444,929 research outputs found

    Hybrid Evolutionary Shape Manipulation for Efficient Hull Form Design Optimisation

    Get PDF
    ‘Eco-friendly shipping’ and fuel efficiency are gaining much attention in the maritime industry due to increasingly stringent environmental regulations and volatile fuel prices. The shape of hull affects the overall performance in efficiency and stability of ships. Despite the advantages of simulation-based design, the application of a formal optimisation process in actual ship design work is limited. A hybrid approach which integrates a morphing technique into a multi-objective genetic algorithm to automate and optimise the hull form design is developed. It is envisioned that the proposed hybrid approach will improve the hydrodynamic performance as well as overall efficiency of the design process

    Felszíni és felszín alatti áramlások számításának új eszköze: a hálónélküli véges elem módszer = A new tool for the computation of surface and subsurface flows: the meshless finite element method

    Get PDF
    A kutatásban a témavezető által korábban kidolgozott multi-elliptikus interpolációs módszeren alapuló hálónélküli módszereket konstruáltunk elliptikus parciális differenciálegyenletek megoldására. Ezek jellegzetessége, hogy a megoldási tartományt nem kell sem ráccsal vagy végeselemes hálóval diszkretizálni, ehelyett elég azokon egy struktúra nélküli ponthalmazt megadni. A struktúranélküliség ellenére lehetséges jól közelítő módszereket definiálni, melyek még többszintű, gyors megoldási technikákkal is kombinálhatók. A partikuláris megoldások elvét alkalmazva, az eredeti probléma visszavezethető homogén probléma megoldására. Ehhez elegendő volt egy speciális perem típusú interpolációt konstruálni, mely numerikusan kevés műveletigényű és ugyanakkor stabil módszer. A technikát általánosítottuk nemkonstans együtthatós elliptikus problémákra is, és ez a megközelítés lett az alapja a peremrekonstrukció módszerének és a regularizált alapmegoldás-módszernek is. Még általánosabban alkalmazhatónak bizonyultak a radiális bázisfüggvényeken alapuló lokális hálónélküli sémák, és különösen a multi-elliptikus interpolációra alapozott újraglobalizált sémák, melyeket az utóbbi évben fejlesztettünk ki. Ezeket sikerrel alkalmaztuk a Stokes-probléma megoldására is. A témavezető nagyrészben ezekre a kutatási eredményekre alapozva 2007 februárjában MTA-doktori értekezést adott be, melyet szakmai jelentésként fájlban csatoltunk. | In the present project, meshless methods based on the multi-elliptic interpolation proposed earlier by the project leader were constructed in order to solve elliptic partial differential equations. Their main feature is that there is no need to discretize the domain by either a grid or a finite element mesh. In spite of the lack of the structure, it is possible to define meshless methods with good approximation properties, moreover, they can be combined with fast, multi-level solution techniques. Applying the idea of the particular solutions, the problem can be converted to the solution of a homogeneous problem. To this end, it is sufficient to construct a special boundary interpolation, which requires low computational cost and remains numerically stable. The technique was generalized to elliptic problems with nonconstant coefficients, moreover, this approach became the basis of the boundary reconstruction method as well as the regularized method of fundamental solutions. The local meshless schemes based on the radial basis functions and especially the re-globalized schemes based on the multi-elliptic interpolation have proved even more generally applicable. These methods were developed in the last year and they were succesfully applied to the Stokes problem. Based mainly on these research results, the project leader submitted his Doctoral Theses to the Hungarian Academy of Sciences in February, 2007, which is attached as a research report in a separated file

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Evolution of Swarm Robotics Systems with Novelty Search

    Full text link
    Novelty search is a recent artificial evolution technique that challenges traditional evolutionary approaches. In novelty search, solutions are rewarded based on their novelty, rather than their quality with respect to a predefined objective. The lack of a predefined objective precludes premature convergence caused by a deceptive fitness function. In this paper, we apply novelty search combined with NEAT to the evolution of neural controllers for homogeneous swarms of robots. Our empirical study is conducted in simulation, and we use a common swarm robotics task - aggregation, and a more challenging task - sharing of an energy recharging station. Our results show that novelty search is unaffected by deception, is notably effective in bootstrapping the evolution, can find solutions with lower complexity than fitness-based evolution, and can find a broad diversity of solutions for the same task. Even in non-deceptive setups, novelty search achieves solution qualities similar to those obtained in traditional fitness-based evolution. Our study also encompasses variants of novelty search that work in concert with fitness-based evolution to combine the exploratory character of novelty search with the exploitatory character of objective-based evolution. We show that these variants can further improve the performance of novelty search. Overall, our study shows that novelty search is a promising alternative for the evolution of controllers for robotic swarms.Comment: To appear in Swarm Intelligence (2013), ANTS Special Issue. The final publication will be available at link.springer.co

    On the evolutionary optimisation of many conflicting objectives

    Get PDF
    This inquiry explores the effectiveness of a class of modern evolutionary algorithms, represented by Non-dominated Sorting Genetic Algorithm (NSGA) components, for solving optimisation tasks with many conflicting objectives. Optimiser behaviour is assessed for a grid of mutation and recombination operator configurations. Performance maps are obtained for the dual aims of proximity to, and distribution across, the optimal trade-off surface. Performance sweet-spots for both variation operators are observed to contract as the number of objectives is increased. Classical settings for recombination are shown to be suitable for small numbers of objectives but correspond to very poor performance for higher numbers of objectives, even when large population sizes are used. Explanations for this behaviour are offered via the concepts of dominance resistance and active diversity promotion

    Statistical Mechanics of Broadcast Channels Using Low Density Parity Check Codes

    Get PDF
    We investigate the use of Gallager's low-density parity-check (LDPC) codes in a broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple timesharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based timesharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the timesharing limit.Comment: 14 pages, 4 figure

    Non-Uniform Time Sampling for Multiple-Frequency Harmonic Balance Computations

    Get PDF
    A time-domain harmonic balance method for the analysis of almost-periodic (multi-harmonics) flows is presented. This method relies on Fourier analysis to derive an efficient alternative to classical time marching schemes for such flows. It has recently received significant attention, especially in the turbomachinery field where the flow spectrum is essentially a combination of the blade passing frequencies. Up to now, harmonic balance methods have used a uniform time sampling of the period of interest, but in the case of several frequencies, non-necessarily multiple of each other, harmonic balance methods can face stability issues due to a bad condition number of the Fourier operator. Two algorithms are derived to find a non-uniform time sampling in order to minimize this condition number. Their behavior is studied on a wide range of frequencies, and a model problem of a 1D flow with pulsating outlet pressure, which enables to prove their efficiency. Finally, the flow in a multi-stage axial compressor is analyzed with different frequency sets. It demonstrates the stability and robustness of the present non-uniform harmonic balance method regardless of the frequency set
    corecore