248,677 research outputs found

    Mixing of asymmetric logarithmic suspension flows over interval exchange transformations

    Full text link
    We consider suspension flows built over interval exchange transformations with the help of roof functions having an asymmetric logarithmic singularity. We prove that such flows are strongly mixing for a full measure set of interval exchange transformations

    Computation of three-dimensional flow in turbofan mixers and comparison with experimental data

    Get PDF
    A three dimensional, viscous computer code was used to calculate the mixing downstream of a typical turbofan mixer geometry. Experimental data obtained using pressure and temperature rakes at the lobe and nozzle exit stations were used to validate the computer results. The relative importance of turbulence in the mixing phenomenon as compared with the streamwise vorticity set up by the secondary flows was determined. The observations suggest that the generation of streamwise vorticity plays a significant role in determining the temperature distribution at the nozzle exit plane

    Short- and Long- Time Transport Structures in a Three Dimensional Time Dependent Flow

    Full text link
    Lagrangian transport structures for three-dimensional and time-dependent fluid flows are of great interest in numerous applications, particularly for geophysical or oceanic flows. In such flows, chaotic transport and mixing can play important environmental and ecological roles, for examples in pollution spills or plankton migration. In such flows, where simulations or observations are typically available only over a short time, understanding the difference between short-time and long-time transport structures is critical. In this paper, we use a set of classical (i.e. Poincar\'e section, Lyapunov exponent) and alternative (i.e. finite time Lyapunov exponent, Lagrangian coherent structures) tools from dynamical systems theory that analyze chaotic transport both qualitatively and quantitatively. With this set of tools we are able to reveal, identify and highlight differences between short- and long-time transport structures inside a flow composed of a primary horizontal contra-rotating vortex chain, small lateral oscillations and a weak Ekman pumping. The difference is mainly the existence of regular or extremely slowly developing chaotic regions that are only present at short time.Comment: 9 pages, 9 figure

    From large deviations to semidistances of transport and mixing: coherence analysis for finite Lagrangian data

    Get PDF
    One way to analyze complicated non-autonomous flows is through trying to understand their transport behavior. In a quantitative, set-oriented approach to transport and mixing, finite time coherent sets play an important role. These are time-parametrized families of sets with unlikely transport to and from their surroundings under small or vanishing random perturbations of the dynamics. Here we propose, as a measure of transport and mixing for purely advective (i.e., deterministic) flows, (semi)distances that arise under vanishing perturbations in the sense of large deviations. Analogously, for given finite Lagrangian trajectory data we derive a discrete-time and space semidistance that comes from the "best" approximation of the randomly perturbed process conditioned on this limited information of the deterministic flow. It can be computed as shortest path in a graph with time-dependent weights. Furthermore, we argue that coherent sets are regions of maximal farness in terms of transport and mixing, hence they occur as extremal regions on a spanning structure of the state space under this semidistance---in fact, under any distance measure arising from the physical notion of transport. Based on this notion we develop a tool to analyze the state space (or the finite trajectory data at hand) and identify coherent regions. We validate our approach on idealized prototypical examples and well-studied standard cases.Comment: J Nonlinear Sci, 201
    corecore