8,197 research outputs found

    Maude Object-Oriented Action Tool

    Get PDF
    MAIDL, André Murbach; CARVILHE, Claudio; MUSICANTE, Martin A. Maude Object-Oriented Action Tool. Electronic Notes in Theoretical Computer Science. [S.l:s.n], 2008.Object-Oriented Action Semantics (OOAS) incorporates object-oriented concepts to the Action Semantics formalism. Its main goal is to obtain more readable and reusable semantics specifications. Moreover, it supports syntax-independent specifications, due to the way classes are written. Maude Object-Oriented Action Tool (MOOAT) is an executable environment for Object-Oriented Action Semantics implemented as a conservative extension of Full Maude and Maude MSOS Tool (MMT). The Modular SOS of Action Notation has been implemented using MMT transitions and Full Maude has been used to implement the Classes Notation. The syntax created by MOOAT is fairly similar to the original Object-Oriented Action Semantics syntax. In addition to it, the tool combines the modularity aspects observed in the object-oriented approach with the efficient execution and analysis of the Maude system. We use MOOAT to describe syntaxindependent specifications of programming languages. In this way, we show how Constructive Object-Oriented Action Semantics (COOAS) may be achieved as a combination between Object-Oriented Action Semantics and Constructive Action Semantics (CAS) using MOOAT, in order to increase the modularity aspects observed in the object-oriented formalism. This paper reports on the development of Maude Object-Oriented Action Tool and its application to the formal specification of programming languages

    LOTOS Symbolic Semantics in Maude

    Get PDF
    We present a formal tool where LOTOS specifications without restrictions in their data types can be executed. The reflective feature of rewriting logic and the metalanguage capabilities of Maude make it possible to implement the whole tool in the same semantic framework, and have allowed us to implement the LOTOS semantics and to build an entire environment with parsing, pretty printing, and input/output processing of LOTOS specifications

    Statistical Model Checking of e-Motions Domain-Specific Modeling Languages

    Get PDF
    Domain experts may use novel tools that allow them to de- sign and model their systems in a notation very close to the domain problem. However, the use of tools for the statistical analysis of stochas- tic systems requires software engineers to carefully specify such systems in low level and specific languages. In this work we line up both sce- narios, specific domain modeling and statistical analysis. Specifically, we have extended the e-Motions system, a framework to develop real-time domain-specific languages where the behavior is specified in a natural way by in-place transformation rules, to support the statistical analysis of systems defined using it. We discuss how restricted e-Motions sys- tems are used to produce Maude corresponding specifications, using a model transformation from e-Motions to Maude, which comply with the restrictions of the VeStA tool, and which can therefore be used to per- form statistical analysis on the stochastic systems thus generated. We illustrate our approach with a very simple messaging distributed system.Universidad de Málaga Campus de Excelencia Internacional Andalucía Tech. Research Project TIN2014-52034-R an

    PALS-Based Analysis of an Airplane Multirate Control System in Real-Time Maude

    Full text link
    Distributed cyber-physical systems (DCPS) are pervasive in areas such as aeronautics and ground transportation systems, including the case of distributed hybrid systems. DCPS design and verification is quite challenging because of asynchronous communication, network delays, and clock skews. Furthermore, their model checking verification typically becomes unfeasible due to the huge state space explosion caused by the system's concurrency. The PALS ("physically asynchronous, logically synchronous") methodology has been proposed to reduce the design and verification of a DCPS to the much simpler task of designing and verifying its underlying synchronous version. The original PALS methodology assumes a single logical period, but Multirate PALS extends it to deal with multirate DCPS in which components may operate with different logical periods. This paper shows how Multirate PALS can be applied to formally verify a nontrivial multirate DCPS. We use Real-Time Maude to formally specify a multirate distributed hybrid system consisting of an airplane maneuvered by a pilot who turns the airplane according to a specified angle through a distributed control system. Our formal analysis revealed that the original design was ineffective in achieving a smooth turning maneuver, and led to a redesign of the system that satisfies the desired correctness properties. This shows that the Multirate PALS methodology is not only effective for formal DCPS verification, but can also be used effectively in the DCPS design process, even before properties are verified.Comment: In Proceedings FTSCS 2012, arXiv:1212.657

    Formal Model Engineering for Embedded Systems Using Real-Time Maude

    Full text link
    This paper motivates why Real-Time Maude should be well suited to provide a formal semantics and formal analysis capabilities to modeling languages for embedded systems. One can then use the code generation facilities of the tools for the modeling languages to automatically synthesize Real-Time Maude verification models from design models, enabling a formal model engineering process that combines the convenience of modeling using an informal but intuitive modeling language with formal verification. We give a brief overview six fairly different modeling formalisms for which Real-Time Maude has provided the formal semantics and (possibly) formal analysis. These models include behavioral subsets of the avionics modeling standard AADL, Ptolemy II discrete-event models, two EMF-based timed model transformation systems, and a modeling language for handset software.Comment: In Proceedings AMMSE 2011, arXiv:1106.596

    Two Decades of Maude

    Get PDF
    This paper is a tribute to José Meseguer, from the rest of us in the Maude team, reviewing the past, the present, and the future of the language and system with which we have been working for around two decades under his leadership. After reviewing the origins and the language's main features, we present the latest additions to the language and some features currently under development. This paper is not an introduction to Maude, and some familiarity with it and with rewriting logic are indeed assumed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A formal verification tool for Lending Pools

    Get PDF
    Decentralised Finance (DeFi) applications compose an entire financial ecosystem deployed on the Ethereum blockchain. DeFi applications consist of complex and new protocols whose financial safety is not entirely clear. Besides, their adoption is rapidly growing, hence imperilling an increasingly higher amount of assets. Therefore, an accurate formalisation and verification of their behaviour is essential to deepen the understanding of their safety. A first step in this direction was taken by Bartoletti et al. (arXiv:2012.13230,2020) defining a formal model for the most widespread DeFi protocols: Lending Pools (LP). The primary aim of this thesis was to develop a verification tool of the LP model. This was achieved by leveraging the Maude verification environment and the MultiVeStA statistical analyser. Maude is a verification toolset enabling to simulate and conduct various analyses on a model specified in the Maude specification language. MultiVeStA is a Java engine enabling statistical analyses via Monte-Carlo discrete-event simulations, such as the ones generated by a model specified in Maude. Thus, a simulator of lending pools was developed in the Maude language and it was integrated with MultiVeStA in order to support several analyses on LP, including reachability analysis, LTL model checking and statistical analyses. The Maude simulator was also validated by a complete suite of test cases. Furthermore, the proposed tool allows to statistically analyse several parameters of LP, which are fundamental to enhance its safety. In order to illustrate this, a statistical analysis was developed by the means of the MultiVeStA engine. The results of the analysis was that the default parameters, presented by Bartoletti et al., appear to maximise the platform financial safety. Additionally, the verification tool is open to the public under GNU-GPLv2.0 and it is available at https://github.com/MMirelli/maude-lp

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify and analyse a prominent example of adaptive system: robot swarms equipped with obstacle-avoidance self-assembly strategies. The analysis exploits the statistical model checker PVesta
    • …
    corecore