10 research outputs found

    On duality and fractionality of multicommodity flows in directed networks

    Get PDF
    In this paper we address a topological approach to multiflow (multicommodity flow) problems in directed networks. Given a terminal weight ÎĽ\mu, we define a metrized polyhedral complex, called the directed tight span TÎĽT_{\mu}, and prove that the dual of ÎĽ\mu-weighted maximum multiflow problem reduces to a facility location problem on TÎĽT_{\mu}. Also, in case where the network is Eulerian, it further reduces to a facility location problem on the tropical polytope spanned by ÎĽ\mu. By utilizing this duality, we establish the classifications of terminal weights admitting combinatorial min-max relation (i) for every network and (ii) for every Eulerian network. Our result includes Lomonosov-Frank theorem for directed free multiflows and Ibaraki-Karzanov-Nagamochi's directed multiflow locking theorem as special cases.Comment: 27 pages. Fixed minor mistakes and typos. To appear in Discrete Optimizatio

    Packing Odd Walks and Trails in Multiterminal Networks

    Get PDF
    Let G be an undirected network with a distinguished set of terminals T ? V(G) and edge capacities cap: E(G) ? ?_+. By an odd T-walk we mean a walk in G (with possible vertex and edge self-intersections) connecting two distinct terminals and consisting of an odd number of edges. Inspired by the work of Schrijver and Seymour on odd path packing for two terminals, we consider packings of odd T-walks subject to capacities cap. First, we present a strongly polynomial time algorithm for constructing a maximum fractional packing of odd T-walks. For even integer capacities, our algorithm constructs a packing that is half-integer. Additionally, if cap(?(v)) is divisible by 4 for any v ? V(G)-T, our algorithm constructs an integer packing. Second, we establish and prove the corresponding min-max relation. Third, if G is inner Eulerian (i.e. degrees of all nodes in V(G)-T are even) and cap(e) = 2 for all e ? E, we show that there exists an integer packing of odd T-trails (i.e. odd T-walks with no repeated edges) of the same value as in case of odd T-walks, and this packing can be found in polynomial time. To achieve the above goals, we establish a connection between packings of odd T-walks and T-trails and certain multiflow problems in undirected and bidirected graphs

    Maximum Weight Disjoint Paths in Outerplanar Graphs via Single-Tree Cut Approximators

    Full text link
    Since 1997 there has been a steady stream of advances for the maximum disjoint paths problem. Achieving tractable results has usually required focusing on relaxations such as: (i) to allow some bounded edge congestion in solutions, (ii) to only consider the unit weight (cardinality) setting, (iii) to only require fractional routability of the selected demands (the all-or-nothing flow setting). For the general form (no congestion, general weights, integral routing) of edge-disjoint paths ({\sc edp}) even the case of unit capacity trees which are stars generalizes the maximum matching problem for which Edmonds provided an exact algorithm. For general capacitated trees, Garg, Vazirani, Yannakakis showed the problem is APX-Hard and Chekuri, Mydlarz, Shepherd provided a 44-approximation. This is essentially the only setting where a constant approximation is known for the general form of \textsc{edp}. We extend their result by giving a constant-factor approximation algorithm for general-form \textsc{edp} in outerplanar graphs. A key component for the algorithm is to find a {\em single-tree} O(1)O(1) cut approximator for outerplanar graphs. Previously O(1)O(1) cut approximators were only known via distributions on trees and these were based implicitly on the results of Gupta, Newman, Rabinovich and Sinclair for distance tree embeddings combined with results of Anderson and Feige.Comment: 19 pages, 6 figure

    Parameterized Algorithms for Zero Extension and Metric Labelling Problems

    Get PDF
    We consider the problems Zero Extension and Metric Labelling under the paradigm of parameterized complexity. These are natural, well-studied problems with important applications, but have previously not received much attention from this area. Depending on the chosen cost function mu, we find that different algorithmic approaches can be applied to design FPT-algorithms: for arbitrary mu we parameterize by the number of edges that cross the cut (not the cost) and show how to solve Zero Extension in time O(|D|^{O(k^2)} n^4 log n) using randomized contractions. We improve this running time with respect to both parameter and input size to O(|D|^{O(k)} m) in the case where mu is a metric. We further show that the problem admits a polynomial sparsifier, that is, a kernel of size O(k^{|D|+1}) that is independent of the metric mu. With the stronger condition that mu is described by the distances of leaves in a tree, we parameterize by a gap parameter (q - p) between the cost of a true solution q and a `discrete relaxation\u27 p and achieve a running time of O(|D|^{q-p} |T|m + |T|phi(n,m)) where T is the size of the tree over which mu is defined and phi(n,m) is the running time of a max-flow computation. We achieve a similar result for the more general Metric Labelling, while also allowing mu to be the distance metric between an arbitrary subset of nodes in a tree using tools from the theory of VCSPs. We expect the methods used in the latter result to have further applications

    Tight spans of distances and the dual fractionality of undirected multiflow problems

    Get PDF
    In this paper, we give a complete characterization of the class of weighted maximum multiflow problems whose dual polyhedra have bounded fractionality. This is a common generalization of two fundamental results of Karzanov. The first one is a characterization of commodity graphs H for which the dual of maximum multiflow problem with respect to H has bounded fractionality, and the second one is a characterization of metrics d on terminals for which the dual of metric-weighed maximum multiflow problem has bounded fractionality. A key ingredient of the present paper is a nonmetric generalization of the tight span, which was originally introduced for metrics by Isbell and Dress. A theory of nonmetric tight spans provides a unified duality framework to the weighted maximum multiflow problems, and gives a unified interpretation of combinatorial dual solutions of several known min-max theorems in the multiflow theory

    The maximum multiflow problems with bounded fractionality

    Get PDF
    corecore