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In this paper, we give a complete characterization of the class
of weighted maximum multiflow problems whose dual polyhedra
have bounded fractionality. This is a common generalization of two
fundamental results of Karzanov. The first one is a characterization
of commodity graphs H for which the dual of maximum multiflow
problem with respect to H has bounded fractionality, and the
second one is a characterization of metrics d on terminals for
which the dual of metric-weighed maximum multiflow problem
has bounded fractionality. A key ingredient of the present paper is
a nonmetric generalization of the tight span, which was originally
introduced for metrics by Isbell and Dress. A theory of nonmetric
tight spans provides a unified duality framework to the weighted
maximum multiflow problems, and gives a unified interpretation of
combinatorial dual solutions of several known min–max theorems
in the multiflow theory.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction and main results

Let G = (V , E, c) be an undirected graph with a nonnegative edge capacity c : E → R+ , and let
S ⊆ V be a set of terminals and μ a nonnegative weight function on the set of pairs of elements in S .
A path P ⊆ E is called an S-path if its endpoints are distinct vertices in S . A multiflow (multicom-
modity flow) is a set P of S-paths in G together with a nonnegative flow-value function λ : P → R+
satisfying the capacity constraint

∑
P∈P : e∈P λ(P ) � c(e) for each e ∈ E . The weighted maximum multi-

flow problem with respect to G and (S,μ), denoted by M(G; S,μ), is formulated as:

M(G; S,μ) Maximize
∑
P∈P

μ(sP , tP )λ(P ) over all multiflows (P , λ) in G,
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where sP , tP ∈ S are the endpoints of P . One of the intriguing issues in the multiflow theory is
the fractionality of optimal multiflows; see [19], [26, Part VII]. The fractionality of (S,μ) is the least
positive integer k such that M(G; S,μ) has a 1/k-integral optimal flow for any integer-capacitated
graph G = (V , E, c) with S ⊆ V . If such a k does not exist, the fractionality of (S,μ) is defined to be
infinity. The question is:

(F) What is a necessary and sufficient condition for (S,μ) to have bounded fractionality?

The 0–1 weight case is of a particular combinatorial interest. In this case, the 0–1 weight μ can
be regarded as a commodity graph, and M(G; S,μ) is the problem of maximizing the total sum of
multiflows connecting pairs of terminals s and t specified by μ(s, t) = 1. For example, when S is a
2-set {s, t} with μ(s, t) = 1, which corresponds to the single-commodity flow problem, the famous
maxflow–mincut theorem due to Ford and Fulkerson [10] states that there exists an integral optimal
flow. The two-commodity flow problem corresponds to the case where S is a 4-set {s, t, s′, t′} and μ is
defined as μ(s, t) = μ(s′, t′) = 1 and the other weights are zero. Hu’s biflow–mincut theorem [15]
says that there exists a half-integral optimal flow. Lovász [24] and Cherkassky [5] have shown the
existence of half-integral optimal flows in the case where μ(s, t) = 1 for all distinct s, t ∈ S (the
maximum free multiflow problem). These results for 0–1 weights are further generalized by Karzanov
and Lomonosov [22] to a certain class of commodity graphs. In cases of non 0–1 weights μ, the so-
called multiflow locking theorem by Karzanov and Lomonosov [22] states the existence of half-integral
optimal flows for a class of cut-decomposable metrics μ. All of these results give sufficient conditions,
but a complete answer to (F) is still unknown (even for the 0–1 weight cases).

Since M(G; S,μ) is a linear program, we may think of its dual problem M∗(G; S,μ), which is
given as

M∗(G; S,μ) Minimize
∑
e∈E

c(e)l(e)

subject to
∑
e∈P

l(e) � μ(sP , tP ) for all S-paths P ,

l(e) � 0 (e ∈ E).

Corresponding to the (primal) fractionality mentioned above, the dual fractionality of (S,μ) with in-
tegral μ is the least positive integer k such that M∗(G; S,μ) has a 1/k-integral optimal solution for
any capacitated graph G = (V , E, c) with S ⊆ V . Then the dual fractionality problem is described as
follows.

(F∗) What is a necessary and sufficient condition for (S,μ) with integral μ to have bounded dual
fractionality?

As was observed in [18], a necessary condition for bounded dual fractionality is also necessary for
bounded primal fractionality. Namely, for a fixed (S,μ), if M(G; S,μ) has a 1/k-integral optimal flow
for any integer-capacitated graph G with S ⊆ V , then M∗(G; S,μ) also has a 1/k-integral optimal
solution for any capacitated graph G . The converse is not true in general. More precisely, the primal
fractionality is greater than or equal to the dual fractionality.

The main result of this paper is a complete answer to problem (F∗). To describe our result, we
need some notation. We regard a nonnegative weight μ on S as a distance on S . Here μ is called a
distance on S if μ(s, t) = μ(t, s) � 0, and μ(u, u) = 0 for s, t, u ∈ S . In addition, if distance μ satisfies
the triangle inequality μ(s, t) � μ(s, u) + μ(u, t) for all s, t, u ∈ S , then we call μ a metric on S . For a
distance μ, a polyhedral set Tμ ⊆ RS , called the tight span of μ, is defined to be the set of minimal
elements of the polyhedron

Pμ = {
p ∈ RS

∣∣ p(s) + p(t) � μ(s, t) (s, t ∈ S)
}
.

Note that Pμ is contained in the nonnegative orthant RS+; see Fig. 1 for 2- and 3-dimensional exam-
ples.
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Fig. 1. (a) Tμ of a 2-point distance and (b) Tμ of all-one 3-point distance.

The tight span has been introduced independently by Isbell [17] and Dress [9] for a metric, and
recently considered in [11] for a (nonmetric) distance; also see [6] for an appearance of tight spans
in the context of online algorithms. Our main theorem provides a necessary and sufficient condition
for bounded dual fractionality in terms of the dimension of the polyhedral space Tμ , where the
dimension dim Tμ is defined to be the largest dimension of faces of Tμ . We state our main result in
a sharper form. A distance μ is called cyclically even if μ is integral and μ(s, t) + μ(t, u) + μ(u, s) is
an even integer for all s, t, u ∈ S . Since 2μ is always cyclically even for any integral distance μ, we
may consider (F∗) for cyclically even distances without loss of generality.

Theorem 1.1. For a cyclically even distance μ on S, the following two statements hold.

(1) If dim Tμ � 2, then there exists a half-integral optimal solution to M∗(G; S,μ) for any graph G =
(V , E, c) with S ⊆ V .

(2) If dim Tμ > 2, then there exists no integer k such that M∗(G; S,μ) has a 1/k-integral optimal solution
for any graph G = (V , E, c) with S ⊆ V .

In particular, for an integral distance μ with dim Tμ � 2, M∗(G; S,μ) has a 1/4-integral optimal
solution. This result unifies two fundamental results by Karzanov for metric-weights and 0–1 weights
below.

Theorem 1.2. (See [21].) For a cyclically even metric μ on S, the following two statements hold.

(1) If dim Tμ � 2, then there exists a half-integral optimal solution to M∗(G; S,μ) for any graph G =
(V , E, c) with S ⊆ V .

(2) If dim Tμ > 2, then there exists no integer k such that M∗(G; S,μ) has a 1/k-integral optimal solution
for any graph G = (V , E, c) with S ⊆ V .

Although (2) in this theorem is not explicit in [21], it is a consequence of his characterization of
primitively finite metrics.

For a 0–1 distance μ on S , the commodity graph Hμ = (S, Fμ) is defined by Fμ = {st | s, t ∈ S,

μ(s, t) = 1}. Consider the following condition.

(P) For any three pairwise intersecting maximal stable sets A, B, C of Hμ , we have A ∩ B = B ∩ C =
C ∩ A.

Theorem 1.3. (See [18].) For a 0–1 distance μ on S whose commodity graph Hμ has no isolated vertices, the
following two statements hold.
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(1) If Hμ satisfies condition (P), then there exists a 1/4-integral optimal solution to M∗(G; S,μ) for any
graph G = (V , E, c) with S ⊆ V .

(2) If Hμ violates condition (P), then there exists no integer k such that M∗(G; S,μ) has a 1/k-integral opti-
mal solution for any graph G = (V , E, c) with S ⊆ V .

It is not so obvious that condition (P) in Theorem 1.3 is equivalent to the 2-dimensionality of Tμ

for a 0–1 distance μ. We give a direct proof of this fact in Section 7.
Our result suggests that we cannot expect a combinatorial min–max theorem in M(G; S,μ)

for a fixed (S,μ) with dim Tμ � 3 and any graph G , although we do not know whether the 2-
dimensionality of Tμ is sufficient for bounded primal fractionality. Karzanov [19] conjectured that
condition (P) is also sufficient for bounded (primal) fractionality in 0–1 problems. Therefore, it seems
reasonable to extend it to a conjecture that the 2-dimensionality of Tμ is sufficient for bounded
fractionality in μ-weighted problems. This research direction will be further pursued by the author’s
subsequent papers.

Overview

The proof of Theorem 1.1 is based on a novel relationship between multiflows and the tight
span Tμ as generalized for nonmetric distance μ. This is the central topic in this paper. A certain
duality relationship between multiflows and metrics was explored by Onaga and Kakusho [25] and
Iri [16] in the 1970s, and further developed by Lomonosov and Karzanov [23,18]. Indeed, the LP-dual
of M(G; S,μ) can also be represented as

Minimize
∑
xy∈E

c(xy)d(x, y)

subject to d : metric on V , (1.1)

d(s, t) � μ(s, t) (s, t ∈ S).

This can be easily seen from the fact that we can replace l in M∗(G; S,μ) by the path metric induced
by l; see [23]. In the mid-1990s, a more sharper duality by using tight spans was found by Bandelt,
Chepoi, and Karzanov [2,3,20,21] (in the metric case). Our approach to Theorem 1.1 also lies on this
line of research developments.

Our proof is based on a special duality relation that the dual of M(G; S,μ) is also represented as
a continuous location problem on the tight span Tμ as follows. Recall the definitions of Pμ and Tμ ,
and define a subset Tμ,s ⊆ Tμ for s ∈ S as

Pμ = {
p ∈ RS

∣∣ p(s) + p(t) � μ(s, t) (s, t ∈ S)
}
, (1.2)

Tμ = the set of minimal elements of Pμ, (1.3)

Tμ,s = {
p ∈ Tμ

∣∣ p(s) = 0
}

(s ∈ S). (1.4)

Fig. 2(b) illustrates the tight span Tμ together with Tμ,s (s ∈ S) of a 5-point (nonmetric) distance μ.
Then Tμ is a 2-dimensional (nonconvex) polyhedral set in 5-dimensional space, which is obtained
by gluing three pentagons and three triangles. We consider a continuous location problem in Tμ as
follows.

(TSD) Minimize
∑
xy∈E

c(xy)
∥∥ρ(x) − ρ(y)

∥∥∞

subject to ρ : V → Tμ,

ρ(s) ∈ Tμ,s (s ∈ S).

We call it the tight-span dual to the weighted maximum multiflow problem. The tight-span dual is
a problem of optimizing a location {ρ(x)}x∈V in the l∞-space Tμ . A location problem of this type is
called a p-facility minisum problem with mutual communication or a multifacility location problem in the
location theory [27]. In fact, the dual of M(G; S,μ) is further reduced to (TSD) as follows.
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Fig. 2. (a) Distance μ, (b) tight span Tμ , and (c) Tμ ∩ Z .

Theorem 1.4. The optimal value of M(G; S,μ) is equal to the minimum value of the tight-span dual (TSD).

This duality relation has already been recognized in the case of metrics by Karzanov [20,21]. Our
contribution is to extend it to a nonmetric version. In analogy to the network flow theory, ρ(x) is
a potential at x ∈ V , and ‖ρ(x) − ρ(y)‖∞ is a potential difference. In a single-commodity case, S is a
2-set, Tμ is a segment (Fig. 1(a)), and therefore ρ(x) can be regarded as an ordinary scalar potential.

For a finite set Z of points in Tμ , we consider the following discrete location problem:

(TSD(Z)) Minimize
∑
xy∈E

c(xy)
∥∥ρ(x) − ρ(y)

∥∥∞

subject to ρ : V → Tμ ∩ Z ,

ρ(s) ∈ Tμ,s ∩ Z (s ∈ S).

Clearly, the minimum value of (TSD(Z)) is greater than or equal to that of (TSD). Theorem 1.1(1) fol-
lows from the following characterization when the continuous location problem (TSD) can be reduced
to the discrete one (TSD(Z )) for some finite set Z ⊆ Tμ .

Theorem 1.5. For a rational distance μ on a finite set S, the following two statements hold.

(1) If dim Tμ � 2, then there exists a finite set Z of points in Tμ such that for any graph G = (V , E, c) with
S ⊆ V , the optimal value of M(G; S,μ) is equal to the minimum value of (TSD(Z)), i.e., we can always
take an optimal solution ρ of (TSD) satisfying ρ(V ) ⊆ Z .

(2) In addition, if μ is cyclically even, then we can take Z such that the l∞-distances on Z are half-integral.

We give some comments on our results. Theorem 1.5 can be regarded as a multiflow analogue
of discreteness of potential in network flow theory. So the set Z of points can also be regarded as
integer points in Tμ , although Z is not a subset of the ordinary integer points ZS in general. Fig. 2(c)
illustrates Z as the black dot points; also see Fig. 13 for further examples. Moreover, the constraints in
(TSD(Z)) imply that it is an optimization problem over certain partitions of V . Therefore, solutions of
(TSD(Z)) have a combinatorial meaning. This leads us to a unified interpretation of the combinatorial
dual of several known min–max theorems in the multiflow theory mentioned above. For example,
consider a distance of a 2-set, which corresponds to a single-commodity case. Then its tight span is a
line segment (Fig. 1(a)), and Z can be taken to be its endpoints, and hence (TSD(Z)) is the problem
of finding a minimum cut. Consider the case of all-one distance μ of a 3-set, which corresponds
to a maximum free multiflow problem of three terminals. Then Tμ is a star with three edges of
length 1/2 (Fig. 1(b)), and Z can be taken to be its vertices, and (TSD(Z)) immediately gives the
Lovász–Cherkassky duality relation; see [21, p. 241] for a related argument.

An intuitive reason why the 2-dimensionality of Tμ implies bounded dual fractionality is the fol-
lowing well-known property of the l∞-space; see [8, p. 31].

(
R2, l∞

)
is isomorphic to

(
R2, l1

)
by the map (x1, x2) 
→

(
x1 + x2

2
,

x1 − x2

2

)
.
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In fact, it will turn out that (Tμ, l∞) can be obtained by gluing certain l∞-spaces (Proposition 3.2).
If dim Tμ � 2, then Tμ is a 2-complex of l1-spaces. Recall that every finite submetric in an l1-space
is cut-decomposable [8]. Therefore the metric space (Tμ, l∞) with dim Tμ � 2 shares nice decompos-
ability properties similar to l1-spaces.

Karzanov’s proof of Theorem 1.2 is based on his elegant characterization of minimizable graphs [20],
and a number of properties of modular closures and least generating graphs (LG-graphs) of met-
rics [21]. Such a graph metric approach does not seem to extend to the case of nonmetric distances.
In particular, we do not know an analogue of LG-graphs and modular closures of nonmetric distances.
Instead, our proof of Theorem 1.1 relies mainly on Theorem 1.4 and the geometry of the tight span Tμ .

This paper is organized as follows. In Section 2, we prove Theorem 1.4. In Section 3, we study
geometric properties of Tμ which are the basis for the subsequent arguments. In Section 4, we give
a construction of Z in Theorem 1.5 by drawing a global l1-coordinate system on the tight span, and
prove (1) in Theorem 1.5. In Section 5, we prove the half-integrality assertion (Theorem 1.1(1) and
Theorem 1.5(2)). In Section 6, we prove the unbounded fractionality assertion (Theorem 1.1(2)). In
Section 7, we verify that condition (P) in Theorem 1.3 is indeed equivalent to the 2-dimensionality of
the tight span of a 0–1 distance, and also give an explicit combinatorial construction of tight spans
for 2-dimensional 0–1 distances. Finally, Section 8 gives some remarks.

Notation

We use the following notation. Let R and R+ be the sets of reals and nonnegative reals, respec-
tively. Let Z be the set of integers. The set of functions from a set V to R is denoted by RV . For
p,q ∈ RV , p � q means p(x) � q(x) for all x ∈ V . For p ∈ RV and S ⊆ V , the restriction of p to S is
denoted by p|S . Similarly, for a distance d on V and S ⊆ V , the restriction of d to S is denoted by
d|S . The l∞-distance between two points p,q ∈ RS is simply denoted by ‖p,q‖, i.e.,

‖p,q‖ := ‖p − q‖∞ = sup
s∈S

∣∣p(s) − q(s)
∣∣. (1.5)

We define the l∞-distance between two subsets P , Q ⊆ RS by

‖P , Q ‖ := inf
{‖p − q‖∞

∣∣ p ∈ P , q ∈ Q
}
. (1.6)

We simply denote ‖{p}, Q ‖ by ‖p, Q ‖. The characteristic vector χS ∈ RV of S ⊆ V is defined as
χS (s) = 1 for s ∈ S and χS (s) = 0 for s /∈ S . We simply denote χ{s} by χs , which is the sth unit
base vector. For an undirected graph G = (V , E), the edge between x, y ∈ V is denoted by xy or yx.
xx means a loop. E V is the set of edges of the complete graph on vertices V . A stable set A of G is a
subset of vertices such that there is no edge both of whose endpoints belong to A. A partition of G
is a partition of vertices such that each part is a stable set. In particular, if there is a bipartition, G is
called bipartite. G is called a complete multipartite graph if G has a partition such that each pair of
vertices in different parts is connected by an edge. We often regard distance d on V as d ∈ RE V+ . We
often identify a distance space (S,μ) with distance μ. We use the standard terminology of polytope
theory such as faces, extreme points, polyhedral complex or subdivision, and so on; see [28].

2. The tight-span dual to the weighted maximum multiflow problem

In this section, we prove Theorem 1.4 saying that the maximum value of M(G; S,μ) is equal to
the minimum value of the tight-span dual:

Minimize
∑
xy∈E

c(xy)
∥∥ρ(x),ρ(y)

∥∥
subject to ρ : V → Tμ,

ρ(s) ∈ Tμ,s (s ∈ S).
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Recall the definitions of Pμ , Tμ , and Tμ,s in (1.2)–(1.4) and the notation ‖ · , · ‖ in (1.5). The proof
consists of two lemmas. The first lemma states that the dual of M(G; S,μ) is reduced to the location
problem on Pμ as follows.

Lemma 2.1. The optimal value of M(G; S,μ) is equal to the minimum value in the following problem:

Minimize
∑
xy∈E

c(xy)
∥∥ρ(x),ρ(y)

∥∥

subject to ρ : V → Pμ, (2.1)

ρ(s) ∈ Pμ,s (s ∈ S),

where the subset Pμ,s ⊆ Pμ for s ∈ S is defined by

Pμ,s = {
p ∈ Pμ

∣∣ p(s) = 0
}
.

Proof. We use problem (1.1) instead of M∗(G; S,μ). For ρ : V → Pμ with ρ(s) ∈ Pμ,s (s ∈ S), define
a metric dρ on V by

dρ(x, y) := ∥∥ρ(x),ρ(y)
∥∥ (x, y ∈ V ).

Then for s, t ∈ S we have

dρ(s, t) = ∥∥ρ(s),ρ(t)
∥∥ �

(
ρ(s)

)
(t) − (

ρ(t)
)
(t)

= (
ρ(s)

)
(t) + (

ρ(s)
)
(s) � μ(s, t) (s, t ∈ S),

where we use (ρ(s))(s) = (ρ(t))(t) = 0 and ρ(s) ∈ Pμ . Therefore, dρ is feasible to (1.1).
Conversely, take a metric d feasible to (1.1). Define a map ρd : V → RS by

(
ρd(x)

)
(s) := d(s, x) (s ∈ S, x ∈ V ).

By the definition of ρd(x) and the triangle inequality, we have

ρd(x)(s) + ρd(x)(t) = d(x, s) + d(x, t) � d(s, t) � μ(s, t).

This implies ρd(x) ∈ Pμ . Moreover, ρd(s)(s) = d(s, s) = 0 implies ρd(s) ∈ Pμ,s . Therefore ρd is feasible
to (2.1). Furthermore, the triangle inequality d(x, y) � |d(x, s)− d(s, y)| implies d(x, y) � ‖ρ(x),ρ(y)‖.
The nonnegativity of c implies

∑
xy∈E

c(xy)d(x, y) �
∑
xy∈E

c(xy)
∥∥ρ(x),ρ(y)

∥∥.

Hence we can always take an optimal solution of (1.1) as dρ for some ρ feasible to (2.1). �
The second lemma, due to Dress, states the existence of a nonexpansive retraction from Pμ to Tμ .

Although he stated this lemma for metrics, his proof in [9, Remark, p. 332] does not use the triangle
inequality. Therefore it is applicable to nonmetric distances.

Lemma 2.2. (See [9, (1.9), p. 331].) There is a map φ : Pμ → Tμ such that

(1) ‖φ(p),φ(q)‖ � ‖p,q‖ for p,q ∈ Pμ , and
(2) φ(p) � p for p ∈ Pμ , and thus φ is identical on Tμ .
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Since c is nonnegative, by Lemma 2.2, we can always take an optimal solution of (2.1) from the
set of maps ρ : V → Tμ with ρ(s) ∈ Tμ,s(s ∈ S). Thus we obtain Theorem 1.4.

In the rest of this section, we briefly discuss a relationship among the following three sets.

Pμ,V = {d: metric on V | d|S � μ} + RE V+ ,

Tμ,V = the set of minimal elements of Pμ,V ,

Πμ,V = {
ρ: V → Tμ

∣∣ ρ(s) ∈ Tμ,s (s ∈ S)
}
.

Recall that (1.1) is a linear optimization over Pμ,V , its optimal solution can be taken from Tμ,V by
nonnegativity of c, and the tight-span dual is an optimization over Πμ,V . Note that each element
of Tμ,V is necessarily a metric.

As in the proof of Lemma 2.1, for a map ρ ∈ Πμ,V we define a metric dρ on V by

dρ(x, y) := ∥∥ρ(x),ρ(y)
∥∥ (x, y ∈ V ), (2.2)

and for a metric d ∈ Tμ,V we define a map ρd : V → Pμ by

ρd(x)(s) := d(s, x) (s ∈ S, x ∈ V ).

The relationship among Pμ,V , Tμ,V , and Πμ,V is summarized as follows.

Proposition 2.3. We have the following.

(1) For a metric d ∈ Tμ,V , we have ρd ∈ Πμ,V and dρd = d.
(2) For a map ρ ∈ Πμ,V , we have dρ ∈ Pμ,V and ρdρ = ρ .
(3) Suppose that μ is a metric. Then we have dρ ∈ Tμ,V . In particular, Tμ,V and Πμ,V are in one-to-one

correspondence.

We easily see the properties (1) and (2) by a similar argument as in the proof of Lemma 2.1.
Consider (3). Suppose that μ is a metric. Then it is easy to see that d|S = μ holds for any d ∈ Tμ,V .
Therefore, Tμ,V is exactly the set of all tight extensions of metric μ. Here, a metric d on V (⊇ S)

is called a tight extension of μ if d|S = μ and there is no metric d′ �= d on V such that d′|S = μ and
d′ � d. Then the bijection in (3) has already been established by Dress [9, Theorem 3].

Remark 2.4. By extending the notion of tight extension to general nonmetric distances, one can see
that the following two sets are in one-to-one correspondence.

(i) The set of all maps ρ : V → Tμ .
(ii) The set of minimal elements of the polyhedron

{
d: distance on V

∣∣ d|S = μ, d(s, u) + d(u, t) � d(s, t) (u ∈ V \ S, s, t ∈ V )
} + RE V+ .

See the preprint version of this paper [12] for details, in which a distance in (ii) is called a tight
extension of (S,μ).

Remark 2.5. If μ is a metric, then it is known [11, Lemma 2.2] that Tμ,s is a single point μs ∈ RS

defined by

μs(t) := μ(t, s) (t ∈ S).

Namely, μs is the sth column vector of the distance matrix μ. In this case, ρ(s) is fixed to the
point μs for s ∈ S in (TSD).
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Fig. 3. Gluing l1-octagons.

3. Geometry of Tμ

The main aim of this section is to reveal several geometric properties of 2-dimensional tight
spans Tμ which are the basis for the subsequent arguments. Among them, the following two propo-
sitions are particularly important for us; in fact, they (and Proposition 3.3) are sufficient to prove
Theorem 1.5(1) in the next section. The first proposition concerns the shape of a 2-dimensional face.
Here, we simply call a 2-dimensional face a 2-face.

Proposition 3.1. Let F be a 2-face of Tμ . Then the metric space (F , l∞) is isomorphic to the polygon Q in the
l∞-plane represented as

Q =
{
(x1, x2) ∈ R2

∣∣∣ a1 � x1 � a′
1, b � x1 + x2 � b′

a2 � x2 � a′
2, c � x1 − x2 � c′

}
(3.1)

for some a1,a′
1,a2,a′

2,b,b′, c, c′ ∈ R. Moreover, the isometry is given by the projection RS → R{s,t} for some
s, t ∈ S.

A polygon represented as (3.1) is exactly a convex polygon each of whose edges is parallel to one
of the four vectors (1,0), (0,1), (1,1), (1,−1). We call such a polygon in the l∞-plane an l∞-octagon
(though it can be a k-gon with 3 � k � 8). Recall that the l∞-plane is isomorphic to the l1-plane.
By the map (x1, x2) 
→ ((x1 + x2)/2, (x1 − x2)/2), we again obtain a convex polygon in the l1-plane
each of whose edges is parallel to one of the four vectors (1,0), (0,1), (1,1), (1,−1). We call such a
polygon in the l1-plane an l1-octagon. If we draw the l1/l∞-coordinate on a 2-face F , then we observe
that there are two types of edges of F : edges parallel to an l1-axis and edges parallel to an l∞-axis.
Here an l1-axis means a vector (1,1) or (1,−1), and an l∞-axis means a vector (1,0) or (0,1) by the
isometric projection to (R2, l∞) in Proposition 3.1.

The second proposition says that if dim Tμ � 2, the metric space (Tμ, l∞) is constructed by gluing
l1-octagons along the same type of edges; see Fig. 3(a).

Proposition 3.2. Suppose dim Tμ � 2. Let F , F ′ be 2-faces of Tμ sharing an edge e. The edge e is parallel to
an l1-axis on F if and only if e is parallel to an l1-axis on F ′ .

This property enables us to draw a global l1-coordinate system on a 2-dimensional tight span,
which gives a construction of Z in Theorem 1.5 and will be discussed in the next section. The proofs
of two propositions above will be given in Sections 3.3 and 3.4.

3.1. Tμ is geodesic

Firstly, we verify that (Tμ, l∞) is geodesic. This means that for p,q ∈ Tμ there exists a path in Tμ

connecting p and q with its length ‖p,q‖, where ‖ · , · ‖ denotes the l∞-distance; see (1.5). To avoid
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the measure-theoretic argument, a path P in Tμ means a polygonal curve in Tμ and its length is
defined to be the sum of the l∞-length of the segments in P .

Proposition 3.3. The metric space (Tμ, l∞) is geodesic.

Proof. For p,q ∈ Tμ , consider the image of the segment [p,q] ⊆ Pμ by a nonexpansive retraction in
Lemma 2.2. Since Tμ is a polyhedral set, we can modify it to a polygonal curve of length ‖p,q‖. �
3.2. The graph K (p) and the moving process on Tμ

Secondly, we introduce an important technical tool to investigate Tμ . For a point p ∈ Pμ , we define
an undirected graph Kμ(p) = K (p) = (S, E(p)) by

st ∈ E(p)
def⇐⇒ p(s) + p(t) = μ(s, t) (s, t ∈ S).

Note that a loop appears at s ∈ S exactly when p(s) = 0. The graph K (p) expresses the information
of facets of Pμ which contain p.

Let F (p) denote the minimal face of Pμ that p belongs to. Then one can easily see the following
characterization of elements of Tμ; see also [9,11].

Lemma 3.4. For p ∈ Pμ , the following conditions are equivalent.

(a) p belongs to Tμ .
(b) For any s ∈ S, there is t ∈ S such that p(s) + p(t) = μ(s, t).
(c) K (p) has no isolated vertices.
(d) F (p) is bounded.

Note that in (b) the case t = s is allowed and in this case s has a loop. Also note that a vertex s
with p(s) = 0 is never isolated. In several places, the following observation is useful.

F (p) ⊆ F (q) if and only if K (q) is a subgraph of K (p). (3.2)

Next we present a useful way of moving a point p ∈ Tμ to another point in Tμ using a stable set
of K (p). For a set A of vertices of K (p), the neighborhood N(A) of A is the set of vertices which are
incident to A in K (p) and are not in A. For a stable set A of K (p) and a sufficiently small ε > 0, one
can easily see that the point

p A,ε := p + ε(−χA + χN(A))

belongs to Pμ . In particular, we observe that

K
(

p A,ε
)

is equal to K (p) minus all edges joining N(A) and S \ A. (3.3)

The following lemma gives a condition for p A,ε ∈ Tμ , which immediately follows from (3.3) and
(a) ⇔ (c) in Lemma 3.4.

Lemma 3.5. For p ∈ Tμ , let A be a stable set in K (p). If A is maximal stable in K (p) or in some connected
component of K (p), then for a sufficiently small ε > 0, the point p A,ε belongs to Tμ .

As an application of this lemma, we have the following geodesic properties of Tμ which will be
used for the proof of (2) in Theorem 1.1. Recall the definition (1.6) of the l∞-distances among subsets.

Lemma 3.6. The following two statements hold.

(1) μ(s, t) = ‖Tμ,s, Tμ,t‖ for s, t ∈ S.
(2) p(s) = ‖p, Tμ,s‖ for p ∈ Tμ, s ∈ S.
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Proof. (1) For p ∈ Tμ,s and q ∈ Tμ,t , we have ‖p,q‖ � p(t) − q(t) = p(t) + p(s) � μ(s, t) by q(t) =
p(s) = 0. We show the reverse inequality. It is easy to see that there is p ∈ Tμ,s with st ∈ E(p); take a
minimal p ∈ Pμ with p(s) = 0 and p(t) = μ(s, t). We may assume μ(s, t) > 0 since μ(s, t) = 0 implies
p ∈ Tμ,s ∩ Tμ,t and thus μ(s, t) = 0 = ‖Tμ,s, Tμ,t‖. We can take a maximal stable set A containing t .
Move p → p A,ε as much as p A,ε ∈ Tμ . Then we have ‖p, p A,ε‖ = ε . Reset p ← p A,ε , and repeat this
process until p(t) = 0. This procedure terminates by the polyhedrality of Tμ . In this procedure, the
vertex t is always in N(A). Therefore, the resulting path from Tμ,s to Tμ,t has the length μ(s, t).

(2) Since each q ∈ Tμ,s satisfies q(s) = 0 by definition, we have ‖p, Tμ,s‖ � infq∈Tμ,s {p(s) −
q(s)} = p(s). We show the reverse inequality by constructing a path from p to Tμ,s with the length
equal to p(s). We may assume p(s) > 0 since p(s) = 0 implies p ∈ Tμ,s and thus p(s) = ‖p, Tμ,s‖ = 0.
We can take a maximal stable set A containing s. Then move p → p A,ε as much as p A,ε ∈ Tμ . Set
p ← p A,ε . Repeat this process until p(s) = 0. Then we obtain a desired path of length p(s). �

The first property (1) in Lemma 3.6 means that the distance μ is isometrically embedded
into Tμ as the l∞-distance among subsets {Tμ,s}s∈S , which was shown in [11, Theorem 2.4]. The
second property (2), which is an extension of [9, Theorem 3(ii)], gives an interpretation of p as a
multiflow-potential. Recall a relation between distances and potentials in the network flow theory.
Since {Tμ,s}s∈S corresponds to terminals, p is regarded as a vector of distances from terminals.

3.3. The dimension and the local structure of faces of Tμ

Thirdly, we study the dimension and the local structure of a face F in terms of the graph K (·).
Take p∗ in the relative interior of a face F . Suppose that K (p∗) has m bipartite components with bi-
partitions {A1, B1}, {A2, B2}, . . . , {Am, Bm}. Then it is easy to see that the set of vectors {χAi −χBi }m

i=1
is a basis of the vector space {p ∈ RS | p(s) + p(t) = 0 (st ∈ E(p∗))}. Then every point p in F is
uniquely represented as

p = p∗ +
m∑

i=1

xi(χAi − χBi ) (3.4)

for x1, x2, . . . , xm ∈ R. Therefore we have the following.

Proposition 3.7. (See [9].) For p ∈ Tμ , we have

dim F (p) = the number of bipartite components of K (p),

where loops are regarded as odd cycles.

In the expression (3.4), the map p 
→ (x1, x2 . . . , xm) is an injective isometry from (F , l∞) to
(Rm, l∞) since each χAi − χBi is a 0–1 vector. From this fact, we easily obtain Proposition 3.1. In-
deed, consider the case m = 2. Then (3.4) is

p = p∗ + x1(χA1 − χB1 ) + x2(χA2 − χB2 ). (3.5)

By substituting this equation to linear inequalities p(s) + p(t) � μ(s, t) (s, t ∈ S), we obtain the linear
inequality representation (3.1). Furthermore, the isometry is given by the projection RS → R{s,t} for
s ∈ A1 ∪ B1, t ∈ A2 ∪ B2.

3.4. Classification of faces of Tμ

Fourthly, we classify faces of Tμ in terms of graph K (p). Note that K (p) may have a connected
component each of whose vertices has a loop. Such a component is called a loop-component. In this
case, p(s) = p(t) = 0 and μ(s, t) = 0 hold for vertices s, t of the loop-component. In particular, the
loop-component is a complete graph with all loops, and is unique if it exists. A connected compo-
nent of K (p) that is not a loop-component is said to be proper. The next lemma summarizes the
classification of faces of Tμ in terms of K (·).
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Lemma 3.8. Suppose that dim Tμ � 2. For p ∈ Tμ , we have the following.

(1) F (p) is an extreme point if and only if

(1-a) the proper components of K (p) consist of one nonbipartite component, or
(1-b) the proper components of K (p) consist of two nonbipartite components.

(2) F (p) is an edge if and only if

(2-a) the proper components of K (p) consist of one bipartite component, or
(2-b) the proper components of K (p) consist of one bipartite component and one nonbipartite compo-

nent.
(3) F (p) is a 2-face if and only if the proper components of K (p) consist of two bipartite components.
(4) F (p) is a maximal face if and only if the proper components of K (p) consist of complete bipartite compo-

nents.

Proof. We show that K (p) has at most two proper components. Indeed, suppose that K (p) has at
least three proper components. Take a maximal stable set A in K (p) and small ε > 0. Then we have
p A,ε ∈ Tμ by Lemma 3.5. By (3.3) and maximality of A, the proper components of K (p A,ε ) consist
of edges in K (p) joining A and N(A), and A meets all proper components. In particular, all proper
components in K (p A,ε ) are bipartite. Therefore K (p A,ε ) has at least three bipartite components since
K (p A,ε ) is a (bipartite) subgraph of K (p). This is a contradiction to dim Tμ � 2 by Proposition 3.7.
From this fact and Proposition 3.7, we have (1-3). Suppose that F (p) is a maximal face. By the same
argument above, K (p) has no proper nonbipartite components. Suppose that K (p) has a bipartite
component K of bipartition {A, B} that is not complete. Then there is a maximal stable set A′ in K
intersecting both A and B . Therefore, for small ε > 0 we have p A′,ε ∈ Tμ by Lemma 3.5, and K (p A′,ε )
is a proper subgraph of K (p), which implies F (p A′,ε ) ⊃ F (p) by (3.2). This is a contradiction to the
maximality. Then we have the only-if-part of (4). The proof of the if-part is omitted since it is not
difficult and is not used in the subsequent arguments. �

In particular, there are two types of edges in Tμ: (2-a) and (2-b) in Lemma 3.8. An edge e of Tμ

is called an l1-edge if the type of Ke is (2-a), and is called an l∞-edge if the type of Ke is (2-b), where
Ke := K (p) for a relative interior point p in e. An edge that is a maximal face is necessarily an l1-edge
by Lemma 3.8(4). The names “l1/l∞-edge” are justified by the following lemma.

Lemma 3.9. Let F be a 2-face and e an edge of F . Then e is parallel to an l1-axis in F if and only if e is an
l1-edge.

Proof. Let F be a 2-face, and let K F be the graph corresponding to F , i.e., K F := K (p) for a relative
interior point p in F . By Lemma 3.8, the graph K F has exactly two complete bipartite components
K1 and K2 with bipartitions {A1, B1} and {A2, B2}, respectively. By (3.5), the directions of l∞-axes
in F are χA1 − χB1 and χA2 − χB2 , and the directions of l1-axes in F are χA1∪A2 − χB1∪B2 and
χA1∪B2 − χB1∪A2 . Let e be an edge of F , and let Ke be the graph corresponding to e. Then K F is a
subgraph of Ke by (3.2). By Lemma 3.8, the type of Ke is (2-a) or (2-b). If the type of Ke is (2-b),
then Ke has exactly one of K1 and K2 as a (proper) component, and thus e is parallel to χA1 − χB1

or χA2 − χB2 by (3.4). If the type of Ke is (2-a), then both K1 and K2 are subgraphs of one bipartite
component of Ke whose bipartition is {A1 ∪ A2, B1 ∪ B2} or {A1 ∪ B2, B1 ∪ A2}. Therefore, e is parallel
to an l1-axis in F . Thus we are done. �

Since the property (2-a) or (2-b) is independent on the choice of F , we obtain Proposition 3.2.

4. l1-Grids

In this section, we introduce a global l1-coordinate system on a 2-dimensional tight span Tμ , called
an l1-grid, and show that the finite set Z in Theorem 1.5 can be taken as the set of the grid-points of
an l1-grid satisfying a certain orientability condition. The idea of drawing the l1-coordinate was used
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Fig. 4. (a) An l1-grid and (b) decomposing an integral l1-octagon by Z2.

in [3] for tight spans of 5-point metrics. The argument here extends it to general 2-dimensional tight
spans.

Now suppose that dim Tμ � 2. Recall that, by Propositions 3.1 and 3.2, Tμ can be constructed by
gluing l1-octagons. An l1-grid � of Tμ is a 2-dimensional polyhedral subdivision such that each 2-face
C of � is

(r) a rectangle with edge parallel to l1-axes of F , or
(t) an isosceles triangle such that its two equal edges are parallel to l1-axes of F and the remaining

edge is parallel to an l∞-axis of F ,

where F is the unique 2-face of Tμ containing C . In particular, by the projection to R2 in Proposi-
tion 3.1, a triangle in � is an isosceles right triangle (regarding R2 as the Euclidean plane) such that
its equal edges are parallel to (1,1) or (1,−1) and its longer edge (the hypotenuse) is parallel to (0,1)

or (1,0). See Figs. 4(a) and 2(c) in the introduction. A vertex (a zero-dimensional face) of an l1-grid
is called a grid-point. The longer edge of a triangle is called an l∞-edge, and other edges are called
l1-edges.

If μ is rational, then an l1-grid always exists. In this case, we obtain an l1-grid all of whose l1-
edges have the same length by the following construction. By rationality, we may assume that the
polyhedron Pμ is 2/k-integral for some integer k � 2. For an edge e that is a maximal face, we can
subdivide it to segments of the l∞-length 1/k. For a 2-face F , we can subdivide it to triangles and
squares of size 1/k by the following way, where the size of a triangle or a square is defined to be
the l∞-length of its l1-edge. F is regarded as a 2/k-integral l∞-octagon by the projection to R2 in
Proposition 3.1. By the transformation (x1, x2) 
→ ((x1 + x2)/2, (x1 − x2)/2), the resulting l1-octagon Q
is 1/k-integral in R2. Then the 1/k-integer grid naturally decomposes Q into triangles and squares
of size 1/k, which are the closure of the connected components obtained by deleting the coordinate
lines (i/k)(1,0) + R(0,1), R(1,0) + ( j/k)(0,1) (i, j ∈ Z) from Q ; see Fig. 4(b). From this construction,
we obtain a subdivision of Tμ consisting of squares and triangles satisfying (r) and (t). By the gluing
property (Proposition 3.2), it is indeed a polyhedral subdivision of Tμ and thus is an l1-grid. This
l1-grid is called the 1/k-uniform l1-grid.

Remark 4.1. If μ is irrational, then an l1-grid may not exist. For example, consider the distance μ on
4-set {s, s′, t, t′} defined as μ(s, s′) = 1, μ(t, t′) = α for irrational positive α, and the other distances
are zero. Then Tμ is a rectangle of four l∞-edges with the edge length ratio (1 : α). Clearly Tμ has
no l1-grids.

The graph of l1-edges behaves nicely as follows.

Proposition 4.2. Let � be an l1-grid of Tμ . For two grid-points p,q in �, there is a geodesic between p and q
consisting of l1-edges of �.
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Fig. 5. Orientations of a rectangle and a triangle.

Proof. Let L ⊆ Tμ be a geodesic from p to q. Suppose that L does not lie on the union of l1-edges
of �. Then there is a member F in � such that L meets a point not in l1-edges of F . Let F be the
first (along L) among such members of �. Let p′,q′ be the endpoint of L ∩ F . We may assume that p′
is a grid-point of � and q′ is in the boundary of F . Suppose that F is a rectangle. Then we modify L
so that p′ and q′ are connected by a geodesic boundary path in F . Then the resulting path is also
geodesic. Suppose that F is a triangle. If q′ lies on an l1-edge (a shorter edge) of F , then we modify P
as above. If q′ lies on the longer edge of F , then there is a triangle F ′ in � such that F ′ and F share
the longer edge by Proposition 3.2. Let q′′ (�= q′) be the endpoint of P ∩ F ′ . Then q′′ lies on an l1-edge
of F ′ . Then we modify L so that p′ and q′′ are connected by a geodesic boundary path in F ∪ F ′ .
The modified path is also a geodesic between p and q. Repeating this process, we eventually obtain a
desired geodesic consisting of l1-edges of �. �
Remark 4.3. Chepoi [4] studied 2-dimensional complexes constructed by gluing rectangles and isosce-
les right triangles, and explored some of interesting geodesic and graph-theoretic properties. By
using his arguments in [4, Section 7], one can show that the graph of l1-edges of an l1-grid of a
2-dimensional tight span is a hereditary modular graph without induced K3,3 and K −

3,3. A hereditary
modular graph is just a bipartite graph without isometric cycles of length k � 6 [1].

We will show that the finite set Z in Theorem 1.5 can be taken as the set of the grid-points of an
l1-grid satisfying a certain orientability condition. So we introduce the definition of orientability of l1-
grids and related concepts. Such a notion was originally introduced by Karzanov [20] for hereditary
modular graphs in a purely graph-theoretical sense. In particular, we will explain a simple modifica-
tion of Karzanov’s orbit splitting method [21]. The essential distinction is that we need to deal with
l∞-edges explicitly.

Two edges e and e′ of an l1-grid � are said to be projective if there is a sequence of edges e =
e0, e1, . . . , em = e′ such that for 0 � i � m − 1 there is a triangle in � containing ei and ei+1, or
a rectangle in � containing ei and ei+1 as its nonadjacent edges. The projectivity is an equivalence
relation on the set of edges of an l1-grid. An equivalence class is called an orbit. An l1-grid is said to be
orientable if we can orient its edges in such a way that in each rectangle nonadjacent edges have the
same direction with respect to the coordinate axes, and in each triangle an acute angle is a source or a
sink; see Fig. 5. We call such an orientation admissible. It is easy to see that an l1-grid is nonorientable
if and only if there is an orbit containing a sequence of edges p0q0, p1q1, . . . , pmqm with pm = q0,
qm = p0 such that for 0 � i � m − 1 there is a rectangle of edges {piqi, pi+1qi+1, pi pi+1,qiqi+1} or a
triangle of vertices {pi,qi = qi+1, pi+1} with an acute angle qi or {qi, pi = pi+1,qi+1} with an acute
angle pi . Such an orbit is called a nonorientable orbit. Fig. 6 illustrates the 1/2-uniform l1-grid for the
tight span given in Fig. 2(b) in the introduction. This l1-grid has one nonorientable orbit.

By subdividing some of faces meeting a (possibly nonorientable) orbit o, we can make o orientable
as follows. For a triangle all of whose edge belonging to o, subdivide it to two triangles and one
square of the half-size as in Fig. 7(a). For a rectangle with exactly two edges belonging to o, split it
into two rectangles by cutting it along the segment joining the midpoints of two nonadjacent edges
belonging to o as in Fig. 7(b). For a square with all edges belonging to o, subdivide it into four squares
of the half-size as in Fig. 7(c). For the (exceptional) case that o consists of a single edge e, subdivide
e into two edges of the half-size. This operation is called the orbit splitting (with respect to o). The
edges of this subdivided orbit can be oriented so that the original vertices are sources as in Fig. 7.
In particular, if o is nonorientable, then o is transformed into one orientable orbit of the double size
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Fig. 6. Nonorientable 1/2-uniform l1-grid.

Fig. 7. Splitting and orienting a triangle and rectangles.

that turns around the original orbit twice. If o is orientable, then o is split into two orientable orbits
of the same size that turn around the original orbit only once. The orbit splitting to o does not affect
the orientability of other orbits. Applying the orbit splitting to each nonorientable orbit, we have an
orientable l1-grid. Fig. 2(c) in the introduction is the result of an orbit splitting for Fig. 6.

Remark 4.4. If an l1-grid exists, then there is a unique “minimal” l1-grid � with the property that
every l1-grid is a refinement of �. By applying the orbit splitting to each nonorientable orbit of �,
we obtain a unique minimal orientable l1-grid �∗ . For more details of this unique minimal orientable
l1-grid, see the preprint version of this paper [12].

Related to the orbit splitting operation, we introduce the subdivision operation as follows. Let k be
a positive integer. For each rectangle R in �, divide it equally into k2 rectangles congruent to (1/k)R .
For each triangle T of size l in �, divide it into k triangles of size l/k and (k2 − k)/2 squares of
size l/k, where the size of a triangle is defined to be the length of its l1-edge. Similarly, divide each
edge that is maximal in � equally into k edges. The resulting l1-grid, denoted by �k , is called the
k-subdivision of �; see Fig. 8(b). Note that the 2-subdivision is always orientable.

Proof of (1) in Theorem 1.5

Assume that μ is rational. We are ready to prove Theorem 1.5(1).

Proposition 4.5. Let Z be the set of the grid-points of an orientable l1-grid � of Tμ . Then for every graph
G = (V , E, c) with S ⊆ V there exists an optimal solution ρ of (TSD) with ρ(V ) ⊆ Z .

Take an optimal solution ρ : V → Tμ of (TSD). Since μ is rational, we may assume that the image
of V by ρ are rational(-valued). Then there is an integer k such that the image of V by ρ lies on the
set Zk of the grid-points on �k .

Fix an admissible orientation of �. Each edge e of � is subdivided into k edges e1, e2, . . . , ek in �k .
We number their indices by the orientation as follows. If e has ends p and q, is oriented as −→pq, and
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Fig. 8. (a) l1-grid �, (b) 4-subdivision �4, and (c) edge set U .

is subdivided into p0 p1, p1 p2, . . . , pk−1 pk for p0 = p and pk = q, then let ei := pi−1 pi . Take arbitrary
i ∈ {1,2, . . . ,k}. Let U be the set of edges that are projective to the ith subdivided edge ei of some
edge e in �. Then U is the union of several orbits, and does not meet any jth subdivided edge e j
for j �= i; one can verify this fact by considering U in each subdivided face. See Fig. 8(c), where the
broken lines represent the edge set U . Consider the 1-skeleton graph of �k . Contract all edges in U
and delete multiple edges appeared. Then resulting graph coincides with the 1-skeleton graph of �k−1

(as graph); see Fig. 8(c). Therefore we obtain a map φ : Zk → Zk−1 by defining φ(p) to be the point
in Zk−1 corresponding to the contracted point of p in the 1-skeleton graph of �k−1. Also contract
all edges not in U and delete multiple edges appeared. Then resulting graph coincides with the 1-
skeleton graph of �. Similarly we obtain a map ψ : Zk → Z by defining ψ(p) to be the contracted
point. By construction, if ρ(x) belongs to some face C ∈ �, then both φ ◦ ρ(x) and ψ ◦ ρ(x) belong to
C . This implies that both compositions φ ◦ ρ and ψ ◦ ρ are feasible to (TSD).

Therefore it suffices to show the following.

dρ � k − 1

k
dφ◦ρ + 1

k
dψ◦ρ. (4.1)

(In fact, the equality holds.) Recall that dρ is defined as dρ(x, y) := ‖ρ(x),ρ(y)‖; see (2.2). If
(4.1) holds, then at least one of φ ◦ ρ and ψ ◦ ρ is an optimal solution by nonnegativity of c. If
ψ ◦ ρ is optimal, then the image of ψ ◦ ρ lies on Z , and we are done. If φ ◦ ρ is optimal, then the
image of ψ ◦ ρ lies on the grid-points of �k−1, and we can repeat the same process to φ ◦ ρ .

By Proposition 4.2, there is a geodesic L between p and q consisting of l1-edges of �k . We regard L
as a set of l1-edges of �k . By applying φ to (vertices in) L, we obtain a path connecting φ(p) and
φ(q) whose length is k/(k − 1) times as longer as the sum of the length of all edges in L \ U . Also by
applying ψ to L, we obtain a path connecting ψ(p) and ψ(q) whose length is k times as longer as
the sum of the length of all edges in L ∩ U . Therefore, we have

‖p,q‖ � k − 1

k

∥∥φ(p),φ(q)
∥∥ + 1

k

∥∥ψ(p),ψ(q)
∥∥.

Consequently, we have (4.1).

5. Proof of the half-integrality

In this section, we prove (2) in Theorem 1.5 that immediately implies (1) in Theorem 1.1 by the
correspondence ρ 
→ dρ in (2.2). We begin with the fundamental lemma.

Lemma 5.1. If μ is a cyclically even distance, then the polyhedron Pμ is integral.

Proof. Let p be an extreme point of Tμ . Then K (p) has no bipartite components. Take a nonbipartite
component K . Then there is an odd cycle C in K . We order vertices in C cyclically as (s0, s1, . . . , sk−1).
Then p(s0) is given as
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p(s0) = 1

2

k−1∑
j=0

(−1) jμ(s j, s j+1), (5.1)

where the indices are taken modulo k. By the cyclically evenness, p(s0) is integral, and thus p(s j) is
integral. Let s′ be an arbitrary vertex of K . There is a path in K (p) connecting s′ to C . Then p(s′) is
determined by substituting p(s) + p(s′) = μ(s, s′) along this path. Consequently p is integral. �

Now to show the 1/4-integrality is easy. Indeed, by the previous lemma, we can take the 1/2-
uniform l1-grid � of Tμ . � may be nonorientable. By applying the orbit splitting to each orbit, we
obtain the 1/4-uniform l1-grid that is orientable. By Propositions 4.2 and 4.5, the l∞-distances among
the grid-points of the 1/4-uniform l1-grid are quarter-integral. Consequently, we can take a quarter-
integral optimal solution in (1.1) and in M∗(G; S,μ). In fact, surprisingly, this 1/2-uniform l1-grid �

is orientable. The rest of this section is devoted to proving this fact.

Theorem 5.2. Suppose that μ is a cyclically even distance with dim Tμ � 2. The 1/2-uniform l1-grid for Tμ

is orientable.

The proof is relatively complicated. A key is the following observation.

(∗1) If an l∞-octagon is integral in the lattice {(x1, x2) ∈ Z2 | x1 + x2 ∈ 2Z}, then by the map (x1, x2) 
→
((x1 + x2)/2, (x1 − x2)/2), the resulting l1-octagon is integral in Z2.

Therefore, if all 2-faces of Tμ have such a property, then Tμ has the integral uniform l1-grid and
consequently the 1/2-uniform l1-grid is orientable by the orbit splitting.

Motivated by (∗1), for U ⊆ S , we define a lattice LU in ZS by

LU = {
p ∈ ZS

∣∣ p(s) = 0 (s ∈ U ), p(t) + p(u) ∈ 2Z (t, u ∈ S \ U )
}
,

and define a subset Tμ,U ⊆ Tμ by

Tμ,U = the union of maximal faces F of Tμ

whose K F has the loop-component of vertex set U ,

where K F := K (p) for a relative interior point p in F , and U = ∅ means that K F has no loop-
component. Recall that the loop-component is a connected component all of whose vertices have
a loop. A loop-component is unique if it exists. Other connected components are said to be proper.
Then Tμ,U and LU have the following property.

(∗2) For a 2-face F ⊆ Tμ,U , the isometric projection of F ∩ LU to R2 in Proposition 3.1 coincides with
the intersection of an l∞-octagon and the lattice {(x1, x2) ∈ Z2 | x1 + x2 ∈ 2Z}.

This immediately follows from the local coordinate (3.5) in a 2-face. In the sequel, we try to make
each 2-face F ⊆ Tμ,U integral in the affine lattice of some translation of LU .

Recall Lemma 3.8. There are two types of extreme points in Tμ: (1-a) and (1-b) in Lemma 3.8.
An extreme point of type (1-a) is said to be normal. An extreme point p of type (1-b) is called a core.

Lemma 5.3. For U ⊆ S, let p,q ∈ Tμ,U be normal extreme points of Tμ . Then we have

p − q ∈ LU .

Proof. Since p is normal, K (p) has exactly one proper component K by definition. Then both s, t ∈
S \ U belong to K . By a simple calculation from (5.1), p(s) + p(t) is given by

∑
e∈P ±μ(e) for some

(possibly nonsimple) path P connecting s and t in K . Also q(s) + q(t) is given by the sum of ±μ(e)
along a path P ′ connecting s and t in K . Therefore (p −q)(s)+(p −q)(t) is given by the sum of ±μ(e)
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along some (possibly nonsimple) cycle P ∪ P ′ . Therefore, (p −q)(s)+(p −q)(t) is even by the cyclically
evenness of μ. �
Lemma 5.4. If Tμ,U �= ∅, then there exists a normal extreme point in Tμ,U .

The proof will be given in the end of this section. For U ⊆ S with Tμ,U �= ∅, we can define an
affine lattice Aμ,U by

Aμ,U = p + LU ,

where p is any normal extreme point in Tμ,U . The affine lattices {Aμ,U }U⊆S together with {Tμ,U }U⊆S
have the following gluing property.

Lemma 5.5. For U , U ′ ⊆ S with Tμ,U ∩ Tμ,U ′ �= ∅, the following holds.

Aμ,U ∩ Tμ,U ∩ Tμ,U ′ = Aμ,U ′ ∩ Tμ,U ∩ Tμ,U ′ . (5.2)

Proof. Take q ∈ Aμ,U ∩ Tμ,U ∩ Tμ,U ′ . Let p and p′ be normal extreme points in Tμ,U and Tμ,U ′ ,
respectively. Then p − q ∈ LU . It suffices to show p′ − q ∈ LU ′ . By the same argument as in the proof
of Lemma 5.3, for s, t ∈ S \U , p(s)+ p(t) is the sum of ±μ(e) along some s–t path, and for s, t ∈ S \U ′ ,
p′(s) + p′(t) is the sum of ±μ(e) along some s–t path. By p − q ∈ LU , for s, t ∈ S \ U , q(s) + q(t) is
equal to p(s) + p(t) modulo 2.

It suffices to show that for s, t ∈ S \ U ′ , q(s) + q(t) is equal to the sum of ±μ(e) along some s–t
path modulo 2.

Case 1. s, t ∈ U \ U ′ . Then we have q(s) + q(t) = 0 = μ(s, t) since q(u) = 0 for any u ∈ U ∪ U ′ .

Case 2. s, t ∈ S \(U ∪U ′). We have q(s)+q(t) = (q− p)(s)+(q− p)(t)+ p(s)+ p(t) ≡ p(s)+ p(t) (mod 2)

by q − p ∈ LU . Then p(s) + p(t) is the sum of ±μ(e) along some s–t path, and so is q(s) + q(t)
modulo 2.

Case 3. s ∈ U \ U ′ , t ∈ S \ (U ∪ U ′). We may assume that K (q) has no loop-component of vertex
set U ′′ = U ∪ U ′ . Indeed, if K (q) has such a loop-component, then every maximal face containing q
belongs to Tμ,U ′′ , and this implies U = U ′ = U ′′ (the statement (5.2) is trivial). Therefore there are
s′ ∈ U ∪ U ′ and t′ ∈ S \ (U ∪ U ′) with s′t′ ∈ E(q). Then we have q(s) + q(t) = (q(s) + q(s′)) + (q(s′) +
q(t′)) + (q(t) − q(t′)) ≡ μ(s, s′) + μ(s′, t′) + (q(t) − q(t′)) (mod 2), where we use q(s) = q(s′) = 0 =
μ(s, s′). By Case 2 above, q(t) − q(t′) is equal to the sum of ±μ(e) along t–t′ path modulo 2. Then
we are done. �

By this gluing property, if all extreme points of Tμ lie on the finite set Z ′ := ⋃
U⊆S Tμ,U ∩ Aμ,U ,

then each 2-face satisfies the property (∗1) and thus there exists the integral uniform l1-grid. Al-
though all normal extreme points lie on Z ′ by Lemma 5.4 and the definition of Aμ,U , some of cores
may not lie on Z ′ . Next we study the local property of a core p. By definition of a core (an extreme
point of type (1-b) in Lemma 3.8), K (p) consists of two proper nonbipartite components and the
(possibly empty) loop-component. A more detailed description of K (p) is given as follows.

Lemma 5.6. Let p be a core. There is a partition {A1, . . . Am, B1, . . . , Bn, C} of S having the following proper-
ties.

(1) C is the set of vertices having a loop (C may be empty).
(2) The subgraph of K (p) induced by S \ C consists of two complete multipartite components with partitions

{A1, . . . , Am} and {B1, . . . , Bn}.
(3) If some vertex of Ai (respectively B j ) is joined to t ∈ C, then all vertices of Ai (respectively B j ) are joined

to t.
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Fig. 9. (a) K3,3, (b) the complex �p , and (c) an orientation of �p .

Proof. Let K1 and K2 be proper nonbipartite components of K (p). Let A1 and A2 be maximal stable
sets of K1 and K2, respectively. Then A := A1 ∪ A2 is a maximal stable set of K (p). By Lemma 3.5,
p′ := p + ε(−χA + χN(A)) belongs to Tμ for small ε > 0. In particular K (p′) has exactly two complete
bipartite components by (3.3) and Lemma 3.8(3)–(4). From this, we easily see the existence of the
partition above. �

The subpartition (A1, . . . Am; B1, . . . , Bn) is called the type of p. The (proper) component con-
taining {Ai} is called the A-component, and the (proper) component containing {B j} is called the
B-component. By (3.2) and Lemma 3.8, all edges adjacent to p are l∞-edges. Such an l∞-edge is
given explicitly as follows. Since each Ai is maximal stable in the A-component, by Lemma 3.5,
a point p′ := p + ε(−χAi + χN(Ai)) belongs to Tμ for small ε > 0. Then K (p′) consists of the B-
component of K (p), one complete bipartite component with bipartition {Ai, N(Ai)}, and the (possibly
empty) loop-component. Therefore p′ lies on an l∞-edge adjacent to p. Conversely, any edge adjacent
to p is given in this way. Motivated by this fact, we denote the edges adjacent to p with directions
−χAi + χN(Ai) and −χBi + χN(Bi) by e(p, Ai) and e(p, B j), respectively. Moreover, we easily see, by
perturbing p as above, that e(p, Ai) and e(p, B j) belong to a common 2-face, and that e(p, Ai) and
e(p, A j) do not belong to a common 2-face if i �= j. Therefore, the local structure around a core p is
given as follows.

Corollary 5.7. Let p be a core of type (A1, . . . , Am; B1, . . . , Bn). Then we have the following.

(1) e is an edge adjacent to p if and only if e is e(p, Ai) or e(p, B j) for some i, j.
(2) Two edges e′, e′′ adjacent to p belong to the common 2-face if and only if {e′, e′′} coincides with

{e(p, Ai), e(p, B j)} for some i, j.

Let � be the 1/2-uniform l1-grid. For a core p, �p denotes the subcomplex consisting of members
of � containing p and their faces, i.e., �p is the star at p of �. By the previous corollary, we obtain
a combinatorial description of �p as follows.

Corollary 5.8. Let p be a core of type (A1, . . . , Am; B1, . . . , Bn). Then �p is isomorphic to the join of one point
and the subdivision of the complete bipartite graph Kn,m.

See Fig. 9 for (a) the complete bipartite graph K3,3 and (b) the complex �p obtained by taking the
join of one point and the subdivision of K3,3, where the broken lines represent l∞-edges.

A core p is called odd if p is not in
⋃

U⊆S Tμ,U ∩ Aμ,U . Let {pi}i∈I be the set of odd cores. The
proof of Theorem 5.2 is completed by showing that the set of odd cores {pi}i∈I has the following
property.

(∗3) For a 2-face F in Tμ,U , (the closure of) the set F \ ⋃
i∈I |�pi | is also an l∞-octagon (by the

projection to R2) and is integral in the affine lattice Aμ,U , where |�pi | is the union of faces
of �pi .
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Fig. 10. A 2-face with an odd core.

Namely we can remove |�pi | from Tμ to make the resulting polyhedral set, which is also a complex
of l1-octagons, have the integral uniform l1-grid �∗ . Apply the orbit splitting to each orbit of �∗ and
orient it as in Fig. 5. Moreover, �pi itself is orientable, and can be oriented as in Fig. 9(c), i.e., orient
the graph of �pi so that pi is the unique sink and vertices adjacent to pi by l∞-edges are sources.
Restore each �pi to the original position. Then we obtain the original 1/2-uniform l1-grid � together
with an admissible orientation. Thus we can conclude that the 1/2-uniform l1-grid � is orientable.
See Fig. 10, where the black and white points are grid-points of the 1/2-uniform l1-grid, and the black
points are elements of Aμ,U . The property (∗3) can be immediately seen from the following lemma.

Lemma 5.9. Let p be an odd core of type (A1, . . . , Am; B1, . . . , Bn), let F ⊆ Tμ,U be the unique 2-face con-
taining e(p, Ai) and e(p, B j), and let p Ai and pB j be the grid-points in � adjacent to p by e(p, Ai) and
e(p, B j), respectively. Then both p Ai and pB j belong to Aμ,U ∩ Tμ,U .

Proof. Note that p Ai and pB j are given as

p Ai = p + (−χAi + χN(Ai)), pB j = p + (−χB j + χN(B j)).

Let A and B be the sets of vertices of the A-component and the B-component of K (p), respectively.
Let q ∈ Tμ,U be a normal extreme point. Then, by the same argument as in the proof of Lemma 5.3,
(p − q)(s) + (p − q)(t) ∈ 2Z holds for s, t ∈ A \ U or s, t ∈ B \ U . By Lemma 5.5 and the assumption
that p is odd, we have p /∈ Aμ,U and therefore (p − q)(s) + (p − q)(t) ∈ 1 + 2Z holds for s ∈ A \ U
and t ∈ B \ U . From this fact, Ai ∪ N(Ai) = A \ U , and B j ∪ N(B j) = B \ U , we can conclude p Ai , pB j ∈
Aμ,U ∩ Tμ,U . �

Finally we verify Lemma 5.4 and complete the proof of Theorem 5.2.

Proof of Lemma 5.4. Take an arbitrary t ∈ S \ U (S = U implies μ = 0). Take an extreme point p
in Tμ,U with p(t) minimum. If p is normal, then we are done. Suppose that p is a core of type
(A1, . . . , Am; B1, . . . , Bn). Suppose that K (p) has the loop-component of vertex set U ′ ⊇ U . Then ev-
ery face containing p must belong to Tμ,U ′ , and thus U ′ = U . We may assume t ∈ Ai . The extreme
point p′ incident to p by edge e(p, Ai) belongs to Tμ,U and p′(t) < p(t). This is a contradiction to the
choice of p.

Therefore we may assume that the A-component of K (p) has vertex set U . Then there is a
small perturbation vector v ∈ RS with v|⋃

j B j
= 0 and p + v ∈ Tμ such that K (p + v) has the loop-

component of vertex set U (and thus p + v ∈ Tμ,U ). Take an arbitrary vertex s in the B-component
and take B j with s ∈ B j . Consider the extreme point p′ incident to p by edge e(p, B j). Since the A-
component is invariant on the half-open segment [p, p′), perturbing a point p′′ ∈ [p, p′) by v yields
the loop-component of vertex set U in K (p′′ + v). Therefore e(p, B j) is in Tμ,U and thus so is p′ .
If p′ is normal, then we are done. Suppose that p′ is a core. Then K (p′) still has the A-component
of K (p). Set p ← p′ and repeat the same process. In this process, p(s) strictly decreases. Suppose that
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Fig. 11. The points p±
i in the proof of Lemma 6.1.

p(s) becomes zero. Then s is incident to U in K (p) since vertices having a loop are pairwise adjacent.
This implies that K (p) has exactly one proper component and thus p is normal. Therefore, we can
find a normal extreme point in Tμ,U in this procedure. �
Remark 5.10. Suppose that μ is a metric. One can see that Tμ,U = ∅ for all nonempty U . Then the
argument in this section becomes considerably simpler. This idea is used in [13].

6. Proof of unbounded fractionality

The goal of this section is to prove (2) in Theorem 1.1. Recall that M∗(G; S,μ) or (1.1) is a linear
optimization over the polyhedron

Pμ,V = {d: metric on V | d|S � μ} + RE V+ .

So it suffices to show that if dim Tμ � 3, then there is no integer k such that Pμ,V is 1/k-integral
for every set V containing S . Note that all extreme points of Pμ,V lie on the set of minimal element
of Pμ,V . Motivated by this fact, we call a metric d on S a minimal dominant of μ if d is a minimal
element in Pμ,S . First we show the following.

Lemma 6.1. For a distance μ with dim Tμ � k, there exists a minimal dominant μ̃ of μ such that dim Tμ̃ � k.

Proof. Let F be a k-dimensional face of Tμ and p a point of the relative interior of F . By Proposi-
tion 3.7, K (p) has k bipartite components with bipartitions {A1, B1}, {A2, B2}, . . . , {Ak, Bk}. For small
ε > 0, points p±

i := p +ε(∓χAi ±χBi ) (i = 1, . . . ,k) are in F by Lemma 3.5; see Fig. 11 that illustrates
the configuration p±

i in the local coordinate (3.4) of F . We take an edge u+
i u−

i ∈ E(p) with u+
i ∈ Ai ,

u−
i ∈ Bi for each i = 1, . . . ,k. By construction of p±

i and Lemma 3.6(2), we have

μ
(
u+

i , u−
i

) = p
(
u+

i

) + p
(
u−

i

) = p+
i

(
u+

i

) + 2ε + p−
i

(
u−

i

)
= ∥∥Tμ,u+

i
, p+

i

∥∥ + ∥∥p+
i , p−

i

∥∥ + ∥∥p−
i , Tμ,u−

i

∥∥. (6.1)

We take q±
i ∈ Tμ,u±

i
with ‖q±

i , p±
i ‖ = ‖Tμ,u±

i
, p±

i ‖. Then, ‖q+
i ,q−

i ‖ = μ(u+
i , u−

i ) must hold by (6.1)

and Lemma 3.6(1). We define a metric μ′ on 2k-set U := {u+
i , u−

i }k
i=1 by μ′(u+

i , u±
j ) := ‖q+

i ,q±
j ‖

(� ‖Tμ,u+
i
, Tμ,u±

j
‖ = μ(u+

i , u±
j )). Then μ′ � μ|U with μ′(u+

i , u−
i ) = μ(u+

i , u−
i ). Consider Tμ′ ⊆ RU .

Then p|U , the restriction of p to U , has the following property.

(∗) p|U ∈ Tμ′ and the graph Kμ′ (p|U ) is exactly k-matching {u+
i u−

i }k
i=1.
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Fig. 12. K −
3,3.

Indeed, p(u+
i )+ p(u−

i ) = μ′(u+
i , u−

i ) is obvious by construction. We show p(u+
i )+ p(u±

j ) > μ′(u+
i , u±

j )

if i �= j. By constructions of p±
i and q±

j , we have

μ′(u+
i , u±

j

) := ∥∥q+
i ,q±

j

∥∥ �
∥∥q+

i , p+
i

∥∥ + ∥∥p+
i , p±

j

∥∥ + ∥∥p±
j ,q±

j

∥∥
= ∥∥Tμ,u+

i
, p+

i

∥∥ + ∥∥p+
i , p±

j

∥∥ + ∥∥p±
j , Tμ,u±

j

∥∥
= ∥∥Tμ,u+

i
, p+

i

∥∥ + ε + ∥∥p±
j , Tμ,u±

j

∥∥
<

∥∥Tμ,u+
i
, p+

i

∥∥ + 2ε + ∥∥p±
j , Tμ,u±

j

∥∥
= p+

i

(
u+

i

) + 2ε + p±
j

(
u±

j

) = p
(
u+

i

) + p
(
u±

j

)
.

Therefore, dim Tμ′ � k by Proposition 3.7. Let μ′′ be a minimal dominant of μ|U on U with
μ′′ � μ′ . By μ(u+

i , u−
i ) = μ′(u+

i , u−
i ) = μ′′(u+

i , u−
i ), again p|U ∈ Tμ′′ , and Kμ′′ (p|U ) is still k-matching

{u+
i u−

i }k
i=1. Therefore, dim Tμ′′ � k. We can extend μ′′ to a minimal dominant μ̃ of μ with μ̃|U = μ′′ .

Dress’ dimension criterion (see Theorem 7.1 in the next section) implies dim Tμ̃ � k. �
Second we recall the notion of extreme metrics and extreme extensions. A metric d on a finite

set V is called extreme if d lies on an extreme ray of the metric cone, which is a polyhedral cone in
RE V+ defined by the triangle inequalities. A metric (V ,d) is called an extension of a metric (S,μ) if
S ⊆ V and d|S = μ. An extension (V ,d) of (S,μ) is called extreme if d is an extreme point of the
polyhedron

{d: metric on V | d|S = μ} + RE V+ . (6.2)

Recall that a minimal element of (6.2) is called a tight extension of μ; see Section 2. We use the
following observations.

(∗1) If a metric d on V is a tight extension of a minimal dominant μ̃ of μ, then d is minimal in Pμ,V .
(∗2) If a metric d on V is extreme in Pμ,V and a metric d′ on V ′ is an extreme extension of d, then

d′ is extreme in Pμ,V ′ .

We are ready to prove (2) in Theorem 1.1. Suppose that dim Tμ � 3. Then, by the previous lemma,
there is a minimal dominant μ̃ such that dim Tμ̃ � 3. Therefore Tμ̃ has a 3-dimensional face F . Since
(F , l∞) is isomorphic to a 3-dimensional polytope in (R3, l∞) by the argument in Section 3, we can
take six points Z from F isometric to a dilation of the following configuration Z1 in (R3, l∞).

Z1 = {
(0,0,0), (1,1,−1), (1,−1,1), (1,−1,−1), (2,0,0), (2,−2,0)

}
.

Then, (Z1, l∞) is extreme. Indeed, it is the graph metric dK −
3,3

of K −
3,3 (the graph K3,3 minus one

edge); see Fig. 12. The graph metric dK −
3,3

is known to be extreme [21]. By Proposition 2.3(3), the

set of points Z corresponds to a tight extension of μ̃. Therefore, there is a tight extension (V ,d)

of (S, μ̃) such that d has αdK − as a submetric for α > 0. By (∗1), d is minimal in Pμ,V . Then we can

3,3
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decompose d into a convex combination of extreme points of Pμ,V . By extremality of dK −
3,3

, there is a

summand d′ in the convex combination such that d′ has α′dK −
3,3

as a submetric for a positive α′ > 0.

In [21, Section 3], Karzanov showed the following.

(∗3) If a metric d′ has α′dK −
3,3

as a submetric for a positive α′ > 0, then there is an extreme exten-

sion d′′ of d′ that has 1
2 α′dK −

3,3
as a submetric.

Therefore, by (∗2) and (∗3), we obtain an infinite sequence of extreme points of {Pμ,V }V ⊇S such that
the fractionality strictly increases.

7. 0–1 Distances

In this section, we verify that condition (P) in Theorem 1.3 is indeed equivalent to the 2-
dimensionality of the tight span of a 0–1 distance, and give an explicit combinatorial construction
of the tight span of a 2-dimensional 0–1 distance. Here a distance μ is said to be k-dimensional if
dim Tμ � k. First we present Dress’ criterion [9, Theorem 9] of the dimension of tight spans. As is in-
dicated by [9, Remark 5.4, p. 370], his criterion holds for nonmetric distances; also see [11, Appendix]
for an elementary proof based on linear programming.

Theorem 7.1. (See [9].) For a distance μ on a finite set S and a positive integer n, the following two conditions
are equivalent.

(a) dim Tμ � n.
(b) There exists a 2n-element subset {s1, s−1, s2, s−2, . . . , sn, s−n} ⊆ S such that

∑
i∈{±1,±2,...±n}

μ(si, s−i) >
∑

i∈{±1,±2,...±n}
μ(si, sσ(i))

holds for any permutation σ of {±1,±2, . . . ± n} with σ(i) �= −i for any i ∈ {±1,±2, . . . ± n}.

Specializing Theorem 7.1 to 0–1 distance μ and n = 3, we have the following. Recall the definition
of commodity graph Hμ = (S, Fμ) defined as Fμ = {st | s, t ∈ S, μ(s, t) = 1}.

Proposition 7.2. For a 0–1 distance μ on S whose Hμ has no isolated vertex, the following conditions are
equivalent.

(a) dim Tμ � 2.
(b) There is no six-element subset U ⊆ S such that the induced subgraph Hμ(U ) of Hμ by U has a unique

perfect matching and has no vertex-disjoint two triangles.
(P) For any three distinct pairwise intersecting maximal stable sets A, B, C of Hμ , we have A ∩ B = B ∩ C =

C ∩ A.

Proof. First note that the condition (b) in Theorem 7.1 is equivalent to the following condition.

(∗) There exist a 2n-element subset U ⊆ S and a perfect matching M ⊆ EU such that M attains the
unique maximum of

max
M′,C1,...,Cm

∑
e∈M′

μ(e) + 1

2

m∑
k=1

∑
e∈Ci

μ(e),

where the maximum is taken over pairwise vertex-disjoint matchings M ′ and odd cycles (possibly
including loops) C1, . . . , Cm(m � 0).
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This immediately follows from the fact that every permutation is decomposed into cyclic permuta-
tions.

Then it is easy to see that the condition (b) is equivalent to the negation of the condition (∗)

for 0–1 distances and n = 3. Although the equivalence between (b) and (P) can be seen from [18,
Statement 4.2], we show (b) ⇒ (P) and (P) ⇒ (a) for completeness.

(b) ⇒ (P). Suppose that there are three distinct pairwise intersecting maximal stable sets A, B, C
of Hμ such that (B ∩ C) \ A is nonempty. Take s ∈ (B ∩ C) \ A. Since A is a maximal stable set, there
is s′ ∈ A \ (B ∪ C) with ss′ ∈ Fμ .

Case 1. Suppose that A ∩ B ∩ C is empty. Then both (A ∩ C) \ B and (A ∩ B) \ C are nonempty. Take
t ∈ (A ∩ C) \ B and u ∈ (A ∩ B) \ C . There are t′ ∈ B \ (A ∪ C), u′ ∈ C \ (A ∪ B) with tt′, uu′ ∈ Fμ . Let
U = {s, s′, t, t′, u, u′}. Then the induced subgraph Hμ(U ) consists of three edges {ss′, tt′, uu′} and a
subset of {s′t′, t′u′, s′u′}. Thus Hμ(U ) has a unique perfect matching {ss′, tt′, uu′} and has no vertex-
disjoint two triangles.

Case 2. Suppose that A ∩ B ∩ C is not empty. Take t ∈ B \ C . Then there is t′ ∈ C \ B with tt′ ∈ Fμ .
Take u ∈ A ∩ B ∩ C . By the condition that Hμ has no isolated vertex, there is u′ ∈ S \ (A ∪ B ∪ C) with
uu′ ∈ Fμ . Let U = {s, s′, t, t′, u, u′}. Consider the induced subgraph Hμ(U ); it has a perfect matching
{ss′, tt′, uu′}. In Hμ(U ), a vertex u is covered by edge uu′ only. Therefore, Hμ(U ) does not have
vertex-disjoint two triangles. Moreover, any perfect matching must use edge uu′ . A vertex s is not
adjacent to t and t′ . Therefore {ss′, tt′, uu′} is a unique perfect matching of Hμ(U ).

(P) ⇒ (a). Suppose that dim Tμ � 3. Then there is p ∈ Tμ such that K (p) has three bipartite com-
ponents by Proposition 3.7. We can take three edges s1s′

1, s2s′
2, s3s′

3 ∈ E(p) from different bipartite
components. Since μ is a 0–1 distance, we have sks′

k ∈ Fμ for k = 1,2,3. By p(sk) + p(s′
k) = 1,

we may assume that p(sk) � 1/2 � p(s′
k) and p(s1) � p(s2) � p(s3). Consequently we have p(s′

1) �
p(s′

2) � p(s′
3). Since p(s) + p(t) � 1 and st /∈ E(p) imply st /∈ Fμ , three sets {s′

1, s′
2, s′

3}, {s′
1, s′

2, s3}, and
{s′

1, s2} are pairwise intersecting stable sets of Hμ(U ) violating condition (P). Then we can extend this
triple to pairwise intersecting maximal stable sets of Hμ violating condition (P). �

Finally, we give an explicit combinatorial construction of Tμ for a 2-dimensional 0–1 distance μ.
Let Aμ be the set of maximal stable sets of Hμ and Kμ the set of maximal cliques of the intersection
graph of Aμ .

Proposition 7.3. Let μ be a 2-dimensional 0–1 distance on S whose Hμ has no isolated vertices. Let
{p A}A∈Aμ , {pK }K∈Kμ , and pO be the points defined as

p A = χS\A (A ∈ Aμ),

pK = (1/2)χ⋃
A∈K A\⋂A∈K A + χS\⋃A∈K A (K ∈ Kμ),

pO = (1/2)χS .

Then we have

Tμ =
⋃{

convex hull of {p A, pK , pO } ∣∣ A ∈ K ∈ Kμ

}
. (7.1)

Proof. (⊇) in (7.1) is straightforward. We show (⊆). Take a generic point p ∈ Tμ in the relative in-
terior of a maximal face of Tμ . By the facts that 0 � p � 1 and that Hμ has no isolated vertices,
the graph K (p) has no loop-component. By the maximality and Lemma 3.8, K (p) is one complete
bipartite graph or the (vertex-disjoint) sum of two complete bipartite graphs K1, K2.

For the first case, let {A, B} be the bipartition of K (p). Then we have p(s) = α, p(t) = β for s ∈ A,
t ∈ B and α,β with α + β = 1 and 0 < α < 1/2 < β < 1 by genericity. Then A is a maximal stable set
of Hμ . Therefore p = (β − α)p A + 2αpO .
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Fig. 13. Tight spans for 0–1 distances.

For the second case, let {Ai, Bi} be the bipartition of Ki for i = 1,2. Similarly, (p(s), p(t), p(u),

p(v)) = (α1, β1,α2, β2) for (s, t, u, v) ∈ A1 × B1 × A2 × B2 and 1 < α1 < α2 < 1/2 < β2 < β1 < 1 with
α1 + β1 = α2 + β2 = 1. Then A1 ∪ A2 is a maximal stable set of Hμ , and there is no edge in Hμ

between A1 and B2. By condition (P), there is a maximal set K of pairwise intersecting maximal
stable sets such that A := A1 ∪ A2 ∈ K , and the union and the intersection of members in K are S \ B1
and A1, respectively. By calculation, we have p = 2α1 pO + (α1 + β1 − 2α2)p A + (2α2 − 2α1)pK . �

Namely, Tμ is the complex of the join of the point pO and the clique-vertex incidence graph
of Aμ and Kμ . Fig. 13 illustrates the tight spans with their minimal orientable l1-grids for commod-
ity graphs (a) Hμ = K2 + K2, (b) Hμ = K2 + K3, and (c) Hμ = K3 + K3. Karzanov’s original proof [18] of
Theorem 1.3 is based on the concept of frameworks of graph G = (V , E, c) and commodity graph Hμ ,
which is a certain subpartition of V . He has shown that M∗(G; S,μ) is equivalent to a discrete op-
timization over all possible frameworks. In our setting, frameworks can be interpreted as feasible
configurations to (TSD(Z)) of the 1/4-uniform l1-grid.

8. Concluding remarks

A natural question is: does there exist a duality relation similar to tight-span dual in weighted
maximum directed multiflow problems? The forthcoming paper [14] answers this question. For a not
necessarily symmetric distance γ : S × S → R+ on S , define two polyhedral sets Pγ and Tγ by

Pγ := {
(p,q) ∈ RS×S+

∣∣ p(s) + q(t) � γ (s, t) (s, t ∈ S)
}
,

Tγ := the set of minimal elements of Pγ .

Then Tγ plays the same role as a tight span. Interestingly, this space Tγ is closely related to the
tropical polytopes introduced by Develin and Sturmfels [7].

Apart from the fractionality issues, the design of combinatorial or practical algorithms specialized
to general multiflow problems is still a challenging problem. The tight-span dual problem and the
geometry of Tμ explored in this paper might give a basis against this challenge.
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