136 research outputs found

    Design of multihop packet radio networks.

    Get PDF
    by Hung Kwok Wah.Summary in Chinese and EnglishBibliography: leaves 43-46Thesis (M.Ph.)--Chinese University of Hong Kong, 198

    A survey on wireless ad hoc networks

    Get PDF
    A wireless ad hoc network is a collection of wireless nodes that can dynamically self-organize into an arbitrary and temporary topology to form a network without necessarily using any pre-existing infrastructure. These characteristics make ad hoc networks well suited for military activities, emergency operations, and disaster recoveries. Nevertheless, as electronic devices are getting smaller, cheaper, and more powerful, the mobile market is rapidly growing and, as a consequence, the need of seamlessly internetworking people and devices becomes mandatory. New wireless technologies enable easy deployment of commercial applications for ad hoc networks. The design of an ad hoc network has to take into account several interesting and difficult problems due to noisy, limited-range, and insecure wireless transmissions added to mobility and energy constraints. This paper presents an overview of issues related to medium access control (MAC), routing, and transport in wireless ad hoc networks and techniques proposed to improve the performance of protocols. Research activities and problems requiring further work are also presented. Finally, the paper presents a project concerning an ad hoc network to easily deploy Internet services on low-income habitations fostering digital inclusion8th IFIP/IEEE International conference on Mobile and Wireless CommunicationRed de Universidades con Carreras en Informática (RedUNCI

    Multihop packet radio networks: design alogorithms and protocols.

    Get PDF
    Hung, Kwok-Wah.Thesis (Ph.D.)--Chinese University of Hong Kong, 1991.Bibliography: leaves 109-111.ACKNOWLEDGEMENTSABSTRACTChapter CHAPTER 1 --- Overview of Packet Radio Networks --- p.1Chapter 1.1 --- Introduction --- p.2Chapter 1.2 --- Network Structure --- p.3Chapter 1.3 --- Channel Access Protocol --- p.3Chapter 1.4 --- Spatial Reuse --- p.5Chapter 1.5 --- Spread Spectrum --- p.6Chapter 1.6 --- Thesis Introduction --- p.8Chapter CHAPTER 2 --- Design Algorithms for Networks with Directional Antennas --- p.12Chapter 2.1 --- Introduction --- p.13Chapter 2.2 --- Problems in The MTCD/MDA Protocol --- p.14Chapter 2.3 --- The Simple Tone Sense (STS) Protocol --- p.15Chapter 2.4 --- The Variable Power Tone Sense (YPTS) Protocol --- p.18Chapter 2.5 --- Network Design Algorithms --- p.19Chapter 2.6 --- Network Design Example --- p.25Chapter 2.7 --- Simulation Results --- p.28Chapter 2.8 --- Chapter Summary --- p.31Chapter CHAPTER 3 --- The Coded Tone Sense Protocol --- p.44Chapter 3.1 --- Introduction … --- p.45Chapter 3.2 --- System Model and Code Assignment Algorithm --- p.46Chapter 3.3 --- Protocol Description --- p.48Chapter 3.4 --- Simulation Results --- p.49Chapter 3.5 --- Chapter Summary --- p.51Chapter CHAPTER 4 --- An Efficient Spreading Code Assignment Algorithm --- p.54Chapter 4.1 --- Introduction … --- p.55Chapter 4.2 --- Code Assignment and Graph Coloring --- p.55Chapter 4.3 --- Algorithm Description --- p.57Chapter 4.4 --- Results and Discussion --- p.59Chapter 4.5 --- Chapter Summary --- p.60Chapter CHAPTER 5 --- Fair and Efficient Transmission Scheduling --- p.64Chapter 5.1 --- Introduction --- p.65Chapter 5.2 --- The Scheduling Problem --- p.67Chapter 5.3 --- The Scheduling Algorithm --- p.68Chapter 5.4 --- Performance Analysis --- p.70Chapter 5.5 --- Results and Discussion --- p.72Chapter 5.6 --- Chapter Summary --- p.74Chapter CHAPTER 6 --- Staggered Multicast Protocol with Collision-Free Acknowledgement --- p.79Chapter 6.1 --- Introduction --- p.80Chapter 6.2 --- System Model --- p.83Chapter 6.3 --- Protocol Description --- p.84Chapter 6.4 --- Staggered Relay Broadcasting --- p.90Chapter 6.5 --- Simulation Results --- p.91Chapter 6.6 --- Chapter Summary --- p.92Chapter CHAPTER 7 --- Conclusion --- p.104Chapter 7.1 --- Summary --- p.105Chapter 7.2 --- Topics for Future Research --- p.107REFERENCES --- p.10

    Improving the Performance of Medium Access Control Protocols for Mobile Adhoc Network with Smart Antennas

    Get PDF
    Requirements for high quality links and great demand for high throughput in Wireless LAN especially Mobile Ad-hoc Network has motivated new enhancements and work in Wireless communications such as Smart Antenna Systems. Smart (adaptive) Antennas enable spatial reuse, increase throughput and they increase the communication range because of the increase directivity of the antenna array. These enhancements quantified for the physical layer may not be efficiently utilized, unless the Media Access Control (MAC) layer is designed accordingly. This thesis implements the behaviours of two MAC protocols, ANMAC and MMAC protocols in OPNET simulator. This method is known as the Physical-MAC layer simulation model. The entire physical layer is written in MATLAB, and MATLAB is integrated into OPNET to perform the necessary stochastic physical layer simulations. The aim is to investigate the performance improvement in throughput and delay of the selected MAC Protocols when using Smart Antennas in a mobile environment. Analytical methods were used to analyze the average throughput and delay performance of the selected MAC Protocols with Adaptive Antenna Arrays in MANET when using spatial diversity. Comparison study has been done between the MAC protocols when using Switched beam antenna and when using the proposed scheme. It has been concluded that the throughput and delay performance of the selected protocols have been improved by the use of Adaptive Antenna Arrays. The throughput and delay performance of ANMAC-SW and ANMAC-AA protocols was evaluated in details against regular Omni 802.11 stations. Our results promise significantly enhancement over Omni 802.11, with a throughput of 25% for ANMAC-SW and 90% for ANMC-AA. ANMAC-AA outperforms ANMAC-SW protocol by 60%. Simulation experiments indicate that by using the proposed scheme with 4 Adaptive Antenna Array per a node, the average throughput in the network can be improved up to 2 to 2.5 times over that obtained by using Switched beam Antennas. The proposed scheme improves the performances of both ANMAC and MMAC protocols but ANMAC outperforms MMAC by 30%

    Medium Access Control Protocols for Ad-Hoc Wireless Networks: A Survey

    Get PDF
    Studies of ad hoc wireless networks are a relatively new field gaining more popularity for various new applications. In these networks, the Medium Access Control (MAC) protocols are responsible for coordinating the access from active nodes. These protocols are of significant importance since the wireless communication channel is inherently prone to errors and unique problems such as the hidden-terminal problem, the exposed-terminal problem, and signal fading effects. Although a lot of research has been conducted on MAC protocols, the various issues involved have mostly been presented in isolation of each other. We therefore make an attempt to present a comprehensive survey of major schemes, integrating various related issues and challenges with a view to providing a big-picture outlook to this vast area. We present a classification of MAC protocols and their brief description, based on their operating principles and underlying features. In conclusion, we present a brief summary of key ideas and a general direction for future work

    Performance improvement of ad hoc networks using directional antennas and power control

    Get PDF
    Au cours de la dernière décennie, un intérêt remarquable a été éprouvé en matière des réseaux ad hoc sans fil capables de s'organiser sans soutien des infrastructures. L'utilisation potentielle d'un tel réseau existe dans de nombreux scénarios, qui vont du génie civil et secours en cas de catastrophes aux réseaux de capteurs et applications militaires. La Fonction de coordination distribuée (DCF) du standard IEEE 802.11 est le protocole dominant des réseaux ad hoc sans fil. Cependant, la méthode DCF n'aide pas à profiter efficacement du canal partagé et éprouve de divers problèmes tels que le problème de terminal exposé et de terminal caché. Par conséquent, au cours des dernières années, de différentes méthodes ont été développées en vue de régler ces problèmes, ce qui a entraîné la croissance de débits d'ensemble des réseaux. Ces méthodes englobent essentiellement la mise au point de seuil de détecteur de porteuse, le remplacement des antennes omnidirectionnelles par des antennes directionnelles et le contrôle de puissance pour émettre des paquets adéquatement. Comparées avec les antennes omnidirectionnelles, les antennes directionnelles ont de nombreux avantages et peuvent améliorer la performance des réseaux ad hoc. Ces antennes ne fixent leurs énergies qu'envers la direction cible et ont une portée d'émission et de réception plus large avec la même somme de puissance. Cette particularité peut être exploitée pour ajuster la puissance d'un transmetteur en cas d'utilisation d'une antenne directionnelle. Certains protocoles de contrôle de puissance directionnel MAC ont été proposés dans les documentations. La majorité de ces suggestions prennent seulement la transmission directionnelle en considération et, dans leurs résultats de simulation, ces études ont l'habitude de supposer que la portée de transmission des antennes omnidirectionnelles et directionnelles est la même. Apparemment, cette supposition n'est pas toujours vraie dans les situations réelles. De surcroît, les recherches prenant l'hétérogénéité en compte dans les réseaux ad hoc ne sont pas suffisantes. Le présent mémoire est dédié à proposer un protocole de contrôle de puissance MAC pour les réseaux ad hoc avec des antennes directionnelles en prenant tous ces problèmes en considération. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Réseaux ad hoc, Antennes directives, Contrôle de puissance

    MAC Protocols for Wireless Mesh Networks with Multi-beam Antennas: A Survey

    Full text link
    Multi-beam antenna technologies have provided lots of promising solutions to many current challenges faced in wireless mesh networks. The antenna can establish several beamformings simultaneously and initiate concurrent transmissions or receptions using multiple beams, thereby increasing the overall throughput of the network transmission. Multi-beam antenna has the ability to increase the spatial reuse, extend the transmission range, improve the transmission reliability, as well as save the power consumption. Traditional Medium Access Control (MAC) protocols for wireless network largely relied on the IEEE 802.11 Distributed Coordination Function(DCF) mechanism, however, IEEE 802.11 DCF cannot take the advantages of these unique capabilities provided by multi-beam antennas. This paper surveys the MAC protocols for wireless mesh networks with multi-beam antennas. The paper first discusses some basic information in designing multi-beam antenna system and MAC protocols, and then presents the main challenges for the MAC protocols in wireless mesh networks compared with the traditional MAC protocols. A qualitative comparison of the existing MAC protocols is provided to highlight their novel features, which provides a reference for designing the new MAC protocols. To provide some insights on future research, several open issues of MAC protocols are discussed for wireless mesh networks using multi-beam antennas.Comment: 22 pages, 6 figures, Future of Information and Communication Conference (FICC) 2019, https://doi.org/10.1007/978-3-030-12388-8_

    A survey on wireless ad hoc networks

    Get PDF
    A wireless ad hoc network is a collection of wireless nodes that can dynamically self-organize into an arbitrary and temporary topology to form a network without necessarily using any pre-existing infrastructure. These characteristics make ad hoc networks well suited for military activities, emergency operations, and disaster recoveries. Nevertheless, as electronic devices are getting smaller, cheaper, and more powerful, the mobile market is rapidly growing and, as a consequence, the need of seamlessly internetworking people and devices becomes mandatory. New wireless technologies enable easy deployment of commercial applications for ad hoc networks. The design of an ad hoc network has to take into account several interesting and difficult problems due to noisy, limited-range, and insecure wireless transmissions added to mobility and energy constraints. This paper presents an overview of issues related to medium access control (MAC), routing, and transport in wireless ad hoc networks and techniques proposed to improve the performance of protocols. Research activities and problems requiring further work are also presented. Finally, the paper presents a project concerning an ad hoc network to easily deploy Internet services on low-income habitations fostering digital inclusion8th IFIP/IEEE International conference on Mobile and Wireless CommunicationRed de Universidades con Carreras en Informática (RedUNCI

    Improving the Performance of Medium Access Control Protocols for Mobile Adhoc Network with Smart Antennas

    Get PDF
    Requirements for high quality links and great demand for high throughput in Wireless LAN especially Mobile Ad-hoc Network has motivated new enhancements and work in Wireless communications such as Smart Antenna Systems. Smart (adaptive) Antennas enable spatial reuse, increase throughput and they increase the communication range because of the increase directivity of the antenna array. These enhancements quantified for the physical layer may not be efficiently utilized, unless the Media Access Control (MAC) layer is designed accordingly. This thesis implements the behaviours of two MAC protocols, ANMAC and MMAC protocols in OPNET simulator. This method is known as the Physical-MAC layer simulation model. The entire physical layer is written in MATLAB, and MATLAB is integrated into OPNET to perform the necessary stochastic physical layer simulations. The aim is to investigate the performance improvement in throughput and delay of the selected MAC Protocols when using Smart Antennas in a mobile environment. Analytical methods were used to analyze the average throughput and delay performance of the selected MAC Protocols with Adaptive Antenna Arrays in MANET when using spatial diversity. Comparison study has been done between the MAC protocols when using Switched beam antenna and when using the proposed scheme. It has been concluded that the throughput and delay performance of the selected protocols have been improved by the use of Adaptive Antenna Arrays. The throughput and delay performance of ANMAC-SW and ANMAC-AA protocols was evaluated in details against regular Omni 802.11 stations. Our results promise significantly enhancement over Omni 802.11, with a throughput of 25% for ANMAC-SW and 90% for ANMC-AA. ANMAC-AA outperforms ANMAC-SW protocol by 60%. Simulation experiments indicate that by using the proposed scheme with 4 Adaptive Antenna Array per a node, the average throughput in the network can be improved up to 2 to 2.5 times over that obtained by using Switched beam Antennas. The proposed scheme improves the performances of both ANMAC and MMAC protocols but ANMAC outperforms MMAC by 30%

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future
    • …
    corecore