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Abstract

One way to analyze complicated non-autonomous flows is through trying to understand
their transport behavior. In a quantitative, set-oriented approach to transport, finite time
coherent sets play an important role. These are time-parametrized families of sets with
unlikely transport to and from their surroundings under small or vanishing random per-
turbations of the dynamics. Here we propose, as a measure of transport, (semi)distances
that arise under vanishing perturbations in the sense of large deviations. Analogously, for
given finite Lagrangian trajectory data we derive a discrete-time and space semidistance
that comes from the “best” approximation of the randomly perturbed process conditioned
on this limited information on the deterministic flow. It can be computed as shortest path
in a graph with time-dependent weights. Furthermore, we argue that coherent sets are re-
gions of maximal farness in terms of transport, hence they occur as extremal regions on a
spanning structure of the state space under this semidistance—in fact, under any distance
measure arising from the physical notion of transport. Based on this notion we develop a
tool to analyze the state space (or the finite trajectory data at hand) and identify coher-
ent regions. We validate our approach on idealized prototypical examples and well-studied
standard cases.

1. Introduction

Transport in dynamical systems. Instrumental to understanding the essential behavior of
complicated non-autonomous flows is to grasp how transport is happening in them. This leads
on a qualitative level to objects that prohibit transport, commonly named transport barriers;
often originating from the geometric picture for autonomous systems and that trajectories are
unable to cross co-dimension 1 invariant manifolds [28, 29, 31, 30]. For periodically-forced
systems, invariant manifolds enclose regions called “lobes” that get transported across these
periodically varying manifolds [36, 45].

On a quantitative level, one searches for surfaces of small flux [4, 32, 22], so-called partial
barriers [54, 37]. Instead of characterizing regions that do not mix with one another via en-
closing them by boundaries of low flux, there are approaches that aim to describe these sets
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directly. Such set-oriented concepts are strongly interwoven with the theory of transfer op-
erators (Perron–Frobenius and Koopman operators), and comprise almost-invariant sets [10],
ergodic partitions [39] in autonomous, and coherent sets [26, 17] in the non-autonomous cases.

Distinctive attention has been given to coherent sets, which are a (possibly time-dependent)
family of sets having little or no exchange with their surrounding in terms of transport, and are
robust to small diffusion over a finite time of consideration [17, 18]. Natural examples include
moving vortices in atmospheric [47, 26], oceanographic [52, 9, 19], and plasma flows [43]. In
such applications, one would like to be able to find coherent sets even in the cases when a
dynamical model that can be evaluated arbitrarily often is not available, only a finite set of
Lagrangian trajectory data (passive tracers moving with flow with positions sampled at discrete
time instances). This problem has received lot of attention in recent years, and a diverse
collection of tools has been developed to tackle it [8, 2, 50, 25, 1, 55, 27, 5, 49, 44, 48, 14, 21].

While other current methods aim at collecting trajectories into coherent sets, in [5] it has
been proposed to go one step further and analyze the connectivity structure of the state space
under transport with “transport coordinates” and the “skeleton of transport”. Very similar ob-
servations have been made earlier in [8] in the infinite-time limit for periodically-forced systems.
While coherent sets (and transport barriers) aim at partitioning the state space, the skeleton is
aiming at “spanning” the state space with respect to transport. In this respect, coherent sets
can be associated with distinct “extremal regions” of the skeleton. Here we will only use this
idea of extremality, more precisely that coherent sets are “maximally far” from one another, as
measured by transport. To this end we will need to measure “farness” of dynamical trajectories.

Several dynamical distance measures have been put forward already to measure the “distance”
or “dissimilarity” of trajectories or initial states in dynamical systems [38, 8, 25, 27, 14, 33].
The majority of them are shown to serve their purpose well in revealing coherent structures
efficiently and reliably. However, they are either heuristic in the sense that they are not derived
from the physical notion of transport, or no discretizations to finite scattered trajectory data
have been developed.

The purpose of this paper is thus twofold. On the one hand, we develop a distance measure (a
semidistance) between trajectories that is derived from the physical notion of transport subject
to diffusion of vanishing strength, and we also derive a discretized distance measure for finite
(also possibly sparse and incomplete) Lagrangian data that is consistent with its continuous
counterpart in the limit of infinite data. On the other hand, we construct a tool to analyze
with such distances the structure of the state space under transport, especially to find coherent
sets. This tool makes use of the idea that coherent sets are some sort of extremal regions on a
spanning structure with respect to transport, although in this work we will not investigate this
“skeleton” in its entirety.

Finite time coherent sets. Let us consider the ordinary differential equation (ODE)

ẋt = v(t, xt) (1)

on some bounded X ⊂ Rd and on a finite time interval [0, T ] for some T > 0. Throughout the
paper we will assume that v : [0, T ] ×X → Rd is a continuous velocity field tangential at the
boundary, such that the flow of (1), denoted by φs,t[·], 0 ≤ s, t ≤ T , is a diffeomorphism on
appropriate subsets of X. For t < s we flow backward in time: φs,t = φ−1

t,s .
Many different notions to characterise coherent sets have been proposed in the literature.

Central to all of these notions is the idea that coherent sets should be robust under noise;
without such requirement any non-intersecting characteristic of a singleton could be considered
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a coherent set. To this end one typically perturbs the ODE (1) by a random noise [12, 22, 33],
leading to the Itô stochastic differential equation (SDE)1

dx(ε)

t = v(t,x(ε)

t )dt+
√
εdwt , (2)

where {wt}t∈[0,T ] is a Wiener process (Brownian motion) with generator φ 7→ 1
2∆φ, reflecting

boundaries, and starting from w0 = 0 (deterministically) and ε > 0 is, at least for now, a
given small constant. In fact, the rigorous mathematical formulation of an SDE with reflecting
boundaries can be quite subtle, see [3]. We ignore this issue as it doesn’t affect our analysis.

According to the definition of finite time coherent pairs [26, 17, 35], two sets A,B ⊂ X are
coherent for times 0 and T if most mass from set A is likely to end up in set B, and most mass
ending up in set B is likely to originate from set A, that is,

P
(
x(ε)

T ∈ B | x
(ε)

0 ∈ A
)
≈ 1, and P

(
x(ε)

0 ∈ A | x
(ε)

T ∈ B
)
≈ 1. (3)

Naturally, for practical purposes one would need to choose how small ε and how large these
probabilities should be. As the systems we are dealing with are often deterministic by nature,
and there is no “physically straightforward” choice of the diffusion strength ε, our first aim is
to remove some of this indeterminacy by quantifying what it means for probabilities to be close
to 1 for small ε, in terms of large deviations as we explain below2. However, it turns out that the
forward and backward conditions (3) are essentially equivalent in the large-deviation regime, see
Appendix A. Therefore they do not need to be treated separately, and we will consider “forward
probabilities” only. Moreover, the large-deviation limits of (3) hardly gives any quantitative
information about how coherent two sets might be, as discussed in Appendix A. To conclude,
the large-deviations of conditions (3) do not yield sensible conditions for coherence.

Large-deviation based semidistances. In the current paper we take a different approach. We
study semidistances that quantify how unlikely it is for mass to flow from one point to another.
These are a semidistances in the sense that they satisfy all properties of a metric except for
the triangle inequality. In the first part of this paper, sections 2 and 3, we show how such
semidistances can arise naturally from probabilistic arguments via large-deviation principles, as
we explain below. In the second part, sections 4 and 5, we discuss how (general) semidistances
can be used to analyse coherent sets, and we apply the concepts of this paper to a number of
examples.

In Section 2 we derive two different semidistances from the large deviations of two probabili-
ties. The first one is related to the probability that the random trajectory ends in x(ε)

T � φ0,T [y],
given that it starts in x(ε)

0 = x, for any two initial positions x, y ∈ X. As ε→ 0, the process can
no longer deviate from the deterministic flow of (1), and hence this probability will converge to
0 whenever x 6= y. In fact, it converges exponentially fast, i.e.

P
(
x(ε)

T � φ0,T [y] | x(ε)

0 = x
)
∼ e−

1
ε
µT (x→y) (4)

for some function µT (x→y) ≥ 0. Such exponential convergence results are called large-deviation
principles, and µT (x→ y) is the large-deviation rate. The less probable it is to reach one point

1We denote random variables by boldface symbols.
2A different way of factoring out diffusion to obtain coherent sets for deterministic flows appeared in the set-

oriented transfer-operator based characterization in [18, 23], leading to the notion of the dynamic Laplacian.
See also our concluding remarks in Section 6.1.
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from another, the larger the rate between them. The first semi-distance is then obtained via
symmetrisation:

µcross
T (x, y) := µT (x→y) + µT (y→x). (5)

We call this the cross semidistance, since it arises from mass flowing from x to φ0,T [y] and mass
flowing from y to φ0,T [x] simultaneously and independently, see Figure 1.

The second semidistance arises as the large deviations of the probability for two independent
random trajectories x(ε),y(ε), starting from x and y respectively, to meet at any point, within
the time interval (0, T ), see Figure 2:

P
(
x(ε)

T � y
(ε)

T | x
(ε)

0 = x,y(ε)

0 = y
)
∼ e−

1
ε
µmeet
T (x,y), (6)

where the meeting semi-distance is given by

µmeet
T (x, y) := inf

z∈X
µT (x→z) + µT (y→z).

t
T

x

φ0,T [x]

y

φ0,T [y]

Figure 1: µcross
T (x, y) is the cost to move

from x to φ0,T [y] and from y to
φ0,T [x].

t
T

x

φ0,T [x]

y

φ0,T [y]

Figure 2: µmeet
T (x, y) is the cost for two tra-

jectories to meet.

By this procedure we find two semidistances µcross
T and µmeet

T that can be used as a measure
of “nearness” of points x, y, which will be low for points in the same coherent set, and high
otherwise. Since both arise from large-deviation principles, they have a nice additional inter-
pretation as a probabilistic cost or free energy that needs to be paid in order to deviate from
the expected flows; such interpretation is common in statistical physics, see for example [42].

Nevertheless, we will see that in order to calculate these costs explicitly, the velocity field v
needs to be known. As discussed above, this is in practice seldom the case; mostly one can
only assume to have discrete-time snapshots of the positions of a limited number of floaters.
With this in mind, we derive similar cost functions as above, that are based on such a finite
data set only. This will be the content of Section 3. First, the dynamics is discretized in time
and space by conditioning a usual time-stepping method for the SDE (2) on the event that
the random continuous trajectories are to be found in the set of known floater positions at
the K ∈ N given time instances. This is an optimal choice in the sense that there can be no
higher order3 approximation of the SDE given the limited information about the dynamics. As
above, we then derive two large-deviation semidistances νcross

K (x, y) and νmeet
K (x, y) that have a

clear probabilistic interpretation, that can be used to characterise coherent sets, and that are
based on the finite data set rather than on the explicit velocity field. In fact, we will show
that these discrete-space-time semidistances are really specific discretisations of the continuous-
space-time semidistances µcross

T and µmeet
T . They can be computed as shortest path lengths in a

time-dependent weighted graph. We give an algorithm in Appendix B.

3In the sense of consistency order of numerical time-stepping methods for ODEs and SDEs [34].
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Coherence analysis with semidistances. In Section 4 we describe how in general a semidis-
tance on finite Lagrangian data can be used to analyse coherence. Key to our method is the
notion of cornerstone: a point that is furthest away from all other points. Cornerstones are
though of as “endpoints” of a spanning structure, and ideally each cornerstone is in some sense
the center of a coherent set. As a next step, trajectories can be clustered around cornerstones
to yield coherent sets. Of course, this approach is very close to the k-means- and fuzzy c-means
clustering of trajectories with respect to dynamical distances in [27, 25], with the important
difference that the centers are not chosen by the heuristics of these clustering approaches, but
with regard to the properties of coherent sets in the light of transport.

To exemplify the usefulness of the theory put forth in this paper, in sections 4 and 5 we
test our approach on a number of standard test cases. Finally, Section 6 discusses possible
combinations of this work with other concepts.

2. Large-deviation semidistances in continuous time and space

In this section we study large deviations of the forms (4) and (6). In large-deviations theory it
is ofter easier to first study large deviations in a larger space. In our setting, we first study the
large deviations of trajectories in Section 2.1 before transforming to the large deviations of the
end-points in Section 2.2. We end with a discussion of the resulting semidistances µcross

T , µmeet
T

in Section 2.3.

2.1. Large deviations of trajectories

We denote trajectories by w(·) to distinguish them from points w. Let P be the Wiener mea-
sure, i.e. the probability that a Brownian trajectory lies in a set U ⊂ C(0, T ;Rd) is P[w(·) ∈ U ].
Recall that there does not exist a canonical probability measure on the space of trajectories,
and so the Wiener measure can not be identified with a meaningful density. This means that
one always needs to consider sets rather than particular realisations of the Brownian trajec-
tory. Nevertheless, large-deviation rates are always local, in the sense that they depend on
one realisation only (the most likely one in the set U under consideration). This motivates
writing w(·) � f(·) if w(·) lies in an infinitesimal neighborhood U of the trajectory f(·).

4

The large deviations for the SDE (2) are a standard result by Freidlin–Wentzell [16]. This
result can be derived via a combination of Schilder’s Theorem and a Contraction Principle as
we now explain.

We first consider the noise part
√
εwt, which clearly converges to the constant trajectory

0 as ε → 0. The corresponding large-deviation principle is given by Schilder’s Theorem [11,
Th. 5.2.3]:

− ε logP
[√
εw(·) � w(·)

]
−−−→
ε→0

1

2

∫ T

0
|ẇt|2dt, (7)

for differentiable trajectories w(·) starting from w0 = 0 (otherwise the limit will be ∞).
Let us assume that the velocity field v(t, ·) is Lipschitz, so for each realisation of the Brow-

nian trajectory w(·) = w(·) corresponds a unique solution x(ε)

(·) of the SDE, starting from some

given x(ε)

0 = x, see [41, Th. 5.2.1]. The Contraction Principle [11, Th. 4.2.1] then states that the
large-deviations rate for a trajectory x(ε)

(·) is given by the minimum of (7) over all realisations of

4See [11] for the rigorous definition and theoretical background of large-deviation principles.
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the noise that give rise to the trajectory x(ε)

(·) , i.e.:

− ε logP
[
x(ε)

(·) � x(·)

]
−−−→
ε→0

inf
w(·) : ẋt=v(t,xt)+ẇt

1

2

∫ T

0
|ẇt|2 dt =

1

2

∫ T

0
|ẋt − v(t, xt)|2 dt, (8)

for differentiable trajectories x(·) starting from x0 = x.

2.2. Large deviations of end points

We now derive the large-deviation principle of the type (4) as discussed in the introduction. In
a sense, the trajectory large deviations (8) encode more information than is needed if we are
only interested in the end point x(ε)

T � φ0,T (y) of the random trajectory. Another application
of the Contraction Principle then states that the large-deviation rate for the end-point is the
minimum of (8) over all trajectories starting from x end ending in that given end point φ0,T [y],
i.e.:

− ε logP
(
x(ε)

T � φ0,T [y] | x(ε)

0 = x
)
−−−→
ε→0

inf
x(·) :x0=x,xT=φ0,T [y]

1

2

∫ T

0
|ẋt − v(t, xt)|2 dt =: µT (x→y).

(9)
This defines the ‘one-way’ rate that we are after.

The sum (5) then defines the cross semidistance µcross
T (x, y), and has a natural interpretation

in terms of large deviations: As mentioned in the introduction, it arises from two independent
and simultaneous copies x(ε)

t ,y
(ε)

t . By independence, the probability that (x(ε)

T ,y
(ε)

T ) � (y, x)
given (x(ε)

0 ,y(ε)

0 ) = (x, y) is a product of one-way probabilities, yielding the sum of two one-way
rates in the large-deviations, see Figure 1.

A similar argument can be used to derive the meeting large deviations (6). Let x(ε)

t and y(ε)

t be
two independent copies of the SDE (2), starting from given x and y, respectively. We consider
the probability that both trajectories end in a given point, say φ0,T [z] for some z ∈ Rd, see
Figure 2. Assuming independence of the two trajectories, we immediately get

− ε logP
(
x(ε)

T � φ0,T [z],y(ε)

T � φ0,T [z] | x(ε)

0 = x,y(ε)

0 = y
)

= −ε logP
(
x(ε)

T � φ0,T [z] | x(ε)

0 = x
)
− ε logP

(
y(ε)

T � φ0,T [z] | y(ε)

0 = y
)

(9)−−−→
ε→0

µT (x→z) + µT (y→z).

However, we are only interested in the probability that the two trajectories meet, and not in
the point where they meet. A final Contraction Principle thus yields:

− ε logP
(
x(ε)

T � y
(ε)

T | x
(ε)

0 = x,y(ε)

0 = y
)
−−−→
ε→0

inf
z∈X

µT
(
x→z

)
+ µT

(
y→z

)
=: µmeet

T (x, y). (10)

Observe the two trajectories could also meet earlier and subsequently follow the same trajectory
up until time T with zero cost; the time T thus acts as a maximum time at which the trajectories
should meet.

2.3. The semidistances

We now discuss some metric properties of the rate functionals. Recall from the introduction
that we assumed that the flow is a diffeomorphism. Therefore µT (x → y) = 0 if and only if
x = y. It is then easy to see that, for any x, y,
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(i) µcross
T (x, y) ≥ 0 and µmeet

T (x, y) ≥ 0,

(ii) µcross
T (x, y) = 0 ⇐⇒ x = y and µmeet

T (x, y) = 0 ⇐⇒ x = y,

(iii) µcross
T (x, y) = µcross

T (y, x) and µmeet
T (x, y) = µmeet

T (y, x).

However, the triangle inequality can fail, and so µcross
T and µmeet

T are semidistances only.
We point out the following useful relation between the two. Observe that by the definition,

µmeet
T (x, y) ≤ µT (x→y) + µT (y, y) = µT (x→y), and similarly µmeet

T (x, y) ≤ µT (y→x). Therefore,

µmeet
T (x, y) ≤ max

{
µT (x→y), µT (y→x)

}
≤ µcross

T (x, y).

In order to investigate which semidistance is more suitable to study coherence, one would need
to study in which setting the gap µcross

T (x, y) − µmeet
T (x, y) becomes large. This is beyond the

scope of this paper, but we will show for several examples that both work as they should.
The inequality does suggest a third candidate: the maximum. Since the maximum of two
large-deviation rates does not have a clear large-deviation interpretation we do not study this
candidate.

2.4. A simple example

To get an intuition for how the semidistances work, let us consider a simple example, where the
domain of interest is the interval [0, L], and there is no dynamics, i.e., v ≡ 0. The system is
considered on the time interval [0, T ]. One can then easily see that ẋt ≡ L/T is optimal in (9),
thus giving

µT (0→L) = µT (L→0) =
1

2

∫ T

0

(
L

T

)2
dt =

L2

2T
,

and so µcross
T (0, L) = L2

T . Thus, also µT (0→L/2) = µT (L→L/2) = L2

8T . In general, the one-way
cost is proportional to the squared distance and inversely proportional to time. This also gives

µmeet
T (0, L) =

L2

4T
,

so, in this symmetric situation the meeting distance is half of one-way cost and quarter of the
cross semidistance.

3. Large-deviation semidistances in discrete time and space

As mentioned in the introduction, the cost functions µcross
T and µmeet

T are difficult to calculate
explicitly, and impossible if the velocity or flow field is not explicitly known. In this section
we take a more practical approach. We will assume that the only information at hand is the
position at finite times of a finite number I of floaters.

To be more specific, let {x(i)

k }k=0,...;K,i=1,...,I be given positions of floaters i = 1, . . . , I at
time kτ for k = 0, . . . ,K for some τ > 0. Assuming that the floaters sample from the deter-
ministic flow field φt,s, we know that for each floater i,

x(i)

k+1 = φkτ,(k+1)τ [x(i)

k ] . (11)

If we add noise to the system, we find random particles described by the set of SDE’s,

dx(i,ε)

t = v(t,x(i,ε)

t )dt+
√
εdw(i)

t , x̃(i,ε)

0 = x(i)

0 , for i = 1, . . . , I, (12)

7



where w(i) are now independent standard Brownian motions.
Our strategy is to study the probability that a random particle described by the SDE (2)

deviates from the given floater trajectory, conditional to the given positions of all floaters.
We first approximate the SDE’s (12) by discrete-time, continuous-space Markov processes in
Section 3.1. Next, in Section 3.2 we condition these discrete-time processes on the given floater
positions. Next we calculate the large-deviation rate for trajectories in Section 3.3, and for end
points in Section 3.4. We then end the section with a discussion of the metric properties of the
resulting large-deviation rates in Section 3.5.

3.1. Discrete-time approximation

We first focus our attention to one time step kτ → (k+ 1)τ of one trajectory i, and temporarily
drop the superindex for brevity. Since the noise process is a standard Brownian motion, we
know its density,

dP[
√
εw(k+1)τ ∈ dy

∣∣√εwkτ = x]

dy
= (2πετ)−d/2 exp

(
−|x− y|

2

2ετ

)
. (13)

Hence, we have precise information on the purely deterministic part of the SDE by (11), and on
the purely noise part by (13). We combine this information by using the following time-stepping
approximation for the SDE (2).

Fix an α ∈ [0, 1], and let (ξ+
k , ξ

−
k )k=0,...,K be independent normally distributed random vari-

ables, each with probability (13) for x = 0. Given the approximated random position x̃k at
time kτ , we iterate

x̃+
k := x̃k +

√
ατεξ+

k

x̃−k+1 := φkτ,(k+1)τ [x̃+
k ]

x̃k+1 := x̃−(k+1)τ +
√

(1− α)τεξ−k+1

(14)

Here, x̃+
k and x̃−k+1 are only auxiliary (intermediate) steps. The method (14) is a special case

of a splitting method, since the deterministic evolution and purely noise parts of the SDE (2)
are handled separately in the distinct steps; here it would be “noise-flow-noise”. For α = 1/2 it
is equivalent to the Strang-splitting [51], and thus has weak convergence order two [34].

3.2. Conditioning on finite data

Recall that we considered one discrete-time process (x̃k)k=1,...,K with initial condition x̃0 = x
(i)
0 ,

and that we supressed the dependency on i. For each k = 0, . . . ,K, we introduce the set

Ak := {x(j)

k }j=1,...I .

of available points at time t = kτ . We now condition the random process on the event that for
each realisation x̃k ∈ Ak and for each intermediate point x̃+

k ∈ Ak. This automatically implies
conditioning of the other intermediate points x̃−k+1 ∈ Ak+1 due to (11). We choose to condition
on the intermediate points for practical reasons; otherwise we would not be able to perform the
second step in (14), since the discrete trajectories are our only information about the flow, cf
Remark 3.1.

The conditioning on the finite data set results in replacing the discrete-time continuous-
space process by a fully discrete-time discrete-space Markov chain that hops between the given
trajectories. Therefore, the state of the new Markov chain can be represented by the labels

8



j = 1, . . . , I; this is particularly useful since the deterministic flow (11) will change the positions
but not the labels. Since the resulting process is still Markovian, we can fully characterise its
behaviour through its transition probabilities for one time-step k → k + 1. We now calculate
these transition probabilities, dealing with each step in (14) separately. See Figure 3 for a
sketch.

For the transition from x̃k to x̃+
k , note that we are in fact conditioning on a null set, so

that the conditional probabilities are sensibly defined as the limits over balls Br(·) of small
radii r → 0 around these points. We thus obtain, for any j, ` = 1, . . . I:

p+
k (j, `) := P

[
x̃+
k = x(`)

k

∣∣ x̃k = x(j)

k and x̃+
k ∈ Ak

]
= lim

r→0

P
[
x̃+
k ∈ Br(x

(`)

k )
∣∣ x̃k = x(j)

k

]
P
[
x̃+
k ∈ Br(Ak)

∣∣ x̃k = x(j)

k

]
=

exp
(
−
∣∣x(`)

k − x
(j)

k

∣∣2 /(2αετ)
)

∑I
ˆ̀=1

exp

(
−
∣∣∣x(ˆ̀)

k − x
(j)

k

∣∣∣2 /(2αετ)

) , (15)

and similarly for the transition from x̃−k+1 to x̃k+1:

p−k+1(`,m) := P
[
x̃k+1 = x(m)

k+1

∣∣ x̃−k+1 = x(`)

k+1 and x̃k+1 ∈ Ak+1

]
=

exp
(
−
∣∣x(m)

k+1 − x
(`)

k+1

∣∣2 / (2(1− α)ετ)
)

∑I
m̂=1 exp

(
−
∣∣x(m̂)

k+1 − x
(`)

k+1

∣∣2 / (2(1− α)ετ)
) . (16)

Since the transition from x̃+
k to x̃−k+1 is deterministic (middle equation in (14)), we have that,

Pk(j,m) := P
[
x̃k+1 = x(m)

k+1

∣∣ x̃k = x(j)

k and x̃+
k ∈ Ak, x̃

−
k+1 ∈ Ak+1

]
=

I∑
`=1

p+
k (j, `)p−k+1(`,m) .

(17)
In words, the process performs the following three subsequent steps for one time step (see
Figure 3):

1. Start in x(j)

k , and perform a jump to some x(`)

k with probability p(k,+)

j,` ,

2. Perform a deterministic jump from x(`)

k to x(`)

k+1,

3. Perform a jump from x(`)

k+1 to x(m)

k+1 with probability p(k+1,−)

`,m .

The transition probabilities Pk(j,m) define our new, discrete-time Markov chain (ik)k=0,...,K

on the discrete space {1, . . . , I}. To shorten notation, we will write i(·) := (ik)k=0,...,K for a
discrete trajectory, analogous to the continuous-time setting. By the Markov property, the
probability that the Markov chain realises such trajectory is simply

P
[
i(·) = i(·)

]
=

K−1∏
k=0

Pk(ik, ik+1), (18)

where we assumed that the chain starts (deterministically) from i0.
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Ak

ik = j

Ak+1

ik+1 = m

p+k (j, `)

φkτ,(k+1)τ
p−k+1(`,m)

Figure 3: One time-step of the discrete-time discrete space Markov chain ik.

3.3. Large deviations of discrete trajectories

We now study the large deviations of the discrete Markov chain ik. Similarly to the continuous
setting from Section 2 we start from the large deviations of trajectories. First we calculate the
large deviations for p+

k (j, `) and p−k+1(`,m). By the Laplace principle (26),

−ε log p+
k (j, `)

(15)
= ε log

I∑
ˆ̀=1

exp

 ∣∣x(`)

k − x
(j)

k

∣∣2 − ∣∣∣x(ˆ̀)

k − x
(j)

k

∣∣∣2
2αετ


−−−→
ε→0

max
ˆ̀=1,...,I

∣∣x(`)

k − x
(j)

k

∣∣2 − ∣∣∣x(ˆ̀)

k − x
(j)

k

∣∣∣2
2ατ

=
|x(`)

k − x
(j)

k |
2

2ατ
.

We will make this simplification again below. Similarly, we obtain

−ε log p−k+1(`,m)
(16)−−−→
ε→0

|x(m)

k+1 − x
(`)

k+1|
2

2(1− α)τ
.

Using these two exponential approximations, we can again use the Laplace principle (26) to find
for the jump probability of one time step:

lim
ε→0
−ε logPk(j,m)

(17)
= lim

ε→0
−ε log

I∑
`=1

p+
k (j, `)p−k+1(`,m)

= min
`=1,...,I

lim
ε→0

(
−ε log p+

k (j, `)− ε log p−k+1(`,m)
)

= min
`=1,...,m

|x(`)

k − x
(j)

k |
2

2ατ
+
|x(m)

k+1 − x
(`)

k+1|
2

2(1− α)τ
.

Finally the large-deviation rate of a discrete trajectory is

−ε logP [i(·) = i(·)]
(18)
= −ε log

K−1∏
k=0

Pk(ik, ik+1)

−−−→
ε→0

K−1∑
k=0

min
`=1,...,I

|x(`)

k − x
(ik)

k |2

2ατ
+
|x(ik+1)

k+1 − x(`)

k+1|
2

2(1− α)τ
:= J (i(·)), (19)

Remark 3.1: Recall that we conditioned on the event that all x̃k as well as the intermediate
points x̃+

k lie in the set Ak of available points. One might argue that in practice only the points
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x̃k are measured to lie in Ak, while the other two are mathematical constructs that may lie
anywhere. However, if we would relax this conditioning and follow the calculations as above,
we would find:

−ε logPk(j,m) −−−→
ε→0

min
x∈Rd

{ |x− x(j)

k |
2

2ατ
+

∣∣x(m)

k+1 − φtk,tk+1 [x]
∣∣2

2(1− α)τ
− min
m̂=1,...,I

∣∣x(m̂)

k+1 − φtk,tk+1 [x]
∣∣2

2(1− α)τ

}
.

Since this large-deviation rate still depends on the unknown flow field φ, it can not be used if
only the data of a finite number of floaters is available.

Remark 3.2 (Missing data and non-uniform time-sampling): Note that the construction works
exactly as described above even if information about trajectories is partially missing. The
conditioning on the setAk works identically, but now these sets might have different cardinalities
smaller or equal I. Observe that our only information about the deterministic flow for times
in [kτ, (k + 1)τ) comes from those trajectories that are available both in Ak and Ak+1. If this
intersection is empty, we need to skip that time slice completely. This is not a problem, since
our choice of sampling time uniformly by the step size τ was solely in order to ease presentation.
As the reader has probably observed, the extension for varying time steps τk is straightforward.

3.4. Large deviations of end points

Analogously to the continuous setting, we study the large deviations of the one-way probability
to hop from i to j in discrete time K, and the meeting probability that two independent chains,
starting from i and j respectively, meet in discrete time K. Since the trajectories (19) encode
more information than the end points, we can now easily derive the large deviations of the
one-way probability by a Contraction Principle. Indeed, for any two indices i, j = 1, . . . , I,

− ε logP[iK = j | i0 = i] −−−→
ε→0

min
i(·): i0=i,iK=j

J (i(·)) =: νK(i→j), (20)

where J is the discrete-trajectory large-deviation rate (19). Note that J is the shortest path
length in a graph with time-dependent edge weights

wk(i, j) = min
`=1,...,I

|x(`)

k − x
(i)

k |
2

2ατ
+
|x(j)

k+1 − x
(`)

k+1|
2

2(1− α)τ
.

Again, the sum νcross
K (i, j) := νK(i→j) + νK(j→i) can be given an interpretation in terms of

large deviations as in Section 2.2. Moreover, following the same argument as in (10), if we take
two independent trajectories i(·) and j(·), then

−ε logP[iK = jK | i0 = i, j0 = j] −−−→
ε→0

min
`=1,...,I

νK(i→`) + νK(j→`) =: νmeet
K (i, j).

3.5. The semidistances

It is easily checked that in the discrete setting the properties of a semidistance are also satisfied:

(i) νcross
K (i, j) ≥ 0 and νmeet

K (i, j) ≥ 0,

(ii) νcross
K (i, j) = 0 ⇐⇒ i = j and νmeet

K (i, j) = 0 ⇐⇒ i = j,

(iii) νcross
K (i, j) = νcross

K (j, i) and νmeet
K (i, j) = νmeet

K (j, i).
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Furthermore, the triangle inequality fails, but we again have the following estimate:

νmeet
K (i, j) ≤ max

{
νK(i→j), νk(j→i)

}
≤ νcross

K (i, j).

Both semidistances have the form of a shortest-path cost, where the cost of a path is given
by (9). We stress that this expression is fairly simple, and depends on the flow field through the
known positions of the floaters x(`)

k only. Because of this: 1) these costs can be used in practice
if the velocity field is unknown (Section 4 and Section 5); 2) these costs can even be applied
to cases where there may not be an underlying velocity field, as for example in discrete-time
dynamical system (Section 4.1).

These semidistances can be computed by first computing the one-way rates νK(i→ j) using
Algorithm 1, see Appendix B. From these rates one readily obtains the semidistances via

νcross
K (i, j) = νK(i→ j) + νK(j → i) and νmeet

K (i, j) = min
`=1,...,I

νK(i→ `) + νK(j → `).

Remark 3.3: Other large-deviation-based semidistances are also possible. If one considers
the “noise-flow” (i.e., α = 1) time-stepping scheme for the SDE rather then “noise-flow-noise”,
expression (19) simplifies a bit. Then, as another example of a large-deviation-based semidis-
tance between two given discrete paths {x(i)

k , x
(j)

k }k=0,...K , one could consider the probability
to hop back and forth between the two trajectories, see Figure 4. In that case we find in the
large-deviations scaling for α = 1:

− ε logP[i1 = j1, i2 = i2, · · · | i0 = i0] −−−→
ε→0

K−1∑
k=0

|x(i)

k − x
(j)

k |
2

2τ
, (21)

for α = 0 the sum would go from k = 1 to K. Naturally, this is simply the L2-distance
between two trajectories, as considered earlier in [25]. Although this construction is very easy
to calculate and its square root is a genuine metric, it is less interpretable as a transport cost.

k
K

x(i)

k

x(j)

k

Figure 4: Hopping back and forth (solid line) between two given trajectories (dashed lines).

Remark 3.4: It should be noted that the semidistances νmeet
K , νcross

K scale quadratically in
space; this becomes even more apparent in the example considered in Section 3.7. In the case of
the L2-distance (21), the cost becomes a genuine distance after taking the square root. However,
if we take the square roots of νmeet

K and νcross
K , the triangle inequality still fails. We therefore

stick to the quadratic scaling as this has the most direct interpretation as large-deviation costs.

3.6. Discretisation of the continuous semidistances

We now show that the one-way discrete space-time cost νK can also be obtained by discretising
the continuous space-time cost µT . We will not be precise about the discretisation error; of
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course one needs to assume that the number of floaters is sufficiently large. We first divide the
time interval into subintervals [0, T ) =

⋃K−1
k=0 [kτ, (k + α)τ) ∪ [(k + α)τ, (k + 1)τ). Recall that

φt0,t is the flow associated to v(t, ·), that is, for any t0, x,

∂tφt0,t[x] = v
(
t, φt0,t[x]

)
.

In each interval [kτ, (k + α)τ) we approximate:

ẋt ≈
x(k+α)τ − xkτ

ατ
and v(t, xt) ≈

x(k+α)τ − φ(k+α)τ,kτ [x(k+α)τ ]

ατ
.

In each interval [(k + α)τ, (k + 1)τ) we approximate:

ẋt ≈
x(k+1)τ − x(k+α)τ

(1− α)τ
and v(t, xt) ≈

φ(k+α)τ,(k+1)τ [x(k+α)τ ]− x(k+α)τ

(1− α)τ
.

Because of the assumption that the flow is one-to-one, we can always write x(k+α)τ = φkτ,(k+α)τ [x̂k]
for some x̂k. Note that x(·) is some path, not necessarily a trajectory of the flow. We thus obtain:

1

2

∫ T

0

∣∣ẋt − v(t, xt)
∣∣2 dt ≈ K−1∑

k=0

|xkτ − x̂k|2

2ατ
+
|x(k+1)τ − φkτ,(k+1)τ [x̂k]|2

2(1− α)τ
.

Since the number of floaters {x(i)

k }k=0,...,K;i=1,...,I is large,

µT (x(i)

0 → x(j)

K ) ≈ inf
{

1

2

∫ T

0
|ẋt + v(t, xt)|2 dt : x0 = x(i)

0 , xT = x(j)

K , xkτ ∈ Ak,

x(`)

k := φ(k+α)τ,kτ [x(k+α)τ)] ∈ Ak
}

≈ min
i(·):i0=i,iK=j

K−1∑
k=0

min
`=1,...,I

|x(ik)

k − x(`)

k |
2

2ατ
+
|x(ik+1)

k+1 − x
(`)

k+1|
2

2(1− α)τ

= νK(i→j).

This shows that we can either derive the large-deviations rate function in continuous space and
discretize this to finite trajectories (as done here), or we can restrict the continuous dynamics
to finite trajectory data and derive a large-deviations rate function for that (as done above); we
obtain consistent results whichever route we take.

3.7. The simple example revisited

Let us now demonstrate how the results of this section apply to the example of Section 2.4.

Discrete time and continuous space. Let us first suppose we are given infinitely many “tra-
jectories” of the system, one starting at each point x ∈ [0, L], and they are sampled at discrete
time points kτ , k = 0, 1, . . . ,K, with τ = T

K . From Section 3.3 with α = 1/2 we obtain, by
writing ∆x = L

K , that

νK(0→L) =
1

2

K∑
k=1

(∆x)2

τ
=

1

2
K · (L/K)2

T/K
=
L2

2T
,

where we used that the optimal discrete trajectory in (20) is the one making jumps of equal
lengths ∆x. Note that the rate function is identical to that in the fully continuous case. Analo-
gously, νK(0→L/2) = νK(L/2→L) = L2

8T , and generally, if |x− y| = δ, then νK(x→y) = δ2

2T . The
derived semidistances scale similarly. Note that the semidistances converge to zero as T →∞.
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Discrete time and space. If we are given a finite number I of equispaced trajectories of this
system sampled at the same times as in the previous paragraph, the virtual random walker
cannot make arbitrarily small jumps as in the continuous state case, thus

νK(0→L) =
1

2

K∑
k=1

(∆xk)
2

τ
≈ L2

2T
, if K ≤ I ,

since we can take ∆xk ≈ L/K with error O(I−1) as I grows. However, if K > I, the smallest
jumps are ∆xk = L

I , thus

νK(0→L) =
1

2
I · (L/I)2

τ
=
L2K

2I T
.

Thus, if the observation time of trajectories grows and they are still observed at the same
rate (i.e., τ stays constant), the semidistances saturate at L2

Iτ and do not converge to zero
as in the continuous time case. Moreover, to reach y = L/2 from x = 0, we still cannot
make smaller jumps than ∆x = L

I , but now we only require only I/2 of them, such that

we obtain νK(0→L/2) = νK(L/2→L) = I
2 ·

(L/I)2

τ = L2

4Iτ (for even I, and vanishing error for
odd I as I grows). The main lesson is, that while in the continuous space case halving the
Euclidean distance makes the semidistance scale by 1

4 , if the spatial resolution of trajectories
is coarse, the discrete semidistance scales only by 1

2 . In general, if |x − y| = δ, then on a

coarse resolution grid it takes about δ
∆x jumps to travel between these two points, and we

obtain νK(x→y) ≈ δ
∆x ·

(∆x)2

τ = δ · ∆x
τ . Note that ∆x and τ are constant quantities, and thus

the one-way cost scales linearly in the Euclidean distance between the two points, as opposed
to quadratic scaling in the continuous space case.

4. Coherence analysis with semidistances

Suppose we are given a set of discrete time and space trajectories {x(j)

k }j=1,...,I,k=0,...,K , and
a (semi)distance d. We now describe how such semidistances can be used to distinguish and
analyse coherent sets from the finite data. We shall work with an unspecified semidistance d,
but of course the semidistances that we have in mind are νcross

K and νmeet
K that we derived in the

previous section. Other—not large-deviations based—distance measures could be used just as
well, as we discuss below. Nevertheless, the semidistances should not be completely arbitrary;
we assume that they share the behavior of νmeet

K and νcross
K that we discuss in Section 4.1.

To illustrate the ideas we first analyze the behavior of two one-dimensional prototypical
examples. These examples show the difference between two types of regions: “mixing” and
“static” (also known as “regular”). In these one-dimensional and simple examples, one can
easily determine the regions and whether they are mixing or static from the semidistances.
One example has two invariant sets under the dynamics, which is (measure-theoretically and
topologically) mixing on both of them. The other has two static regions, where the mutual
physical distance of trajectories does not change under the dynamics, and these regions are
separated by a third, mixing region.

After this we proceed with a more involved model: a two-dimensional periodically forced
double gyre flow, where the boundaries of the separate regions are no longer as clear-cut as
in the one-dimensional example. Nevertheless we will show that one can identify the separate
regions via the tools that we present next.

First we introduce the notion of cornerstones, representing possible coherent sets or mixing
regions, how to find them and when to stop searching for them. Finally, to obtain coherent
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sets, we assign the trajectories to cornerstones. The notion of fuzzy affiliations will be used to
express the uncertainty whether a trajectory close to the boundary of a set belongs to it or not.
Note that in the case of finite data such an uncertainty is always present.

4.1. Two illustrative model cases

Two invariant, mixing subdomains. As mentioned in Section 3.5, we may also apply the
techniques developed in this paper to a discrete-time dynamical system. To gain some intuition
for the behavior of the semidistances at mixing regions, we consider the discrete-time system
on the unit interval X = [0, 1] and one-step flow map, see Figure 5 (left),

φ(x) =

{
4x mod 1

2 , x < 1
2(

4(x− 1
2) mod 1

2

)
+ 1

2 , x ≥ 1
2 .

x

φ(x)

x

φ(x)

Figure 5: Left: The time-discrete flow map with two invariant mixing subdomains. Right: The
time-discrete flow map with two static regions and an invariant mixing subdomains
between them.

The sets X1 = [0, 1
2 ], X2 = (1

2 , 1] are invariant, i.e., φ−1(X1) = X1 and φ−1(X2) = X2,
and φ is simply the circle-quadrupling map on each of these sets, i.e., it is mixing on the single
components. Consequently5,

lim inf
t∈N, t→∞

∣∣φt(x)− φt(y)
∣∣ = 0 (22)

for (Lebesgue-)almost every pair x, y ∈ Xi, i = 1, 2.
Thus, νK(i→j)→ 0 as K →∞, because if xi, xj are both in X1 or both in X2, then (22) shows

that their trajectories get arbitrarily close eventually. If the trajectories start in different halves
of [0, 1], then a similar reasoning as in Footnote 5 shows that (φt(xi), φ

t(xj)) gets arbitrarily
close to (1

2 ,
1
2) eventually, thus the cost of a jump from one trajectory to another gets arbitrarily

cheap. See Figure 6.
The transport semidistances between any two points within the same region are very small,

at least if the time window is large enough. This behaviour is typical for mixing regions. In
fact, since the two mixing regions are only separated by one point, it is relatively cheap to move
from one region to the other, and so the semidistances between two points in separate regions
converge with increasing time to zero. Nevertheless, the semidistances still detect a difference

5If a system (X,φ, µ) is mixing, then (X×X,φ×φ, µ×µ) is ergodic [53, Theorem 1.24]. Thus, for µ×µ-almost
every pair (x, y), the trajectory (φ × φ)k(x, y) will enter every set of non-zero measure for some k ≥ 0, thus
also {(x, y) | |x− y| < ε} for any fixed ε > 0. This shows (22).
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Figure 6: Two trajectories of the map φ of length 200 steps, starting in X1 and X2, respectively.
Theory shows that they come arbitrary close, eventually. Here they get the closest at
time step 193, shown by a circle.

between the two invariant sets: the semidistance between two trajectories in the same invariant
component goes to zero quicker than the one between two from different components, as shown
in Figure 7 for I = 100 initially equispaced trajectories. Thus, it is the relative difference
between the semidistances that is relevant for the transport-structure of the state space, and
not the absolute values.
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Figure 7: Semidistances νcross
K (i→j) (left) and νmeet

K (i, j) (right) for increasing maximal time K,
averaged over xi, xj ∈ X1 (downward-pointing triangles), xi, xj ∈ X2 (upward-
pointing triangles), and xi,∈ X1, xj ∈ X2 (circles), respectively. Note that the de-
crease of the distance is much slower for trajectories taken from different invariant
sets.

Two static regions divided by a mixing one. To gain some intuition about static regions, let
us now consider the discrete-time system on X = [0, 1] given by

φ(x) =

{
x, x ∈ [0, 1

4) ∪ (3
4 , 1](

2(x− 1
4) mod 1

2

)
+ 1

4 , x ∈ [1
4 ,

3
4 ] ,

see Figure 5 (right). This map has three invariant sets. The left and right ones are static, such
that the mapping restricted to them is the identity, and are meant to model regions of the state
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space in complicated flows, that are “static” in the sense that the mutual distance of points is
not changed (or just barely) by the dynamics. We will consider these as one kind of prototype
for coherent sets. The third region is mixing, and physically separates the other two.

We take I = 100 initially equispaced trajectories and compute the one-way costs νK(i→·)
with K = 50 for i = 1 and i = 51, respectively, shown in Figure 8. From our analysis in

0 20 40 60 80 100

j

0

0.002

0.004

0.006

0.008

0.01

0.012

ν
K

(i
→

 j
)

0 20 40 60 80 100

j

0

1

2

3

4

5

6

ν
K

(i
→

 j
)

×10
-3

Figure 8: One-way cost νK(i→·) for i = 1 (left) and i = 51 (right) for the map with two static
and one mixing region.

Section 3.7 we would have expected to see quadratic growth of the one-way cost with respect
to physical distance in the static regions, but we only observe linear growth. This is due
to the finite number of considered trajectories, as also explained in the second paragraph of
Section 3.7. The points of the mixing region have all almost constant cost from points in the
static regions, and approximately zero cost from one another. To obtain the cost between two
points of different static regions, one has to consider the cost to go to the boundary of the
static and mixing regions (linear cost in Euclidean distance), travel on a trajectory from there
to the boundary of the other static region (at zero cost), and then go from there to the desired
point (again, linear cost in Euclidean distance that needs to be covered). Thus, the cost (and
semidistance) between these two points is the sum of their one-way cost (and semidistance) to
the mixing region, provided the time of consideration is sufficiently large for the mixing to take
place.6 Since our fictive random walker uses trajectories (essentially only one of them) of the
mixing region to travel from one static region to the other, we will also call it transition region
henceforth.

To conclude, from Figure 8 we can easily identify three separate regions, and from the steep-
ness of the slopes (linear/quadratic or flat), we can determine wether a region is static or mixing.
As the next example shows, this distinction is usually not as clear as in these one-dimensional
examples, but the main ideas will be based on this observation.

6Note that for this argument, ergodicity of the dynamics in the “mixing” region would be sufficient, since one
only needs to travel “from one static region to the other”. The crucial additional property we get from
mixingness is that the mutual semidistances of points in this region go to zero.
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4.2. The periodically forced double gyre

Let us now consider the non-autonomous system ẋt = v(t, xt) on X = [0, 2]× [0, 1] with [24]

v(t, x) :=

[
−πA sin (πf(t, x)) cos(πy)

πA cos (πf(t, x)) sin(πy) dfdx(t, x)

]
, (23)

where f(t, x) = β sin(ωt)x2 + (1−2β sin(ωt))x. We fix the parameter values A = 0.25, β = 0.25
and ω = 2π, hence the vector field has time period 1. The system preserves the Lebesgue
measure on X. Equation (23) describes two counter-rotating gyres next to each other (the left
one rotates clockwise), with the vertical boundary between the gyres oscillating periodically,
see Figure 9.

Figure 9: Sketch of the velocity field of the periodically forced double gyre flow at two different
times.

We choose a uniform 50× 25 grid as initial conditions for the floaters at time t = 0; i.e., I =
1250. We sample the trajectories of these floaters at times tk = kτ , k = 0, 1, . . . ,K, where K =
100 and τ = 0.2. That means, the length of trajectories in consideration is 20 times the period
of the forcing.

Employing our large deviations based distance computations on this data set using Algo-
rithm 1 and α = 1/2, we get the one-way costs νK(i→j), i, j = 1, . . . , I, from which we compute
νcross
K (i, j) and νmeet

K (i, j).
As a first simple analysis, we can order the points by their semidistances to the center of

one gyre, see Figure 10. Here and in the following, the rates and semidistances will be always
given in units 1/τ . On a log-log scale, the slope 1/2 indicates that most trajectories in the
gyre are approximately concentric circular regions around the center.7 Since the semidistances
grow linearly in the Euclidean distance inside the gyre, we see that we are in the low-resolution
regime discussed in Section 3.7. Analogously to Figure 8, we can again (vaguely) distinguish
three regions: a steep (quadratic) region, a flat region, and another steep (quadratic) region.
As before, the flat region is typically strongly mixing, and the steep regions are static. We shall
make this distinction more precise in the next sections.

4.3. Cornerstones

To start the analysis of the state space under a semidistance d, we randomly choose a trajectory,
represented by a label c0 ∈ {1, . . . , I}, and compute the trajectory furthest from it, i.e, we set

c1 = arg max
i=1,...,I

d(i, c0) .

7As on a regular grid there are O(δ2) points not further than Euclidean distance δ from a reference point, the
r-th closest point to the reference point has distance O(r1/2).
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Figure 10: Left: νmeet
K (c1, ·) sorted in ascending order. Right: the same as left, on a log-log

scale.

To find a set of points that “spans” the state space, we identify successively further trajectories
that are far away from all the other already identified “cornestones” {cq}q=1,...,Q, as in [46]:

cQ+1 = arg max
i=1,...,I

min
q=1,...,Q

d(i, cq) . (24)

Observe that in this optimalisation problem we ignore the first, randomly chosen trajectory c0;
hence the set of cornerstones {cq}q=1,...,Q will be less dependent on this randomness. Moreover,
even if the first trajectory c0 would represent a coherent set, the algorithm will eventually
provide a new cornerstone in that set, which lies closer to the semidistance center of that set.

For the double gyre and the meeting distance, we identified three cornerstones. The objective
function of the maximisation problem (24) is plotted in Figure 11; this yields a similar but more
detailed picture as Figure 10. Note that the chaotic, well mixed transition region appears as
flat region in these distance graphs, and the gyres appear as steep regions towards the maxima
of the respective graphs. That the chaotic region is well mixed, and has no stratification
(invariant rings as the gyres), can be seem from its flat behavior towards its maximum. The
forth cornerstone is part of a gyre, it starts to stratify it. Nevertheless, its distance to the other
corners is much smaller.
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Figure 11: The objective functions of the maximisation problem in (24), sorted in ascending
order (yellow and purple). Blue and red: νmeet

K (ci, ·), i = 1, 2.
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To get a first glimpse of the separate regions in the state space we have plotted the semidis-
tances from each cornerstone in Figure 12, both at the initial and final times. Note that since
we work with trajectory labels rather than physical positions, the semidistances are invariant
in time, whereas the physical positions of the floaters change over time. From these figures, one
can approximately identify the two static (gyre) regions, being very close and very far from c1

and c2 respectively, and the chaotic transition region in between, having approximately constant
distance from c1 and c2, cf [24, Figure 1].
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Figure 12: Distances νmeet
K from trajectory c1 (top), c2 (middle) and c3 (bottom), marked by

the magenta circle, at initial (left) and final times (right). The semidistances are
given in units 1/τ .

4.4. Number of cornerstones

How to determine the number of cornerstones that should be used? Is there an optimal number,
or is it up to our liking? In the case of the double gyre, as noted above, a fourth cornerstone
would be part of one of the gyres, and assigning affiliations would thus split one gyre into two
sets. If the gyres would consist of a continuum of periodic orbits, then we could proceed and
split them this way into as many rings as we like. The same situation in an idealized framework
appears in Section 4.1 for the static regions: since they are static, arbitrary subsets are perfectly
coherent (even invariant in this case).

A good place to stop searching for further cornerstones would be when they would start to
subdivide “maximal coherent” sets, as the gyres in the double-gyre example, or the static sets
in the second, and the invariant sets in the first example of Section 4.1. To this end we make
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an idealized assumption: Coherent sets appear as for the second example in Section 4.1, i.e.,
multiple static regions divided by one mixing region. Here, “static” is meant in the sense that
the mutual distances between points in the set barely change. Such an assumption was also
utilized in [27].

Note that if there are C ≥ 2 coherent sets, the first C corner stones are going to be in them,
one in each. This is due to the fact that to move from the center of one static region to another,
the shortest path in (20) needs to move out of one set, travel in the transition region to the other
set, and move to its center, hence maximizing the minimal distance to all other cornerstones.
After finding all static regions, the next cornerstone is to be found in the transition region,
if all static regions are approximately of the same size—which we assume here. The crucial
observation is, that this (C + 1)-st cornerstone is half as far from the other cornerstones8, as
they are from one another. In other words, d(ci, cC+1) + d(cj , cC+1) ≈ d(ci, cj), i, j ≤ C.

To summarize, our simple check when to stop searching for cornerstones is going to be, when
the value of the objective function in (24) drops by at least a factor two compared with the
previous value. Observe how nicely this works in the periodically forced double gyre case: the
rightmost points of the curves in Figure 11 are the optimizers, and the corresponding value of
the yellow curve is less than half of the values for the first two cornerstones. This indicates to
stop with three cornerstones, as they will represent both the gyres and the transition region.

4.5. Clustering and fuzzy affiliations

To get an even more crisp picture of the subdivision of the state space into regions which are
far away in terms of the semidistance d, we assign to each cornerstone c1, c2, c3 the trajectories
that are closer to them than to the two other cornerstones, respectively. For the periodically
forced double gyre and the meeting distance this is shown in Figure 13.
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Figure 13: The trajectories closest in terms of νmeet
K to one of the cornerstones than to the

others. Left: initial time, right: final time.

Comparing this picture with the typical trajectories of the time-1 Poincaré map of the system
(again, see [24, Figure 1]), it appears that the gyre regions in our figure are smaller. This is
due to the nature of the transport distance at hand: the gyres are partly made up of so-called
“regular regions” of the Poincaré map, meaning that typical trajectories move on periodic orbits
that are approximately concentric circular lines. Transport between these trajectories is only
possible through diffusion, and the price one has to pay for this transport in radial direction is
reflected by the rate function (recall, this is what we model by the static regions in Section 4.1).

8Here we assume that we are in the coarse spatial resolution case, where the semidistances scale linearly and not
quadratically, cf Section 3.7. Otherwise, the drop in the distance is more than a factor two (towards factor
four).
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The cost to get from the center of the gyre (the cornerstones c1 and c2) to a regular trajectory
in the same gyre is proportional to the “radial distance” between them (compare with the static
part of the second example in Section 4.1).

This is underlined in Figure 10. If we were to take a regular grid of points, and plot their
Euclidean distances from a fixed point x ranked in ascending order, the distances would follow
an r1/2 asymptotics, where r denotes the rank. This is because there are O(δ) points δ-far from
x, or, equivalently, there are O(δ2) points closer to x than any point that has distance δ to x,
and thus δ2 ∼ r. This shows up as a slope 1/2 on the double-logarithmic plot Figure 10 (right)
for the close-by points, hence the distance around the cornerstone c1 grows proportionally to
the radius, indicating concentric periodic trajectories. The same holds for c2 (now shown).
This behavior is not characteristic for the well-mixed transition region, because the dynamics
(eventually) brings any two trajectories close to each other. This effect is most prominent if the
time frame of consideration grows infinitely large, and on our finite time horizon it appears as
a flattening of the curve. This brings us back to why the blue and green regions in Figure 13
are smaller than gyres in the Poincaré map. The answer is simply, because the outer periodic
orbits are closer to the transition region than to the center of the gyre, hence also closer to the
cornerstone c3 that is in the transition region, because the points in the transition region have
very small distance from one another.

Instead of a hard clustering we can assign the trajectories to the cornerstones by fuzzy affil-
iations qci(·), to obtain more refined information on coherence. For instance, let m > 1, and
minimizing the affiliation-weighted penalty function

I∑
j=1

∑̀
i=1

qci(j)
md(ci, j)

2

subject to the constraints 0 ≤ qci for i = 1, . . . , ` and
∑`

i=1 qci(j) = 1 for every j = 1, . . . , I,
yields

qci(j) =
1∑`

k=1

(
d(ci,j)
d(ck,j)

) 2
m−1

. (25)

This is the affiliation function in the fuzzy c-means algorithm [6], giving qci(j) = 1⇔ d(ci, j) = 0,
i.e., affiliation is maximal if the distance is minimal. Further, the parameter m controls the
fuzziness of the clustering: large m gives soft clusters, while m approaching 1 gives more and
more “crisp” clusters as the affiliations converge either to 0 or to 1 [7]. The resulting affiliations
(indicated at initial time) for m = 2 are shown in Figure 14. For m close to 1 we obtain
affiliations very similar to the hard clusters in Figure 13.
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Figure 14: Fuzzy affiliations qci(·) of the trajectories to the three cornerstones, c1, c2, c3 (from
left to right) for fuzziness exponent m = 2, shown at initial time.
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5. Numerical results

After having introduced our analysis tools for the double gyre system, we consider here two other
well-analyzed test cases: the perturbed Bickley Jet and the rotating (transitory) double gyre.
In turns out that the choice between the two semidistances νcross

K or νmeet
K has only marginal

influence on the results. In this section we shall mostly work with the cross semidistance.

5.1. The Bickley Jet

Figure 15: Sketch of the Bickley Jet flow field at two different times. The flow pattern travels
from left to right on the horizontally periodic domain.

We consider a perturbed Bickley Jet as described in [47]. This is an idealised zonal jet
approximation in a band around a fixed latitude, assuming incompressibility, on which three
travelling Rossby waves are superimposed, see Figure 15. The dynamics is given by ẋt = v(t, xt)
with v(t, x) = (− ∂Ψ

∂x2
, ∂Ψ
∂x1

) and stream function

Ψ(t, x1, x2) = −U0L tanh
(
x2/L

)
+ U0L sech2

(
x2/L

) 3∑
n=1

An cos (kn (x1 − cnt)) .

The constants are chosen as in [47, Section 4]. In particular, we set kn = 2n/re with re = 6.371,
U0 = 5.414, and L = 1.77. The phase speeds cn of the Rossby waves are c1 = 0.1446U0,
c2 = 0.205U0, c3 = 0.461U0, their amplitudes A1 = 0.0075, A2 = 0.15, and A3 = 0.3, as
in [27]. The system is considered on a state space X = [0, πre]× [−3, 3] which is periodic in the
horizontal x1 coordinate.

We choose a uniform 60× 18 grid as initial conditions for the floaters at time t = 0; i.e., I =
1080. We sample the trajectories of these floaters at times tk = kτ , k = 0, 1, . . . ,K, where K =
80 and τ = 0.5. In this time interval, typical trajectories cross the cylindrical state space
horizontally 4-5 times, trajectories in the jet core (the wavy structure in Figure 15) up to 9
times.

Employing our large deviations based distance computations on this data set using Algo-
rithm 1 and α = 1/2, we get the rates νK(i→j), i, j = 1, . . . , I. From these rates we readily
obtain the νcross

K (i, j) via
νcross
K (i, j) = νK(i→j) + νK(j→i) .

We repeat the cornerstone finding analysis from the previous section. The optimal values of
the objective function in the cornerstone finding problem (24) are for 8 cornerstones, in order:

2.06, 3.21, 2.45, 2.33, 2.30, 2.14, 1.42, 0.70.

Recall, that the first value is with respect to a random cornerstone c0 that we discard. These
numerical values with our previous analysis shed light on the topological structure of the state
space with respect transport and mixing. Note, that our assumption from Section 4.4, that
all coherent sets are divided by one mixing region, is not satisfied: the jet core is a coherent
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set itself, dividing two mixing regions (below and above it), each containing 3 further coherent
sets (the gyres). Thus, c1 and c2 have maximal distance (νcross

K (c1, c2) = 3.21), because the
random walker needs to cross the jet core. Every further cornerstone c3, . . . , c6 can be reached
from either c1 or c2 through one of the mixing regions, and thus have a very similar cost. The
deviation of these costs, 2.14− 2.45, shows that we did not reach the state of full mixing on the
chosen time interval.

Now, the seventh cornerstone lies in the jet core, which has to be crossed if traveling between
cornerstones that are below and above it, respectively. The corresponding cost (1.42) is a bit
larger than half of the previous cost, because c7 does not lie on the shortest path between
cornerstones below and above the jet core. Intuitively, the “center line” of the jet core should
be equally far from all cornerstones c1, . . . , c6, if the time interval is large enough such that the
regions around the gyres are truly mixing. Since it is not, there are points on the boundary of the
jet core which are easier to reach from them, and thus easier to cross there. The cornerstone c7

represents the position where it is the hardest to cross. The eighth cornerstone has truly half
the semidistance to the closest one than c7, and lies in one of the mixing regions.

We show our results for seven cornerstones9. The semidistances are shown in Figure 16. The
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Figure 16: Row-wise from top left to bottom: the identified corner stores ci, i = 1, . . . , 7, (ma-
genta circles) and their distances νcross(ci, ·) to the other trajectories, at initial time.
The cornerstones are located in the six gyres and the central jet region. The distances
are given in units 1/τ .

corresponding fuzzy affiliations from (25) for m = 1.1 are shown in Figure 17. They show
a very crisp distinction of the six gyres from the rest of the state space. The bottom right
figure shows the affiliation qc7(·) for m = 1.9, which suggests that the region around the gyres

9If we include additional cornerstones, results tend to deteriorate due to the low resolution and because the
chosen time interval is not giving full mixing.
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could still be partitioned into coherent sets itself: the jet core appears more strongly affiliated
to this cornerstone than the other trajectories. It is not surprising that we could not see this
for m = 1.1, since the closer m is to 1, the more “crisp” the affiliation function is forced to be,
and the mixing region is more easily reached from the thin jet core than from the gyres.
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Figure 17: Row-wise from top left to bottom: the fuzzy affiliations (25) of the trajecories at
time t = 5 to the cornerstones c1, . . . , c7, respectively (magenta circles). Bottom
right: affiliation qc7(·) for m = 1.9, which suggests that the 7th coherent region
could contain a coherent set itself: the jet core.

5.2. The rotating double gyre

Figure 18: Sketch of the flow field of the rotating double gyre at initial (left) and final (right)
times.

Let us consider a prototype for a system, where transport is considered only on a limited time
interval. The rotating double gyre system [40] is given by the stream function ψ(t, x, y) = (1−
s(t))ψP (x, y) + s(t)ψF (x, y), with s(t) = t2(3−2t), ψP (x, y) = sin(2πx) sin(πy), and ψF (x, y) =
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sin(πx) sin(2πy), and is considered on the state space X = [0, 1]2 and time interval t ∈ [0, 1].
The two gyres, which initially occupy the left and right halves of the unit square, turn during
this time by π/2 to occupy the top and bottom halves at final time, see Figure 18.

We choose a uniform 30× 30 grid as initial conditions for the floaters at time t = 0; i.e., I =
900. We sample the trajectories of these floaters at times tk = kτ , k = 0, 1, . . . ,K, where K =
100 and τ = 0.01. We employ the cross-semidistance, and start our cornerstone search. The
first three values of the optimization problem (24) are

0.0274, 0.0474, 0.0262.

We identify the significant drop after two corner stones, hence we expect two coherent sets with
one mixing region dividing them. The drop in the distance is by a factor 0.55, which is not
below one half, the reason for this being again that the time interval of consideration is not
sufficient for perfect mixing of the transition region. The semidistances from the three identified
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Figure 19: From left to right: the identified corner stores ci, i = 1, . . . , 3, (magenta circles) and
their distances νcross(ci, ·) to the other trajectories, at initial time (top) and final
time (bottom). The distances are given in units 1/τ .

cores and the affiliations to these cores for exponent m = 1.2 are shown in figures 19 and 20,
respectively. Although both νcross and νmeet have been shown to be able to detect coherent sets,
we demonstrate their different nature by showing the shortest paths in the respective distance
in Figure 21.

Finally, we demonstrate the approach for a scattered set of sparse data points, taking 400
initial points randomly distributed in X, and repeating the analysis for their trajectories. We
show the resulting fuzzy affiliations in Figure 22.
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Figure 20: The fuzzy affiliations computed with m = 1.2 to the cornerstones c1 (top) and c2

(bottom), at times t = 0, 0.5, 1, from left to right, respectively.

6. Discussion and outlook

6.1. The dynamic Laplacian

Froyland [18] has introduced the dynamic Laplacian as a transport-related tool to find coherent
sets. Similarly to our approach, it makes use of a small random perturbation of size ε, then ε
is driven to zero.

Numerical methods so far discretize directly the dynamic Laplacian [20, 21]. In light of
our analysis, which can be used both ways (derive the large-deviations principle in continuous
space, then discretize it to finite trajectories, cf Section 3.6, or discretize the dynamics to finite
trajectories, then derive the large-deviations principle on them, cf Section 3.3), we ask whether
there is a discrete dynamic Laplacian that can be derived from a discretization of the perturbed
dynamics?

Mimicking the construction in [18] and sketching the idea while skipping details, one should
construct a discrete, ε-dependent transfer operator Tε ∈ RI×I , that represents transition proba-
bilities of a forward-backward process, then obtain a discrete dynamic Laplace operator Ldyn :=
d
dε

∣∣
ε=0

Tε. A discrete transfer operator Tε that is a consistent approximation of the continuous
dynamics can be obtained by a construction as in Section 3.2, by using the transition proba-
bilities (17). Technical details aside, we see that the probabilities are linear combinations of
terms of the form e−∆x/ε, where ∆x here is a formal distance term that appears in the formu-
las. Differentiation with respect to ε immediately yields that all off-diagonal entries (basically,
where ∆x > 0) of Ldyn are zero, in fact the matrix is the identity.

Thus, this approach of discretizing the dynamics first, and then factoring out the ε-small
stochastic perturbation does not give a dynamically meaningful result. In analytic terms the
very same problem occurred in a different attempt to introduce a discrete dynamic Laplacian
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Figure 21: Shortest paths from cornerstone c1 to c2 (left), from c2 to c1 (middle), and the
meeting paths with the shortest joint length (right). The brighter the color of a path
segment, the larger the cost of that transition. For those segments for which the
path crosses from one trajectory to another we show with a dashed segment how the
former trajectory would have continued. The starting point of the path is indicated
by a circle, and the end point by a triangle.

from a discrete transfer operator, see [5, Section IV]. In general, it would be desirable to un-
derstand when and how can the “first discretize, then factor out ε” methods work, such that
they can complement the methods that directly discretize the (continuous) dynamic Laplace
operator.

6.2. Other distance measures

The time-dependent shortest path problem used to compute our semidistances is computation-
ally demanding in our current algorithmic realization, which theoretically limits the number of
trajectories that can be handled. Moreover, they do not satisfy the triangle inequality, hence
they are not a metric. Although numerical efficiency is not the main focus of this paper, and
we demonstrated the usefulness of our semidistances in unraveling the underlying dynamical
structure of the example systems, a more cheaply computable metric would enhance the utility
and significance of the analysis methods presented here.

Ultimately, one would like to understand the intrinsic, possibly low-dimensional geometric
organization of the state space with respect to transport (or mixing), as pioneered in [5]. Em-
ploying proper metrics would allow, e.g., the usage of low-dimensional embedding techniques,
such as multidimensional scaling, to represent and better understand this geometric organiza-
tion. One canonical candidate would be the metric structure related to the dynamic Laplacian,
considered in [33]. This will be subject of future studies.

To summarize, although other distance measures could be used, we showed that the semidis-
tances we derived in this paper are natural in the sense of transport in the vanishing diffusion
setting.
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Figure 22: The rotating double gyre with randomly chosen 400 initial points. The fuzzy affilia-
tions computed with m = 1.2 to the cornerstones c1 (top) and c2 (bottom), at times
t = 0, 0.5, 1, from left to right, respectively.

A. Large deviations of the forward-backward conditions

In this appendix we explore the conditions (3) in the large-deviations regime. The argument is
based on the Laplace Principle, which states that for any measure ρ and function f :

lim
ε→0
−ε log

∫
e−

1
ε f(x) ρ(dx) = inf

x∈supp ρ
f(x). (26)

As in (9),

− ε logP
(
x(ε)

T � y | x
(ε)

0 = x
)
−−−→
ε→0

inf
x(·) :x0=x,xT=y

1

2

∫ T

0
|ẋt − v(t, xt)|2 dt =: λT (x→y), (27)

where, contrary to (9), the symbol y now denotes a position at time T , that is, µT (x→x̃) =
λT (x→φ0,T [x̃]) = λT (x→y).

Fix an ε-independent initial probability measure ρ0(dx) = P(x0 ∈ dx). For the large devia-
tions of the forward condition in (3), it follows from the Laplace principle that

J fw
T (B|A) := lim

ε→0
−ε logP(x(ε)

T ∈ B | x0 ∈ A)

= lim
ε→0
−ε log

∫
B

∫
A
P
(
x(ε)

T ∈ dy | x0 = x
)
ρ0(dx)

(27)
= lim

ε→0
−ε log

∫
B

∫
A

e−
1
ε λT (x→y) ρ0(dx)

(26)
= inf

y∈B
inf

x∈A∩supp ρ0
λT (x→y).
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Observe that since the initial distribution ρ0 is independent of ε, it only appears in the large
deviations through its support supp ρ0.

The large deviations of the backward conditions in (3) can be calculated analogously, but
now the conditioning does depend on ε. By Bayes’ rule,

J bw
T (A|B) := lim

ε→0
−ε logP(x0 ∈ A | x(ε)

T ∈ B)

= lim
ε→0
−ε logP(x(ε)

T ∈ B | x0 ∈ A)
P(x0 ∈ A)

P(x(ε)

T ∈ B)

= lim
ε→0
−ε log

∫
B

∫
A
P
(
x(ε)

T ∈ dy | x0 = x
)
ρ0(dx)

+ ε log

∫
B

∫
P
(
x(ε)

T ∈ dy | x0 = x
)
ρ0(dx)− ε log ρ0(A)

(26,27)
= inf

y∈B
inf

x∈A∩supp ρ0
λT (x→y)− inf

y∈B
inf

x∈supp ρ0
λT (x→y)

= J fw
T (B|A)− J fw

T (B|X).

If we assume that that there is at least one admissible path x(·) that starts in supp ρ0 and ends

in B, then in fact J fw
T (B|X) = 0, and so J fw

T (B|A) = J bw
T (A|B).

These calculations have two important implications. First, observe that the while the forward
and backward probabilities P(x(ε)

T ∈ B | x0 ∈ A) and P(x0 ∈ A | x(ε)

T ∈ B) are not equal in
general, the forward and backward rate functions are. The same argument even holds if we
shrink the sets A ad B down to single points x and y; in that case we obtain for the “backward
rates” that

λT (x←y) := lim
ε→0
−ε logP

(
x0 � x | x(ε)

T = y
)

= λT (x→y) .

Apparently, in the large-deviation scaling it does not matter whether we consider the forward
or the backward process. Since the forward condition J fw

T (B|A) ≈ 0 in itself does not hold
enough information to characterise coherence and the backward condition J bw

T (A|B) ≈ 0 does
not add information, these conditions are not helpful to characterise coherence.

Secondly, we see that J fw
T (B|A) = 0 as soon as φ0,T [A ∩ supp ρ0] ∩ B 6= ∅. Naturally, there

are many such pairs A,B, and the set function J fw
T does not give any quantitative information

about which pairs are more coherent than others. Because of this, the large deviations of the
forward and backward conditions (3) are even less usefull to identify coherent sets.

We start to gain useful information about coherence, if there are at least two coherent pairs,
say A1, B1 and A2, B2. Then the rates J fw

T (B2|A1) and J fw
T (B1|A2) are in general large, since

coherence of the respective set pairs dictate that it is very unlikely to encounter paths from
pair #1 to pair #2. Using these rates as measures of farness is one idea this paper exploits.

B. Algorithm: shortest path in time-dependent graphs

Since we could not find an algorithm suited to our purpose, we describe in this appendix
a solution we came up with to solve the problem of finding shortest paths in a graph with
time-dependent non-negative edge weights. Transition is only possible between nodes that are
connected by an edge of positive weight.

There are several solutions to the shortest path problem for time-independent graphs, such
as Dijkstra’s algorithm [13] or the Floyd–Warshall algorithm [15]. Each of them use in some
sense a “monotony” argument, namely, that sub-paths of shortest paths are shortest paths
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themselves. This does not hold for time-dependent graphs, because at every step that we make
the environment might change completely, and the number of steps we can make is limited by
the number of time instances of the graph.

We propose the following algorithm to compute shortest paths from a specific node s to all
other nodes. Note that we can stay in a node for any time at zero cost. The weight of the
transition i→ j at time t is denoted by wt(i→ j).

Algorithm 1 Shortest distance in time-dependent graphs

1: Rold = {s}, Rnew = ∅ (reached states at times 0 and 1)
2: dist(s) = 0, dist(i) =∞ for i 6= s
3: for t = 1, . . . , T do
4: while Rold 6= ∅ do
5: v = arg maxi∈Rold dist(i)
6: Rnew ← Rnew ∪ {v}
7: Rold ← Rold \ {v}
8: for j : wt(v → j) <∞ do
9: if dist(v) + wt(v → j) < dist(j) then

10: dist(j) = dist(v) + wt(v → j)

11: Rold = Rnew, Rnew = ∅

It is important to have the max on line 5, since if we don’t start the update procedure at the
node which has the maximal distance, then we might erroneously cut off nodes that could still
be reached from it.

Algorithm 1 can clearly be extended to keep track of the shortest path as well. The distance
of a node j is updated to a smaller one, whenever there is a path through some other node v that
is shorter than the previous one (line 10). Hence, the new candidate shortest path is the one
leading to v and then jumping to j in the current time step. This is implemented in Algorithm 2
(line 12). Herein, path(i→j) is the shortest path from node i to node j, such that patht(i→j)
is the node the walker resides in at time t = 0, 1, . . . , T while going through the shortest path,
and path0(i→j) = i. If there is no path from i to j, then path(i→j) is the zero vector. We
use 1 : k to denote the index set 1, 2, . . . , k.

Algorithm 2 Shortest path in time-dependent graphs

1: Rold = {s}, Rnew = ∅ (reached states at times 0 and 1)
2: dist(s) = 0, dist(i) =∞ for i 6= s
3: path(s→j) = 0 ∈ RT+1 for all j, path0(s→s) = s
4: for t = 1, . . . , T do
5: while Rold 6= ∅ do
6: v = arg maxi∈Rold dist(i)
7: Rnew ← Rnew ∪ {v}
8: Rold ← Rold \ {v}
9: for j : wt(v → j) <∞ do

10: if dist(v) + wt(v → j) < dist(j) then
11: dist(j) = dist(v) + wt(v → j)
12: path1:t−1(s→j) = path1:t−1(s→v), patht(s→j) = j

13: patht(s→s) = s
14: Rold = Rnew, Rnew = ∅
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