30 research outputs found

    The algorithm by Ferson et al. is surprisingly fast: An NP-hard optimization problem solvable in almost linear time with high probability

    Full text link
    We start with the algorithm of Ferson et al. (\emph{Reliable computing} {\bf 11}(3), p.~207--233, 2005), designed for solving a certain NP-hard problem motivated by robust statistics. First, we propose an efficient implementation of the algorithm and improve its complexity bound to O(nlogn+n2ω)O(n \log n+n\cdot 2^\omega), where ω\omega is the clique number in a certain intersection graph. Then we treat input data as random variables (as it is usual in statistics) and introduce a natural probabilistic data generating model. On average, we get 2ω=O(n1/loglogn)2^\omega = O(n^{1/\log\log n}) and ω=O(logn/loglogn)\omega = O(\log n / \log\log n). This results in average computing time O(n1+ϵ)O(n^{1+\epsilon}) for ϵ>0\epsilon > 0 arbitrarily small, which may be considered as ``surprisingly good'' average time complexity for solving an NP-hard problem. Moreover, we prove the following tail bound on the distribution of computation time: ``hard'' instances, forcing the algorithm to compute in time 2Ω(n)2^{\Omega(n)}, occur rarely, with probability tending to zero faster than exponentially with nn \rightarrow \infty

    Parameterized complexity of DPLL search procedures

    Get PDF
    We study the performance of DPLL algorithms on parameterized problems. In particular, we investigate how difficult it is to decide whether small solutions exist for satisfiability and other combinatorial problems. For this purpose we develop a Prover-Delayer game which models the running time of DPLL procedures and we establish an information-theoretic method to obtain lower bounds to the running time of parameterized DPLL procedures. We illustrate this technique by showing lower bounds to the parameterized pigeonhole principle and to the ordering principle. As our main application we study the DPLL procedure for the problem of deciding whether a graph has a small clique. We show that proving the absence of a k-clique requires n steps for a non-trivial distribution of graphs close to the critical threshold. For the restricted case of tree-like Parameterized Resolution, this result answers a question asked in [11] of understanding the Resolution complexity of this family of formulas

    On monotone circuits with local oracles and clique lower bounds

    Get PDF
    We investigate monotone circuits with local oracles [K., 2016], i.e., circuits containing additional inputs yi=yi(x)y_i = y_i(\vec{x}) that can perform unstructured computations on the input string x\vec{x}. Let μ[0,1]\mu \in [0,1] be the locality of the circuit, a parameter that bounds the combined strength of the oracle functions yi(x)y_i(\vec{x}), and Un,k,Vn,k{0,1}mU_{n,k}, V_{n,k} \subseteq \{0,1\}^m be the set of kk-cliques and the set of complete (k1)(k-1)-partite graphs, respectively (similarly to [Razborov, 1985]). Our results can be informally stated as follows. 1. For an appropriate extension of depth-22 monotone circuits with local oracles, we show that the size of the smallest circuits separating Un,3U_{n,3} (triangles) and Vn,3V_{n,3} (complete bipartite graphs) undergoes two phase transitions according to μ\mu. 2. For 5k(n)n1/45 \leq k(n) \leq n^{1/4}, arbitrary depth, and μ1/50\mu \leq 1/50, we prove that the monotone circuit size complexity of separating the sets Un,kU_{n,k} and Vn,kV_{n,k} is nΘ(k)n^{\Theta(\sqrt{k})}, under a certain restrictive assumption on the local oracle gates. The second result, which concerns monotone circuits with restricted oracles, extends and provides a matching upper bound for the exponential lower bounds on the monotone circuit size complexity of kk-clique obtained by Alon and Boppana (1987).Comment: Updated acknowledgements and funding informatio

    On the Average-case Complexity of Parameterized Clique

    Get PDF
    The k-Clique problem is a fundamental combinatorial problem that plays a prominent role in classical as well as in parameterized complexity theory. It is among the most well-known NP-complete and W[1]-complete problems. Moreover, its average-case complexity analysis has created a long thread of research already since the 1970s. Here, we continue this line of research by studying the dependence of the average-case complexity of the k-Clique problem on the parameter k. To this end, we define two natural parameterized analogs of efficient average-case algorithms. We then show that k-Clique admits both analogues for Erd\H{o}s-R\'{e}nyi random graphs of arbitrary density. We also show that k-Clique is unlikely to admit neither of these analogs for some specific computable input distribution

    DNF Sparsification and a Faster Deterministic Counting Algorithm

    Full text link
    Given a DNF formula on n variables, the two natural size measures are the number of terms or size s(f), and the maximum width of a term w(f). It is folklore that short DNF formulas can be made narrow. We prove a converse, showing that narrow formulas can be sparsified. More precisely, any width w DNF irrespective of its size can be ϵ\epsilon-approximated by a width ww DNF with at most (wlog(1/ϵ))O(w)(w\log(1/\epsilon))^{O(w)} terms. We combine our sparsification result with the work of Luby and Velikovic to give a faster deterministic algorithm for approximately counting the number of satisfying solutions to a DNF. Given a formula on n variables with poly(n) terms, we give a deterministic nO~(loglog(n))n^{\tilde{O}(\log \log(n))} time algorithm that computes an additive ϵ\epsilon approximation to the fraction of satisfying assignments of f for \epsilon = 1/\poly(\log n). The previous best result due to Luby and Velickovic from nearly two decades ago had a run-time of nexp(O(loglogn))n^{\exp(O(\sqrt{\log \log n}))}.Comment: To appear in the IEEE Conference on Computational Complexity, 201

    Improved bounds for the sunflower lemma

    Full text link
    A sunflower with rr petals is a collection of rr sets so that the intersection of each pair is equal to the intersection of all. Erd\H{o}s and Rado proved the sunflower lemma: for any fixed rr, any family of sets of size ww, with at least about www^w sets, must contain a sunflower. The famous sunflower conjecture is that the bound on the number of sets can be improved to cwc^w for some constant cc. In this paper, we improve the bound to about (logw)w(\log w)^w. In fact, we prove the result for a robust notion of sunflowers, for which the bound we obtain is tight up to lower order terms.Comment: Revised preprint, added sections on applications and rainbow sunflower

    Sunflowers and Quasi-Sunflowers from Randomness Extractors

    Get PDF

    From DNF Compression to Sunflower Theorems via Regularity

    Get PDF
    The sunflower conjecture is one of the most well-known open problems in combinatorics. It has several applications in theoretical computer science, one of which is DNF compression, due to Gopalan, Meka and Reingold (Computational Complexity, 2013). In this paper, we show that improved bounds for DNF compression imply improved bounds for the sunflower conjecture, which is the reverse direction of the DNF compression result. The main approach is based on regularity of set systems and a structure-vs-pseudorandomness approach to the sunflower conjecture

    Beating Treewidth for Average-Case Subgraph Isomorphism

    Get PDF
    For any fixed graph G, the subgraph isomorphism problem asks whether an n-vertex input graph has a subgraph isomorphic to G. A well-known algorithm of Alon, Yuster and Zwick (1995) efficiently reduces this to the "colored" version of the problem, denoted G-SUB, and then solves G-SUB in time O(n^{tw(G)+1}) where tw(G) is the treewidth of G. Marx (2010) conjectured that G-SUB requires time Omega(n^{const * tw(G)}) and, assuming the Exponential Time Hypothesis, proved a lower bound of Omega(n^{const * emb(G)}) for a certain graph parameter emb(G) = Omega(tw(G)/log tw(G)). With respect to the size of AC^0 circuits solving G-SUB, Li, Razborov and Rossman (2017) proved an unconditional average-case lower bound of Omega(n^{kappa(G)}) for a different graph parameter kappa(G) = Omega(tw(G)/log tw(G)). Our contributions are as follows. First, we show that emb(G) is at most O(kappa(G)) for all graphs G. Next, we show that kappa(G) can be asymptotically less than tw(G); for example, if G is a hypercube then kappa(G) is Theta(tw(G)/sqrt{log tw(G)}). Finally, we construct AC^0 circuits of size O(n^{kappa(G)+const}) that solve G-SUB in the average case, on a variety of product distributions. This improves an O(n^{2 kappa(G)+const}) upper bound of Li et al., and shows that the average-case complexity of G-SUB is n^{o(tw(G))} for certain families of graphs G such as hypercubes
    corecore