150,259 research outputs found

    Cloud cover, cloud liquid water and cloud attenuation at Ka and V bands over equatorial climate

    Get PDF
    Cloud cover statistics and their diurnal variation have been obtained from in situ and satellite measurements for three equatorial locations. Cloud liquid water content, 0 °C isotherm height and cloud attenuation have also been obtained from radiosonde measurement using the so-called Salonen model at Kuala Lumpur (Malaysia). The results show a strong seasonal variation of cloud cover and cloud liquid water content on the two monsoon seasons. The Liquid Water Content (LWC) obtained from radiosonde and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is higher during the Northeast Monsoon season, which corresponds to the period of higher percentage cloud cover and high rainfall accumulation. The International Telecommunication Union—Region (ITU-R) model underestimates the cumulative distribution of LWC values at the present station. The relationship of the cloud attenuation, derived from the profiles of liquid water density and temperature within the cloud, shows an underestimate by the data obtained from the ITU-R model. The cloud attenuation at Kuala Lumpur is somewhat underestimated by the ITU-R model up to about 1.2 dB at Ka (30 GHz) and 3.4 dB at V (50 GHz) bands. The results of the specific attenuation can be used for the estimation of cloud attenuation at microwave and millimetre wave over earth-space paths. The present data are important for planning and design of satellite communications at Ka and V bands on the Earth–space path in the equatorial region

    Sea surface temperature retrieval using TRMM microwave imager satellite data in the South China Sea

    Get PDF
    The passive microwave TRMM Microwave Imager (TMI) sensor which is one of the payloads of the Tropical Rainfall Measurement Mission (TRMM) satellite was launched in 1997 by the National Aeronautics and Space Administration (NASA) and National Space Development Agency of Japan (NASDA). The TMI provides daily maps, 3 day average, weekly and monthly binary data via internet that can be used to retrieve geophysical parameters such as sea surface temperature (SST), 10 meter surface wind speed using 11 GHz channel, 10 meter surface wind speed using 37 GHz channel, atmospheric water vapour, liquid cloud water and precipitation rates. The SST study over the South China Sea was carried out using the 10.7 GHz channel of the TMI. The advantage of using this data is that the SST can be measured through clouds that are nearly transparent on this channel. This is a distinct advantage over the traditional infrared SST observations that require a cloud-free field of view. In this study, multitemporal TMI binary data were processed using FORTRAN Programming Language to evaluate the SST variations with time over the study area. The 3-day, weekly and monthly binary files are similar to the daily TMI binary files. All data consists of six maps with grid size of 0.25o by 0.25o and each file can be read as a 1440, 320, 6 array. For the data processing, the data values fall between 0 and 250 that need to be scaled to obtain meaningful geophysical data. The TMI scanning system causes striping that contains 0 or invalid data. In-situ temperature values were taken at locations where useful satellite data are available i.e. no striping. Regression analysis was carried out using the SST from TMI data and in-situ data obtained from the Meteorological Department of Malaysia. The two-dimensional scatter plot between TMI data and in-situ data gives a R2 value of 0.92 and RMSE of 0.3oC. The SST during the north east monsoon period was slightly lower than the SST during the south west monsoon. The study shows that TMI satellite data can be used to derive SST over large areas of the sea

    Analysis of the Dryden Wet Bulb GLobe Temperature Algorithm for White Sands Missile Range

    Get PDF
    In locations where workforce is exposed to high relative humidity and light winds, heat stress is a significant concern. Such is the case at the White Sands Missile Range in New Mexico. Heat stress is depicted by the wet bulb globe temperature, which is the official measurement used by the American Conference of Governmental Industrial Hygienists. The wet bulb globe temperature is measured by an instrument which was designed to be portable and needing routine maintenance. As an alternative form for measuring the wet bulb globe temperature, algorithms have been created to calculate the wet bulb globe temperature from basic meteorological observations. The algorithms are location dependent; therefore a specific algorithm is usually not suitable for multiple locations. Due to climatology similarities, the algorithm developed for use at the Dryden Flight Research Center was applied to data from the White Sands Missile Range. A study was performed that compared a wet bulb globe instrument to data from two Surface Atmospheric Measurement Systems that was applied to the Dryden wet bulb globe temperature algorithm. The period of study was from June to September of2009, with focus being applied from 0900 to 1800, local time. Analysis showed that the algorithm worked well, with a few exceptions. The algorithm becomes less accurate to the measurement when the dew point temperature is over 10 Celsius. Cloud cover also has a significant effect on the measured wet bulb globe temperature. The algorithm does not show red and black heat stress flags well due to shorter time scales of such events. The results of this study show that it is plausible that the Dryden Flight Research wet bulb globe temperature algorithm is compatible with the White Sands Missile Range, except for when there are increased dew point temperatures and cloud cover or precipitation. During such occasions, the wet bulb globe temperature instrument would be the preferred method of measurement. Out of the 30 dates examined, 23 fell under the category of having good accuracy

    Accurate characterisation of hole geometries by fringe projection profilometry

    Get PDF
    Accurate localisation and characterisation of holes is often required in the field of automated assembly and quality control. Compared to time consuming coordinate measuring machines (CMM), fringe-projection-based 3D scanners offer an attractive alternative as a fast, non-contact measurement technique that provides a dense 3D point cloud of a large sample in a few seconds. However, as we show in this paper, measurement artefacts occur at such hole edges, which can introduce errors in the estimated hole diameter by well over 0.25 mm, even though the estimated hole centre locations are largely unaffected. A compensation technique to suppress these measurement artefacts has been developed, by modelling the artefact using data extrapolated from neighboring pixels. By further incorporating a sub-pixel edge detection technique, we have been able to reduce the root mean square (RMS) diameter errors by up to 9.3 times using the proposed combined method

    Forecasting Solar Irradiance by looking at clouds from above and below

    Get PDF
    The energy meteorology measurement network Eye2Sky is a cloud monitoring system covering roughly 110x100 km in north-west Germany. It is equipped with 38 cloud cameras, solar radiation measurement stations and individual Lidar based cloud altitude measurements distributed throughout the region around Oldenburg. The system collects high-resolution information on solar radiation, tracks the variability at different locations and outputs forecasts for very short time scales. It covers a resolution range of fewer than 100 metres and less than 1 minute and supports forecasts of up to one hour (depending on the prevailing cloud height). A second data source for this region is given by images from the geostationary satellite MSG. With these images longer forecast horizons are achieved in a coarser resolution. The hybrid use of both data sources has only just begun in the community. This allows the development of new models with an improved quality of predictions

    Evaluation of the Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Base Height (CBH) Pixel-level Retrieval Algorithm for Single-layer Water Clouds

    Get PDF
    Evaluation of the Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Base Height (CBH) product was accomplished. CBH is an important factor for aviation, but a lack of coverage for ground-based retrieval is a significant limitation. Space-based retrieval is essential; therefore, the VIIRS CBH pixel-level retrieval algorithm was assessed for single-layer water clouds. Accurate (truth) measurements were needed not only for the CBH product, but also for VIIRS cloud optical thickness (COT), effective particle size (EPS), and cloud top height (CTH). Data from Atmospheric Radiation Measurement (ARM) sites were used, with VIIRS-ARM matchups created from June 2013 through October 2015 for four locations. After initial CBH results were large and highly variable, the VIIRS CTH product was replaced with the ARM (truth) CTH product. This substantially reduced variability and errors in the VIIRS CBH products, demonstrating that the CBH algorithm is fundamentally sound. Thus, future research is needed to reduce errors in the VIIRS CTH products in order to ensure the CBH products are suitable for aviation support

    The relevance of aerosol optical depth to cumulus fraction changes: a five-year climatology at the ACRF SGP site

    Get PDF
    International audienceThe objective of this study is to investigate, by observational means, the magnitude and sign of the actively discussed relationship between cloud fraction N and aerosol optical depth ?a. Collocated and coincident ground-based measurements and Terra/Aqua satellite observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site form the basis of this study. The N??a relationship occurred in a specific 5-year dataset of fair-weather cumulus (FWC) clouds and mostly non-absorbing aerosols. To reduce possible contamination of the aerosols on the cloud properties estimation (and vice versa), we use independent datasets of ?a and N obtained from the Multi-filter Rotating Shadowband Radiometer (MFRSR) measurements and from the ARM Active Remotely Sensed Clouds Locations (ARSCL) value-added product, respectively. Optical depth of the FWC clouds ?cld and effective radius of cloud droplets re are obtained from the MODerate resolution Imaging Spectroradiometer (MODIS) data. We found that relationships between cloud properties (N,?cld, re) and aerosol optical depth are time-dependent (morning versus afternoon). Observed time-dependent changes of cloud properties, associated with aerosol loading, control the variability of surface radiative fluxes. In comparison with pristine clouds, the polluted clouds are more transparent in the afternoon due to smaller cloud fraction, smaller optical depth and larger droplets. As a result, the corresponding correlation between the surface radiative flux and ?a is positive (warming effect of aerosol). Also we found that relationship between cloud fraction and aerosol optical depth is cloud size dependent. The cloud fraction of large clouds (larger than 1 km) is relatively insensitive to the aerosol amount. In contrast, cloud fraction of small clouds (smaller than 1 km) is strongly positively correlated with ?a. This suggests that an ensemble of polluted clouds tends to be composed of smaller clouds than a similar one in a pristine environment. One should be aware of these time- and size-dependent features when qualitatively comparing N??a relationships obtained from the satellite observations, surface measurements, and model simulations
    • …
    corecore