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ABSTRACT   

Accurate localisation and characterisation of holes is often required in the field of automated assembly and quality 
control. Compared to time consuming coordinate measuring machines (CMM), fringe-projection-based 3D scanners 
offer an attractive alternative as a fast, non-contact measurement technique that provides a dense 3D point cloud of a 
large sample in a few seconds. However, as we show in this paper, measurement artefacts occur at such hole edges, 
which can introduce errors in the estimated hole diameter by well over 0.25 mm, even though the estimated hole centre 
locations are largely unaffected. A compensation technique to suppress these measurement artefacts has been developed, 
by modelling the artefact using data extrapolated from neighboring pixels. By further incorporating a sub-pixel edge 
detection technique, we have been able to reduce the root mean square (RMS) diameter errors by up to 9.3 times using 
the proposed combined method.  
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1. INTRODUCTION  
Locating holes and measuring hole geometries in machined parts are often required in quality control and automated 
assembly1,2. The current industry standard method involves the use of coordinate measuring machines (CMM)3. 
However these require mechanical contact to be made between a probe and the inside of the hole at a number of points, 
which is thus a time-consuming and costly process. As an alternative, fringe projection profilometry (FPP) techniques 
can be used to generate a dense 3D point cloud of the measured part(s) in typically just a few seconds. These dense point 
clouds can include several hundred coordinates in and around a given hole, and allow one to characterize a large number 
of holes in a single measurement4. 

In this paper, we (i) investigate experimentally the accuracy of hole geometry characterisation by FPP, (ii) introduce an 
algorithm to correct for the systematic measurement errors by FPP, and (iii) demonstrate an improvement in hole 
diameter measurement by up to one order of magnitude through the use of the correction algorithm. 

2. METHOD 
In order to compare hole characterisations by both techniques, a test sample was fabricated out of aluminum as shown in 
Figure 1. The flat aluminum plate consisted of arrays of circular holes ranging from 30 mm diameter down to 1 mm 
diameter. In total, 90 holes were measured with a mechanical CMM (LK Metris Ultra) by touching the holes along the 
perimeter at multiple points just below the surface. The CMM probe touched 46 points along the perimeter for the 
smallest holes, with an increasing number of touch points with increasing diameter, up to 909 points for the largest holes.  
The measurement process took more than 2 hours even with prior knowledge of the nominal hole locations.   

The same plate was measured by a Phase Vision Quartz 1200 FPP scanner. Using Canny edge detection, edge cluster 
grouping and ellipse fitting to the edge clusters on the texture image, the holes were automatically identified. A circle 
was subsequently fitted to the X, Y, Z coordinates of the perimeter pixels of each detected ellipse. In this way, all holes 
from a single scan were automatically identified and characterised, except for the smallest (1 mm diameter) holes, which 
were blurred and hence could not be reliably detected by the Canny edge detector. 
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Figure 1. The test panel with arrays of holes, the diameters of which range from 30 mm down to 1 mm. 

 

Figure 2 shows the estimated radii of a set of 16-mm diameter holes of the test panel. All radii were overestimated by 
values in the range 0.24 mm – 0.32 mm. In comparison, CMM measurements reported only up to 0.025mm deviation 
from the nominal values. For all holes between  2 mm – 30 mm diameter, the root mean square (RMS) error (0.22 mm - 
0.47 mm for hole diameters in the range 30 mm down to  2 mm) was 9 – 19  times larger than the measurement 
uncertainty of the CMM. 

 

 

 
Figure 2.  Radii estimation results (units: mm) obtained from the ellipse fitting to the 3D X,Y,Z data on the edge pixels, 
measured with the fringe projection 3D scanner.  

 

The discrepancy in estimated hole radius by FPP measurements can be explained by the measurement artefacts occurring 
around the edges of the holes, as shown in Figure 3(a) for an 8 mm diameter hole. Biasing of the measured height values 
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by up to 0.5 mm is seen to occur at the hole edges. As a result, hole radii are always overestimated due to the effect 
illustrated in Figure 3(b).  

 
                                      (a)                                                         (b) 

Figure 3. Measurement artefacts around the edge of a hole. (a) Experimental height distribution of an 8 mm diameter hole 
measured by fringe projection; (b) an illustration of how these measurement artefacts affect the diameter estimation. 

 

These artefacts are believed to occur as a result of the finite size of the point spread function (PSF) of the camera within 
the FPP system. The size of the PSF region on the object, from which light is received by a given point in the image 
plane of the camera, is at a minimum the pixel footprint, i.e. the size of the pixel divided by the camera magnification. In 
practice, it is often much larger due to lens aberrations or camera defocus. The intensity and unwrapped phase measured 
at each pixel are averages of the intensity and unwrapped phase values over the pixel footprint5. In the absence of 
discontinuities, the average values of intensity and unwrapped phase values are close to the values at the centre of the 
pixel footprint of the measured object. However, at a discontinuity or absence of a surface (such as a hole), part of the 
signal is missing. Depending on whether the missing portion is from the region with higher than average fringe phase, or 
lower than average fringe phase, the measured phase is biased in the downward and upward directions, respectively. This 
is believed to be the cause of the negative and positive artefacts on the two sides of the hole shown in Figure 3(a). Holes 
contain both intensity and geometrical discontinuities and these pixels cannot be simply eliminated from the 
measurements as the edge points are the most critical in characterising hole geometries.  

3. THEORY 
In order to estimate these measurement artefacts and eventually compensate for them, we identify two pixel regions in a 
local neighborhood of a hole edge discontinuity. Pixels within the radius, RP, of the PSF from the edge are the directly 
affected pixels that need to be compensated. The pixels just outside this PSF region, within a band of width equal to the 
PSF radius, are unaffected by the phenomenon described in the previous section, and so can be used to compensate the 
data in the affected pixels. Here we assume that the test object has the same surface scattering characteristics over a 
region up to a distance 2RP away from a discontinuity in a direction normal to the edge.  

The Phase Vision scanner projects both a vertical and a horizontal fringe sequence. The measured unwrapped phase 
maps for the two sequences are denoted ω"(𝑥, 𝑦) and ω((𝑥, 𝑦), with corresponding intensity images denoted 𝐼"(𝑥, 𝑦) 
and 𝐼((𝑥, 𝑦), respectively. Note that (𝑥, 𝑦) represents coordinates in the pixel domain of the image. We first approximate 
the ‘true’ unwrapped phases and intensities within the PSF zone by ω"(𝑥, 𝑦)  and intensity 𝐼"(𝑥, 𝑦), which are calculated 
as a first degree and zeroth degree polynomial respectively from the nearby portion of the ‘unaffected zone’ outside the 
PSF region. These two functions effectively extrapolate the unwrapped phase and intensity from the unaffected region 
into the affected region. For a given affected pixel (𝑥*, 𝑦*), the pixel band outside the PSF that is used to calculate ω" is 
selected as an annular section of length 2RP and width RP, as illustrated by the shaded patch in Figure 4 below. 

The unwrapped phase ω"(𝑥*, 𝑦*) that we expect to see in the affected region as a result of the edge discontinuity is 
modelled as a weighted average, over the PSF, of the ω" values at the pixels surrounding (𝑥*, 𝑦*). We have assumed that 
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the modelled unwrapped phase is weighted by the intensity and that the PSF has the shape of a Gaussian, where RP is the 
full width half maximum value.  

 

 
 

Figure 4: schematic of the PSF zone and the surrounding unaffected zone around a hole (solid line). The shaded patch 
denotes the area over which ω" and ω( are calculated for pixel (xc, yc). 

 

The modelled unwrapped phase of a point (𝑥*, 𝑦*) is then given by the convolution integral 
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where the point spread function is defined as 

𝑃𝑆𝐹 𝑥 − 𝑥*, 𝑦 − 𝑦* = 𝑒1
2324 5

545 𝑒1
6364 5

545  ,                           (2) 

 
and where c is related to RP through the equation 𝑅8 = 	2 2ln2	𝑐.  

The compensated unwrapped phase ω"
> 𝑥*, 𝑦*  within the PSF region is then obtained by subtracting the estimated error 

due to the edge discontinuity from the measured phase as follows:  

     ω"
> 𝑥*, 𝑦* = ω" 𝑥*, 𝑦* − (ω" 𝑥*, 𝑦* − ω" 𝑥*, 𝑦*  .                              (3)      

  

4. RESULTS 
The flat aluminium plate shown in Figure 1 was measured by the Phase Vision Quartz 1200 fringe projection 3D scanner 
at a distance of 2.5 m, with an image resolution of 2048×2048 pixels. The compensation algorithm described in the 
previous section was used to calculate corrected phase maps on and around hole edge pixels that had previously been 
identified from the intensity image. The scanner employs a reverse exponential sinusoidal fringe sequence and a least-
squares temporal phase unwrapping (TPU) algorithm6,7 to calculate the unwrapped phase from the recorded fringe 
patterns. Phase values are converted to coordinates using a photogrammetric pinhole model for camera and projector, 
where the camera and projector parameters are determined using a bundle adjustment procedure8. The radius of the PSF 
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was estimated from a vertical black and white stripe board placed at the same position as the aluminium plate in the 
above experiment9, giving the value 𝑅8 = 5 pixels at 2.5 m. 

Figure 5 shows the height distribution around a 8 mm diameter hole before and after the unwrapped phase compensation. 
The measurement artefact is well suppressed after phase compensation, thus providing the basis for a more accurate 
estimation of hole diameter. 

 
(a)                                                                         (b) 

Figure 5: Measured height distribution around an 8 mm diameter hole (a) before and (b) after unwrapped phase 
compensation. 

 

In addition to the suppression of the measurement artefact, accurate detection of the edge pixel locations using the 
intensity image is essential in order to obtain an accurate estimate of the hole geometry. A sub-pixel detection technique, 
developed by Trujillo-Pino et. al.10, and a Fourier descriptor (FD) method in which the hole edge contour radius is 
expanded as a Fourier series in azimuthal angle about the hole centre,  were employed for this purpose. The required X, 
Y and Z coordinate data were calculated at the sub-pixel hole edge locations from the compensated unwrapped phase 
values, by linear interpolation between the four nearest pixels. The diameters and centres of all holes were then estimated 
by least-squares fitting 3D circles to each X, Y, Z sub-pixel hole edge data set. The radii and centre estimations thus 
obtained from the experiment were then compared with the corresponding measurements obtained by the CMM. The 
measurement coordinate frame of the FPP scanner was rotated and translated to that of the CMM measurement 
coordinate frame by aligning the hole centres with a singular value decomposition (SVD) method11 before comparison. 

The root mean square (RMS) deviation of the estimated diameter from that given by the CMM measurements was 
calculated for each hole set when using the FD sub-pixel edge detection method, and plotted in Figure 6 below. In 
addition, the RMS deviation of the identified hole centres from the CMM hole centres was calculated for each hole set 
and plotted in the same figure below.  Figure 6 confirms that the measurement artefact suppression combined with the 
sub-pixel detection can sucessfully bring down the error by 3.6-9.3× for holes larger than or equal to 4 mm diameter.  

However, for the 2 mm diameter holes, the diameter estimation result was only improved by 1.4×. The number of pixels 
across the diameter of a hole is about 10 in the intensity image for 2 mm diameter holes, when the flat aluminium plate 
was placed at 2.5m, which is at the centre of the working envelope of the FPP scanner. Since the PSF radius is 5 pixels, 
the 2 mm hole diameter is about equal to 2RP making this the limiting case for the validity of the model given in equation 
(1). The 1 mm holes could not be identified by edge detection as their diameter was approximately equal to RP. It should 
be noted that the experimental setup used in this study had a field of view of about 1×1 m2 at a distance of 2.5 m, and 
holes smaller than 4 mm diameter could be better estimated with a system that has a narrower field of view and a shorter 
working distance, so that there are more than 2RP pixels across the diameter. 

According to Figure 6, one can see by contrast that the centre estimation is barely altered by the compensation across the 
full range of hole diameters. This can be explained by the anti-symmetrical nature of the measurement artefact, shown 
schematically in Figure 3(b): the best fit circle is tilted and stretched, but its centre location remains unchanged.  
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Figure 6. Estimated diameter and centre errors before and after measurement artefact suppression, for holes with diameters 
in the range 2-30 mm. 

5. CONCLUSIONS 
Automated assembly and part verification often requires the ability to identify and characterise holes in manufactured 
components, and fringe projection based 3D scanners can provide an attractive alternative to time consuming CMMs, as 
a non-contact fast measurement technique. However, we have found evidence that measurement artefacts occur at hole 
edges, in the very region where accurate measurements are required for the estimation of hole geometry. A method has 
been developed to successfully suppress these measurement artefacts. It relies on modelling and compensating for the 
errors in the unwrapped phase of the affected regions, i.e., on and around the hole edge pixels, using the extrapolated 
values from neighboring pixels. By further incorporating a sub-pixel edge detection method, the RMS error of the 
diameter relative to the CMM measurements has been reduced down to the range 0.08mm—0.66mm for hole diameters 
ranging from 30 mm to 2 mm, which represents an improvement of 1.4—9.3× over the uncompensated results.  
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