4,379 research outputs found

    The Perfect Matching Reconfiguration Problem

    Get PDF
    We study the perfect matching reconfiguration problem: Given two perfect matchings of a graph, is there a sequence of flip operations that transforms one into the other? Here, a flip operation exchanges the edges in an alternating cycle of length four. We are interested in the complexity of this decision problem from the viewpoint of graph classes. We first prove that the problem is PSPACE-complete even for split graphs and for bipartite graphs of bounded bandwidth with maximum degree five. We then investigate polynomial-time solvable cases. Specifically, we prove that the problem is solvable in polynomial time for strongly orderable graphs (that include interval graphs and strongly chordal graphs), for outerplanar graphs, and for cographs (also known as P_4-free graphs). Furthermore, for each yes-instance from these graph classes, we show that a linear number of flip operations is sufficient and we can exhibit a corresponding sequence of flip operations in polynomial time

    Shortest Reconfiguration of Perfect Matchings via Alternating Cycles

    Get PDF
    Motivated by adjacency in perfect matching polytopes, we study the shortest reconfiguration problem of perfect matchings via alternating cycles. Namely, we want to find a shortest sequence of perfect matchings which transforms one given perfect matching to another given perfect matching such that the symmetric difference of each pair of consecutive perfect matchings is a single cycle. The problem is equivalent to the combinatorial shortest path problem in perfect matching polytopes. We prove that the problem is NP-hard even when a given graph is planar or bipartite, but it can be solved in polynomial time when the graph is outerplanar

    Percolation on sparse random graphs with given degree sequence

    Full text link
    We study the two most common types of percolation process on a sparse random graph with a given degree sequence. Namely, we examine first a bond percolation process where the edges of the graph are retained with probability p and afterwards we focus on site percolation where the vertices are retained with probability p. We establish critical values for p above which a giant component emerges in both cases. Moreover, we show that in fact these coincide. As a special case, our results apply to power law random graphs. We obtain rigorous proofs for formulas derived by several physicists for such graphs.Comment: 20 page

    The number of matchings in random graphs

    Full text link
    We study matchings on sparse random graphs by means of the cavity method. We first show how the method reproduces several known results about maximum and perfect matchings in regular and Erdos-Renyi random graphs. Our main new result is the computation of the entropy, i.e. the leading order of the logarithm of the number of solutions, of matchings with a given size. We derive both an algorithm to compute this entropy for an arbitrary graph with a girth that diverges in the large size limit, and an analytic result for the entropy in regular and Erdos-Renyi random graph ensembles.Comment: 17 pages, 6 figures, to be published in Journal of Statistical Mechanic
    • …
    corecore