6 research outputs found

    Model development of Multi depot SDVRPTW

    Get PDF
    Vehicle Routing Problem (VRP) is a route optimization problem. The current situation grows more complex so the VRP needs to adapt for being close to the practical problems. Perishable products are one example that need route optimization because perishable products require fast delivery time to maintain freshness. Often several companies has several distributors & some retailers (multi-depot), and often found that demand of customer that exceeds of the vehicle capacity so it needs to be visited more than once for each customer to meet customer demands (split-delivery) and with consideration of customer allowed service time (time-windows). In the traditional VRP, there are no consideration factors such as multi-depot (MD), split-delivery (SD) and time-window (TW). Therefore, we developed a model multi- depot split-delivery VRP with time-windows (MDSDVRPTW), which is the relaxation of traditional VRP limitation, with an objective function to minimize the total travel time

    Optimizing Terminal Delivery of Perishable Products considering Customer Satisfaction

    Get PDF
    Freshness of products and timeliness of delivery are two critical factors which have impact on customer satisfaction in terminal delivery of perishable products. This paper investigates how to make a cost-saving vehicle scheduling for perishable products by maximizing customer satisfaction. Customer satisfaction is defined from the two aspects of freshness and time window. Then we develop a priority function based on customer satisfaction and use the hierarchical clustering method to identify customer service priority. Based on the priority, a multiobjective vehicle scheduling optimization model for perishable products is formulated to maximize customer satisfaction and minimize total delivery costs. To solve the proposed model, a priority-based genetic algorithm (PB-GA) is designed. Numerical experiments and sensitivity analysis are performed to show the validity and advantage of our approach. Results indicate that PB-GA can achieve better solutions than traditional genetic algorithm. The improvement of customer satisfaction is higher than the decrease rate of total costs within a certain shelf life range, which reveals that the proposed method is applicable to the terminal delivery of perishable products

    Developing refrigerated and general carriers’ collaboration model for perishable product

    Get PDF
    In this paper, we study a novel pickup and delivery problem called carrier collaboration (CC). This problem includes a set of heterogenous (refrigerated and general type) vehicles with specific capacities for serving perishable products to several pickup and delivery nodes. Each carrier can have reserved and selective requests which can be delivered before the products are corrupted. The fleet of vehicles must serve reserved requests, but the selective requests can be served or not. Products are corrupted at a constant rate and a rate of corrosion in general type vehicles is greater than referigrated type veicles and the cost of using general one is less than referegireted. For the mentioned features, we develop a nonlinear mathematical model. The purpose is to find routes to maximize profits and reduce costs while at the same time, enhance customer satisfaction which is dependent on the freshness of delivered products. A Gnetic Algorithm (GA) is proposed to solve this problem due to its NP-hard nature. In this study, Variable Neighborhood Search (VNS) method is developed for improving the quality of initial solutions. Several instances are generated at different scales to evaluate the algorithm performance by comparing the results of an exact optimal solution wih that of the proposed algorithm. The obtained results demonstrate the efficiency of the proposed algorithm in providing reasonable solutions within an acceptable computational time

    A Novel Location-Inventory-Routing Problem in a Two-Stage Red Meat Supply Chain with Logistic Decisions: Evidence from an Emerging

    Get PDF
    This study focuses on a specific method of meat production that involves carcass purchase and meat production by packing facilities with a novel two-stage model that simultaneously considers location-routing and inventory-production operating decisions. The considered problem aims to reduce variable and fixed transportation and production costs, inventory holding cost and the cost of opening cold storage facilities. The proposed model encompasses a two-stage model consisting of a single-echelon and a three-echelon many-to-many network with deterministic demand. The proposed model is a mixed-integer linear programming (MILP) model which was tested with the general algebraic modelling system (GAMS) software for a real-world case study in Iran. A sensitivity analysis was performed to examine the effect of retailers' holding capacity and supply capacity at carcass suppliers. In this research, the number of products transferred at each level, the number of products held, the quantity of red meat produced, the required cold storage facilities and the required vehicles were optimally specified. The outcomes indicated a two percent (2%) decrease in cost per kg of red meat. Eventually, the outcomes of the first and second sensitivity analysis indicated that reduced retailers' holding capacity and supply capacity at carcass suppliers leads to higher total costs. This research proposes a novel multi-period location-inventory-routing problem for the red meat supply chain in an emerging economy with a heterogeneous vehicle fleet and logistics decisions. The proposed model is presented in two stages and four-echelon including carcass suppliers, packing facilities, cold storage facilities and retailers.N/

    Sustainable supply chains in the world of industry 4.0

    Get PDF
    corecore