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Abstract

This inquiry explores the effectiveness of a class of modern evolutionary algorithms, represented

by Non-dominated Sorting Genetic Algorithm (NSGA) components, for solving optimisation tasks

with many conflicting objectives. Optimiser behaviour is assessed for a grid of mutation and

recombination operator configurations. Performance maps are obtained for the dual aims of

proximity to, and distribution across, the optimal trade-off surface. Performance sweet-spots

for both variation operators are observed to contract as the number of objectives is increased.

Classical settings for recombination are shown to be suitable for small numbers of objectives but

correspond to very poor performance for higher numbers of objectives, even when large population

sizes are used. Explanations for this behaviour are offered via the concepts of dominance resistance

and active diversity promotion.

Index terms: multi-objective optimisation, many objectives, dominance resistance, diversity

promotion, density estimation.
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I Introduction

Much of the research into multi-objective evolutionary algorithms (MOEAs) concentrates on opti-

misation tasks with two conflicting objectives. However, the real-world challenges to which these

algorithms are applied often feature many more objectives [1]. Hence, there is a clear need to extend

evolutionary multi-objective optimisation (EMO) research into the realm of many-objectives [2]. Thus,

the terminology evolutionary many-objective optimisation (EMO) is proposed herein to refer to EMO

problems of increased scale.

Interactions often arise between objectives. These can be classified as conflicting or harmonious,

and both interactions may co-exist between two objectives in the context of a single optimisation

problem [3]. In the case of conflict, a solution modification that will improve performance in one

objective is seen to cause deterioration in a second objective. In the case of harmony, the modification

causes simultaneous improvement to both objectives. The conflict that exists in a many-objective

optimisation task has been identified as a serious challenge for contemporary EMO researchers, and

it is this relationship that is explored in this paper. If the only assumption concerning decision-

maker (DM) preferences is that a unidirectional line of preference [4] exists for each objective then

performance comparisons between solutions can be based on the notion of Pareto dominance. For

further details refer to [1]. In these conditions, the optimal solution to an M -objective task, in which

all objectives conflict, is an (M − 1)-dimensional hypersurface. The number of samples required to

represent the surface at a fixed resolution is exponential in M . Even if such an approximation set [5]

could be achieved, the quantity of information contained within the set may overwhelm the DM, who

must ultimately select a single solution.

The inherent difficulties in solving many-objective problems have lead EMO researchers to in-

corporate preference-based schemes into their algorithms, as comprehensively reviewed in [1]. The

fundamental aim of these methods is to limit the search requirements of the optimiser to a sub-region

of overall objective-space. However, as argued in [6], the potential for an exclusively Pareto-based

solution to the many-objective optimisation problem remains a matter of some interest. Indeed, if the

resolution of the obtained approximation set is regarded as a function of some maximum limit imposed

on the size of the set (such as the population size of an MOEA), then there is no a priori restriction

2



that prevents the achieved set from being globally non-dominated and optimally distributed across the

trade-off surface. But is it possible to design an evolutionary algorithm that is capable of generating

such results, given finite resources, when faced with many conflicting objectives?

A family of tractable, real-parameter optimisation tasks that are scalable to any number of con-

flicting objectives was proposed in [7] to stimulate research into many-objective optimisation. In the

first known study of its kind, this test suite was used in [8] to investigate the scalability of three

contemporary MOEAS: NSGA-II [9], PESA [10], and SPEA2 [11]. The implementation of PESA was

found to produce approximation sets with good overall proximity of solutions to the global Pareto front

but with a poor distribution when solving for many conflicting objectives. By contrast, the approxi-

mation sets obtained for the implementations of NSGA-II and SPEA2 exhibited a good distribution

of solutions but with poor proximity. However, since a single design-space instance of each algorithm

was used, and each algorithm is itself a complicated structure of basic EMO components, it is not im-

mediately clear from the study which components and processes are critical from the many-objective

optimisation perspective. In particular, it is not clear why PESA should produce approximation sets

of a fundamentally different character to NSGA-II and SPEA2.

In this paper, in accordance with the principles developed in [12], MOEA processes are considered

at a component level rather than the composite approach adopted in [8]. The observed EMO behaviour

can subsequently be explained in terms of fundamental search components and processes. In addition,

results are generated for a map of variation operator configuration settings. This permits analysis to

be made in terms of the exploration-exploitation (e-e) trade-offs in EMO [13] and for regions of high

performance configurations (sweet-spots) to be identified [14].

This paper develops the initial analysis first reported in [15]. The class of MOEAs studied in

this paper is introduced in Section II, for which the associated selection and variation processes are

considered in detail. The empirical framework of the inquiry is developed in Section III, which draws

on concepts from [12] and [16]. The optimisation task used in simulations is described at this stage,

together with the indicators used to measure approximation set performance. The presentation of

results is also considered. Simulation results for mutation-based algorithms are presented in Section IV.

The results for recombination-based optimisers are included in Section V. The combined results from

3



these two sections are then analysed in Section VI, with respect to the underlying processes described

in Section II. In [17] it is suggested that a potential technique for obtaining good EMO results

is to increase the population size of an MOEA as an, ideally exponential, function of the number

of objectives. This is unlikely to be a feasible approach in practice because of the computational

resources demanded. However, the potential benefits of this technique remain a matter of interest and

a population sizing study is thus explored in Section VII.

II Algorithms Considered

II.A Introduction

The search mechanism, often described in terms of exploration and exploitation, employed by the

class of evolutionary optimiser considered in this inquiry can be summarised by Equation 1.

P [t + 1] = ss(v(sv(P [t])), P [t]) (1)

P [t] is the population at iteration t, sv is the selection-for-variation operator, v is the variation

operator, and ss is the selection-for-survival operator. sv, known simply as the selection operator in

genetic algorithm (GA) terminology, selects candidate solutions from the current population to form

the mating pool. Variation operators are applied to the solutions in the mating pool to create a set of

new candidate solutions. These new solutions then compete with the population of current solutions

in the ss stage to determine the composition of the subsequent population. The ss operator is known

as the reinsertion operator in GA terminology.

The different multi-objective evolutionary optimisers proposed in the literature can generally be

categorised according to the manner by which selection-for-variation and selection-for-survival are

performed. A taxonomy of the various techniques is offered in [16]. The representation and variation

operators are problem-specific but interact heavily with the selection operators (mainly in terms of

the exploration-exploitation trade-off) to form the complete algorithm.

Each MOEA is comprised of a number of different selection mechanisms. It can often prove

challenging to correctly determine which mechanisms and combinations of mechanisms are chiefly

responsible for the observed algorithm performance. Thus deconstructed algorithms are used in the
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study to determine the fundamental processes that are responsible for the observed many-objective

behaviour of MOEAs.

NSGA-II components have specifically been chosen for this inquiry [9]. These components tend

to be computationally and conceptually simple when compared to other algorithm processes in the

literature. Also, the NSGA-II has been heavily studied by the EMO community. The NSGA [18]

family of processes has strong similarities with other popular MOEAs, such as the SPEA [19] and

MOGA [20] families.

NSGA-II, like many other MOEAs, uses Pareto dominance and density estimation considerations

in its selection processes. These are discussed in detail in Section II.B to follow. Two algorithms are

considered: standard NSGA-II and a decomposition of NSGA-II (denoted as D2 and D1 respectively).

The key issues that are identified from the many-objective analysis of these two algorithms should

be readily extendible to other MOEAs that share the following properties:

1. The selection mechanisms operate on a global population model, for which ss respects a arbi-

trarily chosen specific integer upper bound on the population size.

2. Selective bias is primarily based on Pareto dominance.

3. Selective bias may be secondarily based on density estimation.

4. If two solutions have equal properties from both a dominance and density perspective then

selection should not favour one solution over the other.

Many of the selection mechanisms proposed in the literature share the above four properties. These

include early algorithms, such as MOGA, NSGA, and NPGA [21], and also contemporary MOEAs

such as SPEA, SPEA2, and the state-of-the-art MOGA described in [12].

An example of a methodology that is not represented by the processes considered in this chapter

is the ǫ-dominance selection-for-survival concept developed in [22]. In this scheme, all locally non-

dominated solutions can be retained (within the restrictions imposed by the threshold ǫ), and the

population size is increased dynamically to account for this. The theoretical upper bound on popu-

lation size is known but a specific size cannot be specified independently of the selection mechanism.

Thus, property 1 listed above is different for this scheme.
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Properties 2 and 3 are met by most of the Pareto-based MOEAs. Clearly, approaches based on

classical operations research (OR) methods (such as weighted-sum and target vector approaches) do

not have these properties and are not considered in this paper.

The selection-for-survival method in the PAES [23] algorithm does not respect property 4. When

a new locally non-dominated solution is considered for inclusion in P [t+1], if the population size limit

is reached then the solution can only be included if it has a density estimate that is lower than that of

any solutions in the partially updated P [t+1]. If these latter solutions all have the minimum possible

density estimate (each resides in a separate hyperbox) then the new solution cannot be included even

if it is also unique to its associated hyperbox. Thus, despite being equal in terms of both dominance

and density, the new solution is maximally biased against (the probability of selection is zero) when

compared to the solutions in the partially updated P [t+1]. Note that the PAES method can be made

to respect property 4 by changing the < requirement on density to ≤, as was done in PESA.

If the four properties of selection are shared between two algorithms this does not imply that the

selection methods are directly equivalent. The properties can be implemented in a different manner:

for example, within either tournament selection or proportional selection. Also, multiple levels of

selective bias are possible: dominance and density discrimination only occur at sv in NSGA but are

implemented at both sv and ss in NSGA-II. Ultimately, the differences between the mechanisms result

in different selective pressures. Thus, even allowing for stochastic errors, different mechanisms that

share commonality via the four properties listed above can still produce different results through the

interaction of selective pressure with the variation operator, exploration-exploitation configuration

and the representation of the problem landscape.

II.B Selection Mechanisms

Algorithms D1 and D2 are introduced here. Recall that we are striving to study MOEA processes at

a component level. This is why, for example, Algorithm D2 includes a diversity-preserving operator,

while Algorithm D1 does not. We are seeking to isolate and understand the impact of this operator

when applied to many-objective problems.
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II.B.1 Algorithm D1

Algorithm D1 has a selective bias that is solely attributable to Pareto dominance. Binary tournament

selection is used at the sv stage. Of two solutions selected at random from the current population

(with replacement), the selected solution is the one that dominates the other. If the solutions are

non-dominated with respect to each other then one of the solutions is selected at random.

At the ss stage of D1, the P [t] population and v(sv(P [t])) population are combined. This new

population is then ranked according to the non-dominated sorting method [18]. The new population,

P [t + 1] is then formed by including the best of the ranks until the population size limit is breached.

Solutions that share the current rank under consideration in this situation are selected for inclusion

on a random basis. This is equivalent to the (µ + λ) evolution strategy approach.

II.B.2 Algorithm D2

Algorithm D2 extends the selective capabilities of D1 by including supplementary density consider-

ations in both sv and ss. The resulting algorithm is identical to the standard NSGA-II algorithm

proposed in [9].

As in D1, binary tournament selection is used at the sv stage. Of two solutions selected at random

from the current population (with replacement), the selected solution is the one that dominates the

other. If the solutions are non-dominated with respect to each other, then the solution with the

smallest density estimate is selected. If the density estimates are also tied then a solution is chosen

at random. In [9] this method is defined as the crowded-comparison operator.

The ss stage of D2 proceeds as for D1 until the population size limit is breached. At this point,

instead of selecting solutions at random from the current rank, D2 selects solutions with the smallest

densities from this rank until the new population is full. If the population size limit is again breached

because of a tie on density information, then the solutions that are tied on both dominance and density

are selected for inclusion on a random basis.

Any density estimator can potentially be used to provide the density information required at the

sv and ss stages of D2. This inquiry uses the crowding distance estimator proposed for use in the

original NSGA-II [9]. In this estimator, density is calculated as the mean side length of the hypercube
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formed using the first-nearest-neighbour (1-NN) values in each objective as vertices. In this inquiry,

the boundary condition for an objective is set to the maximum non-boundary value calculated for that

objective (rather than being set to infinity as in the original method proposed in [9]). This ensures

that the estimator is unbiased for the equilibrium condition of a perfectly distributed approximation

set.

Crowding distance is a low complexity estimator with limited accuracy. It should be noted that

the relative effectiveness of the method when compared to other estimators has been questioned by

some researchers [16, 24]. However it is argued that the behaviour of D2 when compared to D1 will

be generally indicative of the effect of introducing any explicit diversity-promoting mechanism, when

such a mechanism is active.

The activity — or otherwise — of the diversity promotion mechanisms is an important point.

Some estimators, such as fitness sharing and simple hypergrid counting, operate within a defined

local neighbourhood. If the neighbourhood is unsuitable for the current distribution of solutions

then density information is lost. For example, in a hypergrid scheme, if all the solutions are contained

within one hyperbox then they all have the same density estimate. This is also the case if each solution

resides in its own hyperbox (regardless of the relative distances between occupied hyperboxes). This

behaviour requires the careful selection of neighbourhood size: a task that has been automated in

approaches such as that described in [25].

Estimators that are based on the nearest neighbour concept are not susceptible to information

loss in the above sense, since the neighbourhood is effectively scaled automatically. However, the

1-NN crowding distance can also fail in a different sense: if two vectors reside at the same location in

objective-space then the estimates will be zero regardless of the distance to other solutions. Thus, all

solutions with copies in the population will receive an identical density estimate. This is not generally

the case for the schemes described above. Note that the NN estimator used in the ss procedure of

SPEA2 is more advanced than crowding distance and is not susceptible to the same problem, although

it carries a higher complexity cost. In summary, it is not sufficient for a diversity mechanism to be

present: it must also be active.
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II.C Representation and Variation

This inquiry will simulate the many-objective performance of the selection mechanisms described in

the previous sub-section using a real-parameter function optimisation problem (described later in

Section III.B). Since the decision variables in the task are real-valued, the choice of a real-valued

genotype representation follows naturally because such a representation is intuitively close to the

problem space and also offers (claimed) performance advantages over a binary representation [26].

Thus each element of the genotype corresponds directly to a decision variable in the problem.

Two frequently studied variation operators for real representations are described in this section.

The first is a one-parent mutation operator that produces a single child solution, whilst the second is

a two-parent recombination operator that produces two children. Both operators have associated pa-

rameters that allow levels of exploration and exploitation to be controlled. The selection mechanisms

in Section II.B can then be studied for a variety of exploration-exploitation trade-off settings. The

interest is not primarily in which settings are good for the problem considered, but rather in how the

different selection methods perform with respect to each other under various exploration-exploitation

conditions when simultaneously optimising various numbers of conflicting objectives. The two opera-

tors are described in detail below.

II.C.1 Mutation

The polynomial mutation operator is used in this inquiry [27]. This variation operator is popular in

real-parameter multi-objective optimisation tasks, and has previously been used to solve the example

problem used in this paper [7, 8]. Variable-wise mutation is performed according to a probability

distribution function centred over the parent value. The operator is defined in Equation 2, where bi

is the parent value for the ith decision variable, ui and li are the upper and lower bounds on the ith

decision variable, ηm is a distribution parameter, ri is a number generated uniformly at random from
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[0 1], and ci is the resulting child value for the ith decision variable.

ci =















bi + (bi − li) δi

bi + (ui − bi) δi

if ri < 0.5,

otherwise.

δi =















(2ri)
1/(ηm+1)

− 1

1 − [2 (1 − ri)]
1/(ηm+1)

if ri < 0.5,

otherwise.































































(2)

Polynomial mutation has two controllable parameters: (i) the probability of applying mutation to

a chromosome element, pm, and (ii) a mutation distribution parameter, ηm. The latter parameter

controls the magnitude of the expected mutation of the candidate solution variable. The normalised

variation is likely to be of O(1/ηm). Thus, relatively speaking, small values of ηm should produce

large mutations whilst large values of ηm should produce small mutations.

Mutation is applied independently to each element of each candidate solution with probability pm.

Thus, the probability of mutating a candidate solution of n decision variables is defined as shown in

Equation 3.

p(mutate) = 1 − (1 − pm)
n

(3)

II.C.2 Recombination

The simulated binary crossover (SBX) operator is also considered in the inquiry as an alternative to

polynomial mutation [28]. Unlike the latter operator, SBX is a two-parent variation operator that

produces two new solutions. SBX has been considered extensively in previous EMO studies using

real-parameter representations [7, 8], and is defined in Equation 4, where b1,i and b2,i are the parent

values for the ith decision variable, ηc is a distribution parameter, ri is a number generated uniformly
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at random from [0 1], and c1,i and c2,i are the the resulting child values for the ith decision variable.

c1,i = 0.5 [(1 + βi) b1,i + (1 − βi) b2,i]

c2,i = 0.5 [(1 − βi) b1,i + (1 + βi) b2,i]

βi =















(2ri)
1/(ηc+1)

[1/ (1 − ri)]
1/(ηc+1)

if ri < 0.5,

otherwise.















































































(4)

SBX generates child values from a probability distribution, with standard deviation derived from

the distance between parent values and a distribution parameter ηc. The distance determines the

overall magnitude of the distribution, whilst ηc determines the shape of the distribution. To generate

child values for a decision variable, the distribution is centred over each parent and a random value is

generated from the distribution to create one child. The second child is generated symmetrically to

the first child about the mid-point between the parents. The child values for a decision variable are

then exchanged between the complete child solutions with probability pe. For simplicity pe = 0 in the

study. Note that child values that are generated outside the range of a decision variable are repaired

to the nearest feasible value.

SBX is applied to a pair of parent solutions with probability pc. If a uniform recombination

scheme is chosen, in which each individual decision variable is selected for variation independently

of any other (given that variation is to be applied to the selected parents), then the probability of

applying recombination to a pair of candidate solutions (each comprised of n decision variables) can

be expressed as shown in Equation 5

p(recombine) = pc [1 − (1 − pic)
n
] (5)

pic is the probability of applying variation to a decision variable, given that recombination is to

be applied in general to the complete solution pair. In standard uniform recombination schemes in

the literature, pic is usually set to 0.5. However, by allowing this probability to vary and setting pc

to unity, the probability of applying two-parent SBX to a solution can be viewed as equivalent to

that expressed for polynomial mutation in Equation 3. This factor will assist in making comparisons

between the results obtained using the two variation operators.
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III Inquiry Design

III.A Introduction

The inquiry into the effect of increasing numbers of conflicting objectives in EMO combines process

analysis with simulations of algorithm performance. The optimisation task used in the simulations is

described in Section III.B. The performance indicators chosen to reduce an approximation set to a

more tractable number of summary statistics are presented in Section III.C. The experimental frame-

work that has been developed to facilitate new understanding of many-objective optimiser behaviour

is introduced in Section III.D. In Section III.E, an introduction is made to the empirical results

detailed in the remainder of this paper.

III.B Scalable Optimisation Task

This inquiry considers a real-parameter function optimisation task known as DTLZ2, which is defined

in Equation 6. The task is taken from a highly tractable set of problems developed in [7] specifically

for studies into many-objective optimisation. The global Pareto front is continuous and non-convex.

Distance from the front is determined by a single, unimodal cost function, g. M is the number of

objectives, n = M + κ− 1 is the number of decision variables, and κ is a difficulty parameter (κ = 10

in this study).

min. z1(x) = [1 + g(xM )] cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) cos(xM−1π/2),

min. z2(x) = [1 + g(xM )] cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) sin(xM−1π/2),

min. z3(x) = [1 + g(xM )] cos(x1π/2) cos(x2π/2) . . . sin(xM−2π/2),

...
...

...

min. zM−1(x) = [1 + g(xM )] cos(x1π/2) sin(x2π/2),

min. zM (x) = [1 + g(xM )] sin(x1π/2),

w.r.t x = [x1, . . . , xn] ,

where g(xM ) =
∑

xi∈xM
(xi − 0.5)

2
, with xM = [xM , . . . , xn],

and 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n, with n = M + κ − 1.































































































































(6)
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DTLZ2 is comprised of decision variables of two distinct functional types: those that control

convergence toward the globally optimal surface (x1, . . . , xM−1) and those that control distribution

in objective-space (xM , . . . , xn). The convergence variables define the distance of the solution vector

from the true front via a κ-dimensional quadratic bowl, g, with global minimum xM,...,n = 0.5.

The distribution variables describe position on the positive quadrant of the unit hypersphere. An

M -objective instance of DTLZ2 is denoted by DTLZ2(M).

The DTLZ test suite encompasses many problem characteristics, such as multimodality, disconti-

nuity, and distributional bias. For small numbers of objectives, such as three, it is a straightforward

task to obtain a good sample-based approximation of the DTLZ2 global Pareto front using an EMO

optimiser [7]. This is not necessarily true for some of the other functions in the test suite, such as

DTLZ4. However, as will be demonstrated in Sections IV and V, the generation of a good quality ap-

proximation set becomes significantly more challenging as the number of objectives is increased. Thus,

the DTLZ2 function in isolation is a sufficiently interesting example of real-parameter, many-objective

optimisation problems for the purposes of this study.

III.C Performance Indicators

In the context of this inquiry, performance is regarded as the quality of the trade-off surface discovered

by an optimiser, given a finite number of candidate solution evaluations. Quality is generally expressed

in terms of (i) the proximity of the obtained locally non-dominated vectors to the true Pareto surface

and (ii) the distribution of those vectors across the surface [13]. Ideally, as illustrated in Figure 1, the

optimiser should obtain solutions that are Pareto optimal (are of distance zero from the global front),

that extend across the full DM region of interest (ROI), and that are as near uniformly distributed as

the true surface permits. In this paper, the ROI is assumed to be the entire Pareto front.

Many performance indicators have been proposed for EMO and a discussion of these can be found

in [29] and [30]. Following the approach of [31], a functional approach is taken in this paper, in which

specific unary indicators are used to evaluate specific aspects of performance.
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z1

z2

Pareto
front

objective vector

decision-maker
region of interest

dominated objective-space

proximity
diversity ROI

and
in

Figure 1: The ideal solution to a multi-objective optimisation problem

III.C.1 Proximity Indicator

The proximity indicator measures a median level of proximity of the approximation set, ZA, to the

global surface. In terms of attainment across the objectives, an objective vector for DTLZ2 will respect

Equation 7. The equality condition will only hold for a globally optimal vector. Thus, a specialised

proximity indicator, IP , for DTLZ2 can naturally be described by Equation 8. This is essentially the

same as the generational distance metric [32], for the case of a continuous globally optimal reference

set, Z∗.

1 ≤

[

M
∑

m=1

(zm)
2

]1/2

(7)

IP = medianzA∈ZA







[

M
∑

m=1

(zAm
)
2

]1/2

− 1







(8)

III.C.2 Distribution Indicators

A multi-objective optimiser is required to find a good distribution of candidate solutions across the

trade-off surface to present to the decision-maker: the identified non-dominated vectors should span
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the complete surface, with appropriate distances between each. Given a direction of monotonically

increasing DM preference in each objective and a continuous trade-off surface, the vectors should be

equal distances apart.

To achieve high quantisation of the non-dominated set, it would be advantageous to express both

aspects of distribution within a single indicator. This approach has been implemented in the ∆ metric

[9]. Using this approach it can be somewhat unclear which aspect of the distribution — extent or

uniformity — is responsible for the observed indicator value. Thus in this study, in order to manage

the complexity of the inquiry, only the extent of solutions is considered further.

Spread Indicator: The study uses a variant of the maximum spread indicator [33]. This metric

measures the length of the diagonal of the hypercube with vertices set to the extreme objective values

observed in the achieved approximation set, as defined in Equation 9.

D =

[

M
∑

m=1

(

max
zA∈ZA

{zAm
} − min

zA∈ZA

{zAm
}

)2
]1/2

(9)

It is possible to achieve too much or too little spread. In the former case, the vectors span regions

that are not part of the global trade-off surface, (highlighting a relationship between spread and prox-

imity). In the latter case, the optimiser has converged to a sub-region (that may be globally optimal).

To highlight the requirement for an intermediate spread value, the indicator, IS , is normalised with

respect to the optimal spread, as indicated in Equation 10. Indicator values decreasing from unity to

zero now represent increasing levels of population convergence to a sub-region. Thus, globally optimal

regions of the surface are missing. Indicator values increasing from unity demonstrate widespread

dispersal of vectors throughout non-optimal objective-space.

IS = D

/[

M
∑

m=1

(

max
z∗∈Z∗

{z∗m
} − min

z∗∈Z∗

{z∗m
}

)2
]1/2

(10)

III.D Investigative Framework

The inherent high dimensionality of many-objective optimisation presents both conceptual and com-

putational challenges to the analysis of algorithm behaviour. Thus, the inquiry framework is aimed

toward exploratory data analysis rather than statistically significant performance comparison. Follow-

ing the methodology in [16], single replication results are generated for a wide variety of configuration
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instances (each representing a particular exploration-exploitation trade-off setting) to yield a response

map in optimiser design-space. The use of multiple replications is still regarded as preferable, but

this is computationally impractical for this inquiry. Note that spatial similarity between optimiser

responses arguably provides some support for statistical confidence (or otherwise) in the observed

behaviour. In [16], a polynomial model response surface is also fitted to the raw data map to obtain a

smooth representation. However, for the purposes of this inquiry, the raw data itself proves sufficient

to expose the spatial relationships in the data. For further details on response surfaces, refer to [34].

The configuration of the variation operators, via both the probability and expected magnitude

of variation, provides suitable control over the overall algorithm exploration-exploitation trade-off.

Optimiser responses have been obtained for all pair-wise permutations from sample sets of probabilities

and magnitudes, with elements chosen according to a heuristic, pseudo-logarithmic scale that helps

to show relativity within and between different response maps. The maps themselves portray scalar

summary statistics for each overall response, such as proximity and spread indicator values.

Responses for algorithms incorporating mutation are presented in Section IV. These are measured

over 1000 generations and are generated for a variety of values of M with the population size fixed

at 100. Similar results for recombination are presented in Section V. Results for both the variation

operators are subsequently analysed in Section VI. In [17] it was suggested that a key method for

coping with large M is to increase the population size, since this will tend to reduce the proportion

of the population that is non-dominated and thus provide improved dominance-based discrimination.

Whilst this approach is unlikely to be practical in many real-world applications, where the computa-

tional cost of evaluating a candidate solution may be very high, results for various population sizes

are considered in Section VII.

III.E Introduction to Results

The types of response map shown in the results and analysis sections are introduced below, together

with an example of how the results are presented.
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III.E.1 Types of Response Map

Two performance response maps are considered in the results, together with various other process

variable maps as described below:

Proximity is measured by subtracting the initial proximity indicator value, computed as de-

scribed in Equation 8, from the median of the values obtained from the final 100 iterations of the

optimisation process. Thus, a proximity value of zero indicates no progress from the initial popula-

tion, a negative value indicates convergence toward the global trade-off surface, and a positive value

indicates divergence away from the true surface.

Spread is measured as the median value of the spread indicator, described in Equation 10, taken

over the final 100 iterations of the optimiser. The optimal value of spread is unity. Values less than

unity indicate approximation set convergence to a region of objective-space that is smaller than the

true trade-off surface. Values larger than unity indicate that the approximation set extends over a

greater region than that described by the optimal surface.

Process measurements of other system variables assist the analysis of the observed optimiser

performance behaviour. Variation operator outcomes are particularly important. Response maps

for the outcomes listed below, measured over the first 10 generations of the optimiser are presented

during the analysis in Section VI. Values for system variables tend to be dynamic over the course of the

optimisation. Experience gained during simulation data collection suggests that early measurements

can be highly indicative of the general trend of optimiser behaviour. For example, variation success

rates may be initially high in an algorithm that exhibits good performance, but these rates may

decrease as the algorithm converges close to the global surface. In an unsuccessful algorithm, early

rates may be lower but do not continue to decrease because successful convergence does not occur.

It is important to be able to draw a distinction between the summary success rates for these two

algorithms. Early measurements assist in meeting this aim.

• Copy rate. The proportion of child solutions that are direct copies of (at least) one of their

parents.

• Resistance rate. The proportion of child solutions that are non-dominated with respect to all
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of their parents.

• Success rate. The proportion of child solutions that dominate at least one parent and are not

copies of any parent.

III.E.2 Presentation of Results

An example presentation of response maps for the proximity indicator, IP is shown in Figure 2. Part

(a) of the figure, on the left, shows the response map for the algorithm D1 that does not include any

specific diversity promotion mechanisms. Part (b) of the figure, on the right, shows the corresponding

map for the algorithm D2 that does include such mechanisms. The results have been collected for

algorithms that use recombination: the range of expected recombination magnitudes, ηc, is shown

on the horizontal axis. The vertical axis shows the range of recombination application probabilities,

pic. If the algorithm had been using mutation, the same ranges would be shown for ηm and pm

respectively. Note that variation magnitude is related to the inverse of the distribution parameter for

both recombination and mutation, and thus discussions relating to this will generally refer to large

values of 1/ηc,m rather than small values of ηc,m.

Performance for each {pic, ηc} setting is indicated by a grey-scale square at the appropriate location.

Lighter shades of grey indicate better proximity, as shown by the shaded-bar of indicator values to the

right of each map. Considering Figure 2b, a range of good proximity is thus evident for intermediate

values of pic in the range [0.005 0.1]. Conversely, a region of poor proximity is evident in the region

of intermediate 1/ηc coupled with high pic, such as {pic = 0.5, ηc = 5}.

The grid squares highlighted by a solid boundary correspond to configurations that exceed a pre-

defined performance threshold. For proximity, the performance threshold is -0.5. The configuration

{pic = 0.0025, ηc = 25} is one such example in Figure 2a. For the spread response maps, performance

is highlighted in the range [0.75 1.25] (within 25% of optimal).
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(b) D2

Figure 2: Example D-class proximity response maps

IV Results: Mutation

The three-objective proximity map for algorithm D1 is shown in Figure 3a. The corresponding results

for algorithm D2 are shown in Figure 3b. Both algorithms produce approximation sets with good

proximity for a large region of mutation configuration choices. However, in the region of high pm

and large 1/ηm, the obtained proximity values are essentially unchanged from those obtained for the

initial population. This behaviour is slightly more extensive for D2 than D1.

As the number of objectives is increased, the proximity sweet-spots contract for both D1 and D2.

Proximity results for DTLZ2(6) are presented for D1 in Figure 3c, and for D2 in Figure 3d. Some

reduction in the sweet-spot is observed for D1, particularly for high pm and large 1/ηm configurations.

The behaviour is more pronounced in the case of D2: the band of good proximity is noticeably thinner

in regions of (i) low pm coupled with small 1/ηm and (ii) high pm coupled with large 1/ηm. In these

latter configurations, there is evidence that D2 is producing approximation sets with a worse proximity

than that obtained for the initial population of the optimiser.

Further contraction in the proximity sweet-spot is observed as the number of conflicting objectives

is continued to be increased. Results for a 12-objective instance of DTLZ2 are shown for D1 and D2

in Figure 3e and Figure 3f respectively. There is only a small reduction in the sweet-spot for D1, but

the sweet-spot for D2 has continued to decrease substantially. For this latter algorithm, in regions of
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high pm and large 1/ηm, the obtained proximity is now considerably worse than that which would be

expected from a random sample of 100 solutions to DTLZ2(12).

Spread results for the three-objective instance of DTLZ2 are shown for algorithm D1 in Figure 4a

and for algorithm D2 in Figure 4b. The sweet-spot for D1 is limited to a band stretching from config-

urations of intermediate pm combined with large 1/ηm, such as {pm = 0.05, ηm = 0} to configurations

of high pm coupled with intermediate 1/ηm, such as {pm = 1, ηm = 10}. In the region where high pm is

combined with large 1/ηm, spread values are larger than unity. This indicates that the approximation

set is spread widely through objective-space. In regions of low pm and small 1/ηm, spread values are

close to zero. This indicates that the approximation set represents a region of objective-space that

is much smaller than optimal. The sweet-spot is considerably larger for D2, although the latter two

observations for D1 also hold in this case. Good spread values are identified in larger regions at each

end of the band previously identified for D1.

As the number of conflicting objectives is increased, the regions of good spread contract for both

D1 and D2. Results for DTLZ2(6) are shown for D1 and D2 in Figure 4c and Figure 4d respec-

tively. General thinning of the bands identified for DTLZ2(3) is evident for both algorithms. Large

magnitudes of spread can be seen for D2 in regions of high pm coupled with large 1/ηm.

Spread results for the 12-objective instance of DTLZ2 are presented for D1 in Figure 4e and for

D2 in Figure 4f. Further contraction of the sweet-spots is shown for both algorithms, but the level of

deterioration is much lower between DTLZ2(6) and DTLZ2(12) than that observed between DTLZ2(3)

and DTLZ2(6).

EMO algorithms are required to produce approximation sets with both good proximity and good

diversity. From the results in Figure 3 and Figure 4 it is evident that mutation operator configurations

that produce approximation sets of this quality can be identified for both D1 and D2 for all values of

M considered. However, the number of such configurations reduces with increasing M for both D1

and D2.

Good configurations for D1 are located in a different area of the map to those for D2. Configu-

rations with relatively high pm and relatively large 1/ηm, such as {pm = 0.25, ηm = 2.5}, produce

approximation sets with both good proximity and good diversity for D1. However, these settings
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(a) D1: M = 3

−0.5

0

0.5

1

1.5

η
m

p
m

   0 0.25  0.5    1  2.5    5   10   25   50  100  250  500

     0

 5e−05

 0.001

0.0025

 0.005

  0.01

 0.025

  0.05

   0.1

  0.25

   0.5

     1

(b) D2: M = 3
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(c) D1: M = 6
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(d) D2: M = 6
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(e) D1: M = 12
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(f) D2: M = 12

Figure 3: Proximity response maps for mutation
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(b) D2: M = 3
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(c) D1: M = 6

0.5

1

1.5

2

2.5

3

η
m

p
m

   0 0.25  0.5    1  2.5    5   10   25   50  100  250  500

     0

 5e−05

 0.001

0.0025

 0.005

  0.01

 0.025

  0.05

   0.1

  0.25

   0.5

     1

(d) D2: M = 6
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(e) D1: M = 12
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(b) D2: M = 12

Figure 4: Spread response maps for mutation
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are associated with poor proximity and large spread values for D2. Good configurations for D2 arise

in two areas: (i) intermediate pm together with large 1/ηm, such as {pm = 0.01, ηm = 0.25}, and

(ii) relatively high pm coupled with relatively low 1/ηm, such as {pm = 0.25, ηm = 100}. Note that

approximation sets for D1 tend to represent only a very small fraction of objective-space for these

configurations.

Polynomial mutation has been used as the variation operator when solving DTLZ2 in previous

studies in the literature. Both [7] and [8] used an algorithm identical to D2 with pm = 1/n and

ηm = 20 (in combination with SBX recombination). From Figure 3 and Figure 4, it can be seen

that this configuration produces approximation sets with good proximity, but only over a very small

section of the trade-off surface, for both D1 and D2 when mutation is considered alone.

V Results: Recombination

The proximity response maps for the D1 and D2 algorithms incorporating the SBX recombination

operator are shown in Figure 5. For the three-objective instance of DTLZ2, a substantial region of

good proximity is evident for intermediate to high pic when combined with intermediate to large 1/ηc.

The map for D1 is provided in Figure 5a, whilst the equivalent for D2 is shown in Figure 5b. The

sweet-spot for D2 is seen to extend further into regions of lower pic and smaller 1/ηc than that for D1.

As the number of conflicting objectives to be optimised simultaneously is increased, the proximity

sweet-spots for both D1 and D2 are observed to decrease. As shown in Figure 5c, there is a general

contraction in the sweet-spot for D1 for DTLZ2(6). In particular, configurations of high pic coupled

with large 1/ηc show little improvement in proximity over the initial population. For the six-objective

instance of DTLZ2, as indicated in Figure 5d, the proximity sweet-spot for D2 is limited to regions of

intermediate pic. Configurations of high pic combined with intermediate 1/ηc, such as {pic = 1, ηc =

5}, produce approximation sets with very poor proximity — considerably worse than that obtained

for the initial population. This result contrasts sharply with that for D1, where proximity remains

good.

The D1 proximity response map for DTLZ2(12) is shown in Figure 5e, whilst the corresponding
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map for D2 is depicted in Figure 5f. The sweet-spot for D1 has reduced still further to a region of

intermediate pic. The D2 sweet-spot is slightly larger than that for D1 and is located in a region of

slightly lower pic. In regions of high pic, the proximity results are very poor for D2. The region of di-

vergence identified for DTLZ2(6) has expanded considerably to include expected variation magnitudes

in the range from intermediate to high 1/ηc.

Spread response maps for algorithms D1 and D2 optimising the three-objective instance of DTLZ2

are shown in Figure 6. As indicated in Figure 6a, the spread sweet-spot for D1 encompasses configura-

tions of intermediate to high pic coupled with intermediate to large 1/ηc. The majority of other SBX

configurations produce approximation sets with very small spread measures, thus indicating that the

set represents only a very small region of objective-space. D2 offers a more substantial region of good

spread performance, as shown in Figure 6b. The D2 sweet-spot extends further into configurations of

lower pic and smaller 1/ηc. However, for low values of pic, spread values are close to zero.

Spread sweet-spots for the D1 and D2 algorithms using recombination contract as the number of

conflicting objectives is increased. The response map for D1 solving DTLZ2(6) is shown in Figure 6c.

Good spread performance is limited to the region of configurations with large 1/ηc and pic ≈ 0.25.

Spread values for high pic together with large 1/ηc indicate approximation sets that represent a section

of objective-space that is larger than optimal. The spread response map for D2 solving DTLZ2(6)

is shown in Figure 6d. In addition to obtaining good spread for intermediate 1/ηc together with

high pic, a narrow band of good spread is seen to extend across the range of expected variation

perturbation magnitudes. Values of spread that are larger than optimal are observed for higher

pic. Particularly large values are identified for the region represented by {pic = 1, ηc = 5}. In this

instance the approximation set is spread widely throughout non-optimal regions of objective-space.

The relationship to poor proximity is clear through comparison with Figure 5d.

The spread response map for the 12-objective instance of DTLZ2 is shown for D1 in Figure 6e, and

for D2 in Figure 6f. The sweet-spot for D1 is now highly limited, {pic = 0.25, ηc = 2.5} being one such

configuration. The band of good spread identified for D2 solving DTLZ2(6) has become thinner for

DTLZ2(12). A substantial range of configurations with high pic indicate approximation sets spread

widely throughout non-optimal objective-space.
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(a) D1: M = 3
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(b) D2: M = 3
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(c) D1: M = 6
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(d) D2: M = 6
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(e) D1: M = 12
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(f) D2: M = 12

Figure 5: Proximity response maps for recombination
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(a) D1: M = 3
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(b) D2: M = 3
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(c) D1: M = 6
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(d) D2: M = 6
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(e) D1: M = 12
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(f) D2: M = 12

Figure 6: Spread response maps for recombination
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Through considering Figure 5 and Figure 6 together, recombination operator configurations that

produce approximation sets with both good proximity and good spread can be identified for both D1

and D2 for all values of M assessed. For M = 3, the sweet-spots for proximity and spread co-locate

nicely for both algorithms. In particular, the evidence suggests that a wide range of configuration

choices for D2 will lead to approximation sets that are good from the perspective of both axes of

performance. As the number of conflicting objectives is increased, the selection of configurations that

produce overall good performance decreases for both D1 and D2.

For the six-objective instance of DTLZ2, the regions of overall good performance are reduced for

both D1 and D2. The latter algorithm still retains a larger sweet-spot over the former, but many

of the configurations are similar. For example, configuration {pic = 0.1, ηc = 0.25} produces an

approximation set with good proximity and good spread for both D1 and D2. For DTLZ2(12), very

few configurations of this nature are evident for either D1 or D2.

Like the polynomial mutation operator, the SBX recombination operator has also been previously

used in the D2 algorithm on DTLZ2 [7, 8]. The configuration used in this work was {pic = 0.5, ηc = 15}

with pc = 1 (the operator was also used in conjunction with polynomial mutation). From the results

shown in Figure 5 and Figure 6 this configuration is demonstrated to be appropriate for the three-

objective instance of DTLZ2 for D2. However, as the number of objectives is increased, the settings

appear to become increasingly unacceptable. A D2 optimisation of DTLZ2(12) would be predicted to

offer an approximation set with poor proximity, with solutions spread widely throughout objective-

space.

VI Analysis

VI.A Introduction

The results in Section IV and Section V show that, for both algorithms D1 and D2, the region of

configuration-space that is associated with high quality approximation sets contracts as the number

of conflicting objectives, M , is increased. From the perspective of the proximity indicator, divergence

behaviour is observed for some configurations of D2. In these cases, the proximity of the optimised
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approximation set is, sometimes considerably, worse than the proximity observed for the initial pop-

ulation. This behaviour is particularly evident for recombination-based D2. It is not observed, in the

case of either variation operator, for algorithm D1.

Recall that, as described in the introduction to the algorithms in Section II.B, selection discrim-

ination in D1 is based purely on Pareto dominance considerations. However, in D2, discrimination

is based on both dominance and density estimation. Thus, analysis of the D2 diversity promotion

mechanism provides the key to understanding the behaviour of modern MOEAs under varying M

conditions.

VI.B Active Diversity Promotion Mechanisms

EMO researchers have previously observed that, for a fixed population size, the proportion of the

population that is locally non-dominated increases rapidly with increasing M [35, 17]. Empirical

results for DTLZ2, for a variety of population sizes and M -objective instances, are shown in Figure 7

(where each measurement is the mean of 1000 random sample sets). For a population size of 100, the

proportion increases from approximately 0.3 for M = 3 to approximately 0.8 for M = 12. Note that

this is only the initial state for the optimisers. Future proportions, as experienced by the optimisers,

depend on the effect of repeated applications of sv, v, and ss.

D1 and D2 both discriminate in favour of non-dominance at the ss stage. The effect of this is to

quickly increase the proportion of non-dominated solutions in the population, as shown for various

M for algorithm D2 in Figure 8. For all values of M the proportion is observed to rise rapidly to 1.0,

regardless of the initial state. Thus, from the perspective of the selection-for-variation mechanism,

the majority of solutions are equivalent for D1. sv will be random in this case. However, for D2, the

secondary diversity enhancement mechanism is now activated.

The operation of the density estimator used in D2 is illustrated by the schematic in Figure 9. The

estimator assigns larger crowding distances (or, equivalently, smaller densities) to:

• boundary solutions (which are assigned the largest distance found for that objective in the

boundary direction),

• other remote solutions, and
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Figure 7: Estimated non-dominated proportion of random samples of DTLZ2(M) solutions

• immediate neighbours of remote solutions.

The volume of objective-space increases exponentially as the number of conflicting objectives is

increased linearly. For a fixed population size, this provides more opportunity for a solution to be

remote from others, be distant from the global trade-off surface, and yet still be locally non-dominated.

In these circumstances, active diversity promotion in D2 will bias the search toward solutions with

poor proximity to the global Pareto front.

The above selective bias will present difficulties if the variation operators have a low expectation of

success (defined in Section III.D as the probability of a child dominating its parent or parents). Success

rates for both recombination- and mutation-based D2, for the three- and twelve-objective instances

of DTLZ2, are shown in Figure 11. Note that the results for D1 are very similar and are thus not

reproduced herein. The results for both variation operators show that success rates tend to decrease

with increasing M . Therefore, one of the factors required to explain the difficulties encountered by

diversity-promoting MOEAs is shown to become more apparent with increasing M .

If operator success rates are low and variation operators produce a high proportion of children
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(d) Recombination: M = 12

Figure 10: Proportion of children that dominate their parents for D2
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that are dominated by their parents then the search is expected to simply stagnate to solutions

already discovered. This is because the primary dominance-based comparisons will bias against the

child solutions during ss. However, the D2 observations in Section IV and Section V do not suggest

stagnation of the search: rather, they suggest a directed search away from regions of relatively good

proximity, toward an approximation set with relatively good diversity. This behaviour can be traced

to the phenomenon of dominance resistance.

Dominance resistance was first identified, and introduced as terminology, in [36] in the context of

real-parameter representations and associated variation operators for a specific class of multi-objective

problems. This behaviour was also encountered in [7] for a set of real-parameter constraint surface

tasks that are scalable in the number of conflicting objectives. These researchers also identified that

the level of dominance resistance could increase with the dimension of objective-space.

Response maps that show the proportion of children that are non-dominated but are not equal to

their parents are provided in Figure 11. For DTLZ2(3), a large proportion of such solutions is indicated

for high operator application rates for both mutation and recombination (Figure 11a and Figure 11c

respectively). As the number of objectives is increased, depicted in Figure 11b and Figure 11d, the

high proportion of non-dominated children is observed to extend much further toward lower variation

application probabilities. This empirically demonstrated dominance resistance supports the heuristic

notion that a solution has more opportunity to be locally non-dominated as the number of dimensions

of objective-space is increased.

VI.C Inactive Diversity Promotion Mechanisms

For configurations corresponding to a low probability of variation operator application (the upper

regions of the response maps presented in this paper), a large proportion of the children produced

during variation are identical copies of their parents. Empirical results for D2, for both mutation and

recombination, are shown in Figure 12. Note, again, that the results for D1 are very similar to these

and are thus omitted.

Since the density estimator used in D2 is a variant of first-nearest-neighbour, and equality in

decision-space corresponds to equality in objective-space for the deterministic DTLZ2, solutions with
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(d) Recombination: M = 12

Figure 11: Proportion of children that are non-dominated (but not equal) to their parents for D2
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(d) Recombination: M = 12

Figure 12: Proportion of children that are equal to their parents for D2
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copies will have the maximum possible density estimate (corresponding to a crowding distance of

zero). For configurations of low pic or pm, this neutralises any density-dependent selection mecha-

nisms because the densities of most solutions are identical. Thus, for the case of equivalence under

dominance, selection is entirely random for both D1 and D2. Thus, little difference is evident between

these two algorithms under the aforementioned configurations. This can be verified by comparing the

upper region of the D1 response maps in Figures 3, 4, 5, and 6 to the corresponding D2 equivalents.

VI.D Comparison Between Mutation and Recombination

There are clear differences between the response maps obtained for mutation in Section IV and those

for recombination in Section V. Many of the differences are spatial and can be attributed to subtle

variations in the interaction between the operator mechanisms and the DTLZ2 problem landscape.

For example, configurations with high success rates for SBX are located in a slightly different area of

the map to those for polynomial mutation. However, the fundamental difference between the mutation

and recombination results is that the divergence behaviour (measured in terms of proximity) is more

severe in the recombination-based D2 than the mutation-based equivalent.

The key distinction between the two operators is that the exploration-exploitation trade-off setting

is fixed for a particular configuration of polynomial mutation, but is dynamic over the course of the

optimisation for SBX recombination due to the self-adaptive nature of the SBX distribution. Different

exploration-exploitation settings can occur within the process of creating a single pair of child solutions

for the latter operator. The fundamental difference between the mutation and recombination results

can arguably be attributed to this difference between the operators.

As explained in Section II.C, in the context of a single decision variable, if the decision variable

values of the two parents are closer together then the expected SBX variation magnitude is smaller than

if the two parent values are further apart. If selection is (effectively) biased toward poor proximity

values, as discussed in Section VI.B, then convergence variable values (see Section III.B) will be

clustered in regions that are associated with poor proximity. The large proportion of parent values

in these regions thus allows the self-adaptive SBX operator to focus further on these regions (since

non-diverse parent material leads to more localised exploration). However, the diversity-promotion
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selection mechanisms in D2 also ensure that genetic diversity remains intact for the distribution

variables of DTLZ2. Thus, large-scale exploration is still possible for these variables. So SBX is

capable of simultaneously performing exploitation of poor proximity and exploration of diversity,

leading to approximation sets spread widely in objective-space with very poor overall proximity.

VII Effect of Population Size

VII.A Introduction

In [17], the use of large population sizes is proposed as a potential method for achieving good many-

objective optimisation results, since this will reduce the proportion of non-dominated solutions in the

population and thus provide improved Pareto-based discrimination.

In practice, the use of large population sizes is often prohibitive in real-world applications because

of the computational resources required to evaluate and process potential solutions. Thus in many

applications, such as that documented in [37], the population size is generally limited to fewer than

50 individuals.

The often high cost of solution evaluation is a serious issue for computational search and opti-

misation techniques in general, rather than just affecting evolutionary algorithms. As a result, a

research field known as meta-modelling has arisen that is devoted to the development and deployment

of approximation models in solution evaluation [38]. A related topic that is specific to evolutionary

algorithms, known as fitness inheritance, also considers how to reduce evaluation requirements [39];

this has been used in the context of MOEAs [40].

Given the above qualifications, the identification of the benefits — in terms of approximation set

quality — that can be obtained for larger population sizes remains a matter of interest. In [41], the

six-objective experiments in Section IV and Section V are repeated for population sizes 10, 100 and

1000 to produce new results for algorithms D1 and D2 using both mutation and recombination. An

analysis of the observations arising from these experiments follows in the next section.
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VII.B Analysis

The proximity indicator results were demonstrated to be largely invariant of population size for the

mutation-based optimisers. However, improved results were obtained by increasing the population size

for the recombination-based optimisers. This difference is argued to be attributable to the exploration-

exploitation mechanisms in the two operators as described below.

Polynomial mutation is a single-parent variation operator. Therefore its search capability, when

considered in isolation from selection mechanisms, is independent of the properties of the remainder

of the population from which the parent is drawn. The exploration-exploitation setting is entirely

determined by parameters defined by the analyst: the probability of application, pm, and the expected

magnitude of variation (relative to the problem landscape), ηm. Hence, the convergence performance

obtained for each configuration setting is largely equal for each population size setting of a particular

algorithm.

SBX recombination, by contrast, is a two-parent operator in which the diversity in the genetic

material of the parents is crucial to operator behaviour. If the parents contain identical genetic

material then the operator has zero exploratory capabilities: the children produced are identical to

the parents. Greater distinction between the genetic material of the parent solutions provides greater

exploratory capabilities. The level of genetic diversity available is related closely to population size:

the greater the number of candidate solutions randomly generated in the initial population, the greater

will be the amount of material available. Thus, for small population sizes, there is often insufficient

diversity available in decision-space for SBX exploration and consequently the search stagnates. The

exploration-exploitation trade-off setting in SBX is partially specified by the configuration parameters

pic and ηc akin to those of polynomial mutation, but is also dependent on population diversity. Thus,

it is understandable that improved results are obtained for large population sizes.

The improved spread indicator results obtained in this study [41] can also be argued to be at-

tributable to the richness of decision-space sampling inherent to larger population sizes. For a larger

population, there is a greater probability of sampling any given area of the search space and of po-

tentially making multiple samples from one region. Thus, the spread is likely to be naturally superior

for a larger population, and the loss of one promising solution through sampling errors is less likely to
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result in a region of interest becoming completely unrepresented. This argument applies to both varia-

tion operators considered in the inquiry. Also, as explained above, SBX requires diversity to facilitate

exploratory behaviour. Thus, initial diversity is required in order to search for further diversity.

VIII Conclusions

VIII.A General Conclusions

This study has considered the behaviour of NSGA-II in many-objective optimisation through analysis

of the selection and variation processes that underpin the overall methodology. NSGA was selected

as it is a widely-used member of a family of algorithms that evaluate fitness using dominance compar-

isons and density estimation without partitioning objective-space. Thus, generalised observations of

NSGA-II performance should be transferable to related algorithms, depending on the extent to which

they share selection-for-variation and selection-for-survival mechanisms, and also how the exploration-

exploitation trade-off within the variation operators relates to exploration-exploitation trade-off in

selection.

It has been shown that the behaviour of MOEAs can change dramatically with the number of conflict-

ing objectives to be optimised. In particular, the behaviour observed for an algorithm configuration

for a small number of objectives cannot be generalised to an arbitrary (larger) number of objectives.

Further, the sweet-spot corresponding to good quality approximation sets contracts as the number of

conflicting objectives increases.

Through consideration of algorithm processes at a component level, the diversity-promoting se-

lection mechanisms have been identified as highly influential to optimiser outcome. MOEA diversity

promotion mechanisms can prove harmful for many-objective optimisation. In MOEA, the primary

convergence-based operator uses the relative concept of Pareto dominance. If the number of non-

dominated solutions is large, then selection is based solely on diversity, generally regarded as a

secondary selection operator. However, obtaining a good diversity is not a difficult task in itself,

especially in many-objective space and the best diversity is often associated with very poor proximity

values. Thus, if the current solutions are dominance resistant, then the many-objective search may

38



evolve away from the true trade-off surface, with widespread dispersal of solutions in non-optimal

objective-space.

Results obtained suggest that active diversity promotion can pose a serious challenge to obtaining

an approximation set with good proximity to the global trade-off surface. But such a mechanism is

positively required in EMO, since without it an EA will tend to experience genetic drift and thus

converge on to a smaller region of objective-space than required. Diversity promotion is a crucial

process in an MOEA, but its implementation requires some care.

In terms of the performance differences observed between the optimisers when using the alterna-

tive variation operators, the behaviour under mutation appears to vary less with different numbers

of objectives and population sizes than the behaviour under recombination. Thus, mutation may be

favoured because performance can be more easily predicted. However, based on the limited evidence

available, the best configurations for recombination appear to offer superiority in terms of both prox-

imity and spread to their counterparts for mutation. This observation is likely to have arisen because

recombination can adapt the variation step-size to the order of magnitude required for continued im-

provements. Note that this property has also been suggested as the factor responsible for the very

poor proximity values generated for some configurations of recombination when optimising more than

a small number of objectives.

From a real-world perspective, the results of this inquiry provide some grounds for optimism. Real-

world EMO applications have been undertaken since the early days of EMO development, regardless

of the lack of theoretical support for this work. Now, substantial evidence has been collected to show

that — for some configurations — standard MOEAs are capable of producing approximation sets that

satisfy the dual aims of good proximity and good distribution (in an absolute sense, rather than being

purely satisfactory from the perspective of the DM) when simultaneously optimising a large number

of conflicting objectives.

VIII.B Directions for Future Work

The exploratory analysis of conflict in many-objective optimisation has produced some noteworthy

findings of potential interest to the EMO research community. However, only a single real-parameter
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function optimisation problem has been used during simulations. Thus, despite the realisation that

the factors that are believed to underpin the observed behaviour could occur outside of this problem,

the results cannot be generalised further at this stage. Similar studies are therefore required for other

classes of many-objective problem, such as the multi-objective quadratic assignment problem class

developed in [42] which encompasses both the travelling salesman problem and the graph partitioning

problem. Analysis is also required of conflict scalability in real-world scenarios. Other classes of

algorithm also require a detailed many-objective analysis. For example, the ǫ-dominance selection-

for-survival mechanism developed in [22] is predicted to become an increasingly popular component of

EMO algorithms and is thus a good candidate process for a study of this kind. The effect of alternative

diversity promotion mechanisms in the context of fixed population sizes should also be considered.

The problem of dominance resistance has been identified as a key concern when optimising many

conflicting objectives. Parallels exist here with the problem of lethals identified in single-objective

multimodal function optimisation. In [43] it was discovered that the recombination of spatially dis-

similar solutions tended to produce children that performed relatively badly in the problem domain.

Improved search efficiency was obtained by allowing recombination to occur only between parents

located within the same local neighbourhood. The neighbourhood size was calculated using the same

methods as those used for fitness sharing. In many-objective optimisation, lethals can perhaps be

regarded as locally non-dominated remote solutions with a highly substandard component in one or

more objectives. Thus, the incorporation of some form of mating restriction may prove fruitful in a

many-objective context. Indeed, such a methodology was suggested in the original MOGA [20].
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