics, we model the channel by a constant
multiplied by a standard Gaussian random variable. Then the
matrix form of the random channel from the ¢-th BS to the
k-th user in the j-th cell can be written as

Grje =My je © Wy 0, (42)

where Wy, ;, is a complex Gaussian random matrix of inde-
pendent identical distribution (i.i.d.) entries with zero mean
and unit variance, and My ;. is an N x M deterministic
matrix with nonnegative elements satisfying Q. ; o = My, ; ,©
Mk}jj.

2) Generating Realizations: Given the above modeling, we

generate channel realizations G = G,(:‘)j Ji=1,...,Ng
3) Labeling: For brevity, we omit k and j in the subscript
hereafter. From the generated dataset, we can compute the

empirical average to approximate the stochastic mean, i.e.,

1 N ...
- @)
mn = 3 > tAD), (43)
o = > M og(1 + A0 (44)
n = Ng i1 g n’ )

I(A) = %g %g: { log det (I + G@')A(G(i))H) } (45)

where A denotes the n-th eigenvalues of G(i)A(G(i))H.
With a sufficiently large number of samples, the empirical
mean approximates the expectation well. By utilizing (15),
(43)-(45), we can generate the data sets of proposed neural
networks. Fig. 4 illustrates the graphical workflow of dataset
generation. The training is conducted off-line and it is un-
necessary to be re-trained by the original large data set when
the channel statistics vary. To fairly compare the performance,
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training datasets for different neural networks are generated
with the same channel samples.

G={GYA(G")"}

i
i > Off-line
1
i

3 = N%Z,":,log (1+40)

N
1 «
4 Z:E; {logdet (I+GYA(G") ")} D

Training

Online

Fig. 4. The graphical workflow of dataset generation.

To enhance the generalization performance, we generate the
data set by taking into account various channel scenarios,
such as different SNRs, user distributions, mobile speeds,
and etc. It is worth mentioning that the channel samples are
not limited to be generated by WINNER II but also can be
practically measured online [45] to improve the generalization
performance (e.g. transfer learning [46]). Thus, the trained
neural network can adapt to various practical scenarios. As
the training is conducted off-line, enough samples can be
generated for training and a sufficiently large Ng in each
sample generation can be set to approach the near-optimal
expectation. In this paper, we set the size of the training data
sets N¢ = Np = 640, 000 and the number of random channels
in each sample Ng = 100.

B. Evaluation of Rate Computation

Given the training sets generated by the Monte-Carlo
method, we take Monte-Carlo simulation (MS) in (45) as the
benchmark to evaluate the sum rate computed by the neural
network. The existing deterministic equivalent (DE) method
is also presented here as a baseline. With the same dropout
(0.5), other major parameters of FNN and CNN are shown in
Table I. With regard to HNN (or SNN), as the parameters of
encoder and decoder are constructed by CNN and FNN, the
above parameters are reused. Fig. 5 compares sum rates versus
signal-to-noise ratios (SNR). The HNN and SNN approach
near-optimal performance while the traditional FNN and CNN
are unsatisfactory. As the data reshaping process may lead
to the loss of information, HNN is slightly better than SNN.
However, data reshaping also brings about the sharp reduction
of computational complexity, which will be discussed later in
detail, together with the relationship between FNN and CNN.

TABLE 1
MAJOR PARAMETERS OF NEURAL NETWORKS

Model  Learning Rate  Batch Size  Training Steps
FNN 0.001 512 16,000
CNN 0.000,1 1,024 10,000

Table II illustrates the complexity of rate computation
algorithms. Notice that Nj, Sk, and S, denote number of

140

120

100

80

60 [

Sum Rate (b/s/Hz)

40 -

/

14.6 148 15 152 154
L L L

I I I I
-20 -15 -10 -5 0 5 10 15 20

SNR (dB)
Fig. 5. Sum rate versus SNR with respect to different rate computation
algorithms.
TABLE II
COMPARISON OF COMPLEXITY BETWEEN DIFFERENT RATE COMPUTATION
ALGORITHM
Algorithm  Complexity Typical Value
MC O (Ng(N?ML + N®)) 691,200
DE O (NgeMNL) 123,636
FNN O(NyMNL) 196,608
CNN O (MNLNy(Sk + No/Sp)) 92,160
HNN O (MNLNy(Sg + N1 /5,) + N2 NP) 36,864
SNN O(ML+ NP 4+ NE]) 1,168

convolution kernels, size of convolutional kernel, and size of
pooling, respectively. The typical numbers of multiplication
operation are given under the condition of parameters that
make the performance of the corresponding algorithm approx-
imately optimal. The HNN-based algorithm has significantly
reduced computational complexity compared with the existing
Monte-Carlo method or deterministic equivalent method while
achieving similar sum rate. It is worth mentioning that we can
achieve the lowest complexity and the near-optimal sum rate
simultaneously utilizing SNN in the case of N = 2.

C. Evaluation of Searching

Let Ry, = 0 - Ryyaa, Where parameter 6 € [0, 1] controls
the degree of sum rate loss. Table III compares different fair
scheduling algorithms, where 6 = 0.8, that is, the loss of
sum rate is controlled at around 20%. The server ratio (SR)
is defined as the percentage of the scheduled users. Compared
with the sum rate maximization, the proportional fair criterion
guarantees fairness at the expense of sum rate degradation
while the Jain’s fair method improves the Jain’s index with less
sum rate loss. In addition, the Jain’s fair method achieves the
highest server ratio, which implies fairness and stability. It is
worth noting that the loss of sum rate for multi-cell scheduling
can be controlled accurately by setting the parameter 6 while
the loss of sum rate is unpredictable and uncontrollable in
proportional fair criterion.

Fig. 6 presents the tradeoff curve of Jain’s fair method.
The sum rate decreases as # increases until it degenerates into
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TABLE III
COMPARISON BETWEEN DIFFERENT SCHEDULING ALGORITHM
Algorithm Sum Rate (b/s/Hz)  Jain’s Index SR (%)
Sum Rate Maximization 135.9493 0.0820 18.17
Proportional Fair 101.3178 0.1065 25.83
Jain’s Fair 108.9174 0.2216 41.67
140 ! ! . . ;
<—____ SumRate Jain's fair
130 o=1 Maximization *  Proportional Fair | 4
120 6=0.9
E 110 F
2 0=0.8
=
2 100 ®
g Proportional Fair
E ool 0=07
@
8or 0=06
70+
0=05
60 | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6
Jain's index

Fig. 6. The tradeoff curve of Jain’s Fair method.

Jain’s index maximization. The value of # can be reasonably
set according to practical demand to control the loss of the
rate within a certain range to guarantee a minimum sum rate
for communication and simultaneously to improve the fairness
between users.

VI. CONCLUSION

In this paper, we have developed multi-cell scheduling
with only statistical CSI in massive MIMO systems through
a learning-to-compute strategy. In particular, a neural net-
work is designed to learn directly the complex ergodic rate
function, without resorting to the commonly used time-
consuming Monte-Carlo or deterministic equivalent (DE)
methods. Thanks to such a learning-to-compute strategy with
substantially reduced online computational complexity, the
simple K-Best algorithm can be employed for searching the
best users to maximize the ergodic sum rate. Based on the
simulation results, the computational complexity of the ergodic
rate computation has been significantly reduced by employing
the proposed neural network, compared with the existing
Monte-Carlo or DE methods. To take the fairness among
users into consideration, we have presented a multi-objective
optimization problem, which simultaneously maximizes the
ergodic sum rate and the Jains index, and further proposed
the corresponding K-Best algorithm with low complexity.
Compared with the traditional proportional fair criterion, the
K-Best algorithm for Pareto optimal concerns with the fairness
of a single schedule and is able to control the loss of sum rate
accurately. For further avenues of research, it is worthy of
making a profound study on learning the result of multi-cell
scheduling directly through the existing statistical CSI without
resorting to the scheduling algorithm.

APPENDIX A
PROOF OF THEOREM 2

Denote by hy,,, = [flk jlnm and kn, = [A]mm, then the
(n, m)-th elements of Xy, ; is Xy jlnm = IE( | hnm|?), and
the matrix F}, 7AHk can be denoted by

ka‘h1m|2 kahlm ;m
Z kmh2mh>{m Z km|h2m ‘2

m

Hy, ;AHY; =

rot*
=[t i ] (46)
and
ZE k|l |*) = Z[Xk,j]lm, (47)
ZE k| hom|?) = Z[xk,j]m, (48)

E([t*) ZE (| * [z )

= T Xk sl 49)

According to the definition, A;, Ay are the roots of the follow-
ing equation
M (r+s)A4rs—t]* = (50)

As mentioned in section II, H is a random matrix with
independent entries which are zero mean and arbitrary in
amplitude, so it is easy to prove that

EM+X)=E(r+s)=E(r)+E(s),
E(MA2) = E(rs — [t|?) = E () E (s) + E([t|?).

By substituting the equations above, the proof is completed.

(S
(52)

APPENDIX B
PROOF OF LEMMA 1

i) To derive the monotonicity of f(x), we first compute its
derivative

Ologdet(B + zA) . ((B N A) .
ox

As A, B are positive definite matrices and = > 0, the
matrix B + A is also a positive definite matrix. Thus,
its inverse matrix satisfies (B 4+ 2A)™" > 0. Below we
prove that the trace of product of two positive definite
matrices is positive, i.e., tr(AB) > 0. Owing to B > 0,
there exists an invertible matrix P satisfying B = PHP.
Thus, we can obtain that

tr(AB) = tr (AP"P) = tr (PAP") > 0,

(53)

(54)

where the matrix PAPH is positive definite since it
conjugates contract with A. Thus, the same can be proved
that the derivative tr((B + xA)"1A) > 0, ie., f(z)
increases monotonously with z on x > 0.

ii) The derivative of g(x) can be computed as

6%(;) =tr (((B +azA)" -

(C+ xA)_l) A) :
(55)
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Owing to B + A > C + zA, we have [47, 10.51 (a)],
[48]

(C+zA) ' —(B+zA) ' =0 (56)

As has been proved that the trace of product of two
positive definite matrices is positive, we can obtain that
8%—(;) < 0, i.e., g(x) decreasing monotonously with  on

xz > 0.

APPENDIX C
PROOF OF LEMMA 2

Denote by Ay = pr e Ay ¢, Where p; ¢ is the power allocat-
ed to the k-th user by the /-th BS, Ay, , is normalized power
allocation matrix satisfying tr(Ay ;) = 1. The achievable rate
of k-th user in the j-th cell in (6) can be rewritten as

Ry j = Eq logdet (I + pr i Hi g oAy HY

+ Z Pi,EI:Ik,j,EAi,ZI:Igj,z>
(1,0)#(k,7)

— E{ log det (I + Z Pi,eﬂk,j,EAi,ZI:Igj,e) , (57)
(i,0)#(k,5)
and the maximization problem in (35) can be rewritten as

max min(wg, ; Rk ;),
PL,15-PK, LA 1, A L k,j ’ ’

K
s.t. Zk:l Pre < Py,
tI‘(Ak7g) =1,

Pk Ak = 0. (58)

As the weights have no effect on the proof procedure, we
might as well set wy ; = 1 for conciseness. Below we give
the proof with reduction to absurdity.

Denote by (o7, ..., P&, AT1, .., A% 1) the optimal so-
lution of problem (58), (RY ), ..., Rf ;) as the corresponding
optimal rates. Assuming that the optimal rates are not com-
pletely equal, we might as well set R7<1>1,n as maximum rate
and Rf;b as minimum rate, i.e.,

min(Ry ;) = Ry, < Ry, , = max(Rg;). (59
k.j ' ’ ' k.j ’

Invoking Lemma 1, the rate Rj; monotonically increas-
es with the power allocated to itself p; ;, and the rate
Ry ; monotonically decreases with the power allocated
to other user p;,. Based on these properties, there al-
ways exists a sufficiently small € to establish a solution
(P15 Py — €soes P 1y AT 1, o, AR ) Whose  corre-
sponding rates (1‘:21’17 ...J?K,L) satisfy

jo — €k, (k7]) = (man)
Rij + Ek,js (kvj) 7& (mvn)

where variables €5 ; > 0. As the rate is continuous with
respect to py ;, the variables € ; are sufficiently small to
satisfy

Ry, = : (60)

—E&mn = Rmn (61)

» <& <&
R,y = Ra,b +Eap < Rm’n

)
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This means the user with the minimum rate differs from
(m,n)-th user. As the rates of other users increase, the
minimum rate increases, i.e.,

min(Ry, ;) > min(Ry, ), (62)
k,j k,j ?

which is contrary to that (RY ..., R% 1) are the optimal rates.
Thus, the optimal rates are completely equal. This completes
the proof.
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