
Two Decades of Maude

Manuel Clavel1, Francisco Durán2, Steven Eker3, Santiago Escobar4,
Patrick Lincoln3, Narciso Mart́ı-Oliet5, and Carolyn Talcott3

1 IMDEA Software, Madrid, Spain
2 Universidad de Málaga, Spain

3 CSL, SRI International, CA, USA
4 DSIC-ELP, Universitat Politècnica de València, Spain

5 Facultad de Informática, Universidad Complutense de Madrid, Spain

Dedicado a José Meseguer, con ocasión de su 65 cumpleaños, con cariño,
amistad y agradecimiento por todo el trabajo realizado conjuntamente en
estas dos décadas.

Abstract. This paper is a tribute to José Meseguer, from the rest of us
in the Maude team, reviewing the past, the present, and the future of
the language and system with which we have been working for around
two decades under his leadership. After reviewing the origins and the
language’s main features, we present the latest additions to the language
and some features currently under development. This paper is not an
introduction to Maude, and some familiarity with it and with rewriting
logic are indeed assumed.

1 The Origins

The story of Maude does not begin on a dark and stormy night as many sto-
ries do, but on a sunny Californian day. Maude was conceived at the Logic and
Specification Group, part of the Computer Science Laboratory at SRI Inter-
national, in Menlo Park, California, in the Spring of 1990. José Meseguer was
leading that group, after working for several years with J. A. Goguen and other
colleagues on order-sorted equational logic [47] and its implementation in the
OBJ3 language [48], among many other topics. At that time he was proposing a
new computational logic which could provide on the one hand a unified model
of concurrency [63, 64], and on the other hand declarative support for (concur-
rent) object-oriented programming [62, 66]. This new logic was thought of as
an extension of (order-sorted) equational logic with rules (understood either as
logical inference rules or as transitions in a concurrent system) which, as the
equations, would also be executed by rewriting, and for this reason was called
rewriting logic. The good properties of the logic for unifying several models of
computation, including concurrent ones, were soon generalized to representing
other models of computation and also other logics, so that rewriting logic was
proposed as a logical and semantic framework [58, 59].

In the same way that order-sorted equational logic was implemented as a
specification and programming language in OBJ3, behind rewriting logic there

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62906059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Clavel, Durán, Eker, Escobar, Lincoln, Mart́ı-Oliet, and Talcott

was a language waiting to be implemented. But the language, soon to be called
Maude, was there from the beginning. In addition to the papers [62, 66] devoted
to the rewriting logic support of object-oriented programming, in those years sev-
eral other papers were produced from the programming point of view [65, 75, 83],
emphasizing the multiparadigm and parallel programming characteristics of the
proposal. Moreover, even the more theoretical papers, such as the ones about
the logical framework [58, 59], used the Maude notation for presenting examples
in such a way that, with slight changes, most of them could be executed in the
current implementation of the language. Those examples already used primitive
versions of constructs for parameterized specification and some of them were as-
sociated with a name, Maudelog, for a version of Maude with logical variables and
unification, a feature which has taken much longer to be fully implemented (see
Section 3). The way “from OBJ to Maude and beyond” has been well explained
by José Meseguer himself in [70].

Although the implementation of the Maude language and system were not
yet underway, techniques for compilation of rewriting onto parallel architectures
were studied as part of the Rewrite Rule Machine (RRM) project [54, 55] in the
early nineties. A sublanguage of Maude, called Simple Maude, which included
term rewriting, graph rewriting, and object-oriented rewriting, was proposed as
part of this project.

The prospects for an implementation of Maude greatly improved in the mid
nineties, with the arrival at SRI International of Steven Eker, as a postdoc
expert on term rewriting implementation, and Manuel Clavel, as a PhD student
to work on rewriting logic reflection [12]. This is indeed the reason for the title
of this paper: it is around this date when the Maude team was born. The work
developed in that period was shown in the first public presentation of the Maude
system [25], which took place at the first Workshop on Rewriting Logic and its
Applications (WRLA) in Asilomar, California, in 1996 [67]. Another presentation
at the same event showed the first realization of the reflection ideas in rewriting
logic and Maude [26].

Coincidentally, Francisco Durán also joined the group during that event, as
a PhD student, to work on the Maude module algebra [29], which led to the
development of Full Maude. Although the advances of all the work being done
by the Maude team in all these areas were shown at the second WRLA in Pont-
à-Mousson, France, in 1998 [53] (implementation [17], reflection [15, 13], module
algebra [34]), the first public release of Maude had to wait yet another year until
the end of 1999 [16]. Maude 1 was presented in RTA 1999 [18], in FASE 2000 [21],
in an ETAPS 2000 tutorial [19], and in a journal paper published in 2002 [22].

However, that first public release of Maude was a proof-of-concept. Although
it already had many interesting features, there were so many other missing fea-
tures that it was not the end, but the beginning of much more work, as dis-
cussed by the “Towards Maude 2.0” paper [20] presented at the third WRLA in
Kanazawa, Japan, in 2000 [45]. It required a lot of effort to complete the imple-
mentation and also to write a good manual for Maude 2.0, publicly released in
the Summer of 2003, with a presentation in RTA 2003 [23]. Among other new



Two Decades of Maude 3

features, this new version provided support for membership equational logic,
support for rewrite expressions in rule conditions, new predefined modules, a
new version of its metalevel, and an LTL model checker.

The Maude 2 features kept increasing and improving along the following
years, when we managed to have yearly releases, helped by intense meetings of
the Maude team, at that time distributed in different locations both in the US
and in Europe, after each edition of the WRLA, in Pisa (2002), Barcelona (2004),
and Vienna (2006). We reached an important milestone with the publication in
2007 of the book “All About Maude” [24]. The book coincided with the release
of Maude 2.3, where the main features of the language and its implementation
stabilized, including parameterized modules, interaction with external objects,
and a greater catalogue of predefined—some of them parameterized—modules
and views, among others.

Since then, the Maude team has produced several additional releases until
the recent Maude 2.7. Most of the new features in Maude 2.4, presented at
RTA 2009 [14], and subsequent versions after it, have been related to order-
sorted unification and narrowing, which is the subject of Section 3. In this brief
summary of the work related to the origins of Maude and rewriting logic we
cannot do justice to all the work done by many people around the world in
this area; instead, we direct the reader to the survey written by José Meseguer
himself on twenty years of rewriting logic, published in 2012 [72], together with
an annotated bibliography [60] compiling all the papers on rewriting logic and
its applications written in the period 1990–2012.

2 The Language

The close contact with many specification and programming applications has
served as a good stimulus for a substantial increase in expressive power of the
rewriting logic formalism in general, and of its Maude realization in particular.
Maude is a high-performance language and system supporting both equational
and rewriting logic computation for a wide range of applications, including devel-
opment of theorem-proving tools, language prototyping, executable specification
and analysis of concurrent and distributed systems, and logical framework ap-
plications in which other logics are represented, translated, and executed.

2.1 Generalized Rewrite Theories in Maude

Maude’s functional modules are theories in membership equational logic [69, 9],
a Horn logic whose atomic sentences are either equalities t = t′ or membership
assertions of the form t : s, stating that a term t has a certain sort s. Such a logic
extends OBJ3’s [48] order-sorted equational logic and supports sorts, subsorts,
subsort polymorphic overloading of operators, and definition of partial functions
with equationally defined domains.

A Maude (system) module is a generalized rewrite theory, defined as a 4-tuple
R = (Σ,E ∪ Ax, φ,R), where (Σ,E ∪ Ax) is a membership equational the-
ory, Ax is a set of equational axioms for which rewriting modulo is available,



4 Clavel, Durán, Eker, Escobar, Lincoln, Mart́ı-Oliet, and Talcott

R is a set of labeled conditional rewrite rules, and φ is a function assigning
to each operator f : k1 . . . kn → k in Σ the subset φ(f) ⊆ {1, . . . , n} of its
frozen arguments. Rewriting in (Σ,E ∪Ax, φ,R) happens modulo the equa-
tional axioms Ax. Maude supports rewriting modulo different combinations of
associativity (A), commutativity (C), identity (U), left identity (Ul), right iden-
tity (Ur), and idempotence axioms. Computationally, rules are interpreted as
local transition rules in a possibly concurrent system. Logically, they are inter-
preted as inference rules in a logical system. This makes rewriting logic both a
general semantic framework to specify concurrent systems and languages [68],
and a general logical framework to represent and execute different logics [59].
The combination of evaluation strategies and frozen arguments allows Maude
to perform context-sensitive rewriting [57] with both equations E and rules R
modulo Ax.

Maude accepts module hierarchies of functional and system modules with
user-definable mixfix syntax. The Maude system is implemented in C++ and
is highly modular. Maude’s core is its rewrite engine, which is extensible, and
indeed has been extended, in many different ways since its inception. For in-
stance, new equational theories can be “plugged in” and new built-in symbols
with special rewriting (equation or rule) semantics may be easily added. To date,
rewriting modulo all combinations of associativity, commutativity, left and right
identity, and idempotence have been implemented apart from those that contain
both associativity and idempotence.

Over the years, the development of Maude has been guided by the goal of
providing a better support for both rewriting logic and its underlying mem-
bership equational logic. For instance, the duality between its logical and op-
erational views was completed with the addition of the nonexec attribute in
Maude 2.0. The point is that efficient and complete computation by rewrit-
ing is only possible for equational theories that satisfy properties such as con-
fluence, sort-decreasingness, and termination. Similarly, to be efficiently exe-
cutable, a generalized rewrite theory R = (Σ,E ∪ Ax, φ,R) should first of all
have (Σ,E ∪Ax) satisfying the above executability requirements, and should
furthermore be coherent [36].

Executability is of course what we want for programming; but it is too restric-
tive for specification, transformation, and reasoning purposes. For this reason,
there is a linguistic distinction between modules, that are typically used for pro-
gramming as executable theories, and theories, which need not be executable
and are used for specification purposes, for example, to specify the semantic
requirements of actual parameters of parameterized modules, or for theorem-
proving purposes. Maude supports specification of arbitrary membership equa-
tional logic theories and of arbitrary rewrite theories, while at the same time
keeping a sharp distinction between executable and non-executable statements
(i.e., equations, memberships, or rules) by means of the nonexec attribute. Fully
executable equational and rewrite theories are called admissible, and satisfy the
above-mentioned executability requirements. This support for a disciplined coex-
istence of executable and non-executable statements allows not only a seamless



Two Decades of Maude 5

integration of specification and code, but also a seamless integration of Maude
with its formal tools.

Maude includes some built-in functional modules providing convenient high-
performance functionality within the Maude system. In particular, the built-
in modules of integers, natural, rational, and floating-point numbers, quoted
identifiers, and strings provide a minimal set of efficient operations for Maude
programmers.

2.2 Reflection in Maude

Informally, a reflective logic is a logic in which important aspects of its metathe-
ory can be represented at the object level in a consistent way, so that the object-
level representation correctly simulates the relevant meta-theoretic aspects.

Rewriting logic is reflective [12] in the precise sense of having a universal
theory U that can represent any finitely presented rewrite theory T (including
U itself) and any terms t, t′ in T as terms T and t, t′ in U , so that we have the
following equivalence

T ` t→ t′ ⇐⇒ U ` 〈T , t〉 → 〈T , t′〉.

Since U is representable in itself, we can then achieve a “reflective tower” with
an arbitrary number of levels of reflection.

Maude efficiently supports this reflective tower through its META-LEVEL mod-
ule, where Maude terms and modules are reified as elements of a data types Term
and Module, respectively. The processes of reducing a term to normal form in
a functional module and of rewriting a term in a system module using Maude’s
default interpreter are respectively reified by descent functions metaReduce and
metaRewrite. Similarly, the process of applying a rule of a system module to a
subject term is reified by a function metaApply. Furthermore, parsing and pretty
printing of a term in a signature, as well as key sort operations are also reified by
corresponding metalevel functions, and up and down functions to move terms,
modules, and views between levels.

The reflective capabilities of Maude provide a great range of possibilities,
many of which have been exploited with different purposes. It has been used, for
example, to define alternative rewriting strategies, to define strategy languages,
to define module operations, and in general to extend Maude in different ways.
This extensibility by reflection is exploited in Maude’s design and implementa-
tion. Full Maude is an extension of Maude written in Maude itself which has
been used since the beginnings of Maude as a place in which to design and
experiment with new features. For example, a module algebra of parameterized
modules, views, and module expressions in the OBJ style was available in Maude
through Full Maude [34, 30, 35] long before it was implemented in C++ for (Core)
Maude 2.4. Object-oriented modules, with convenient syntax for object-oriented
applications, or parameterized views are currently available in Full Maude but
not yet in Core Maude. In summary, we have been ‘using our own medicine’,
using Maude to specify our system before facing the effort of implementing it.



6 Clavel, Durán, Eker, Escobar, Lincoln, Mart́ı-Oliet, and Talcott

Indeed, Full Maude has been more than a place in which to experiment with
new features, it has provided basic infrastructure on which to define extensions
of Maude such as Real-Time Maude [76].

The reflective capabilities of Maude have also been key for the development
of executable implementations of very different formal models and program-
ming languages. See, e.g., the coordination models for distributed objects in [82]
and [73], the definition of Mobile Maude [32] and its socket-based distributed im-
plementation [37], or the Maude Action Tool [28], which provides an executable
environment for action semantics.

2.3 Maude’s Formal Tools

In addition to its core functionality for rewriting, Maude comes with a number
of tools. Some of these tools are directly integrated in the core system, which
provides specific commands for them, as for the search command, for searching
for terms satisfying given pattern and condition reachable from a given initial
term, or through operators in predefined modules, as in the case of its LTL model
checker. Other tools are provided as extensions by different authors, some using
the infrastructure provided by Full Maude, such as the Church-Rosser checker,
the coherence checker [36], the termination tool [33], the explicit-state model
checker for linear temporal logic of rewriting (LTLR) [4, 71], or the LTL logical
model checker [2]; and some independently, such as the Maude inductive theorem
prover [12], or the sufficient completeness checker [50]. An attempt to bring these
tools under a common environment so that they can be used together to keep
track of pending proof obligations and help in their interaction to discharge
these proof obligations is currently under development in what is being called
the Maude Formal Environment [38].

3 The Present: Unification and Narrowing

As mentioned before, Maude inherited many features from its predecessors, such
as order-sorted equational logic and the use of commonly occurring attributes like
associativity and commutativity, but other features of its predecessors were left
behind, e.g., Eqlog [46] envisioned an integration of order-sorted equational logic
with Horn logic, providing logical variables, constraint solving, and automated
reasoning capabilities on top of order-sorted equational logic; and MaudeLog [65]
envisioned an integration of order-sorted rewriting logic with queries including
logical variables. The paper [40] revisited this topic and showed how many mod-
ern programming features can be implemented using Maude.

Unification is a fundamental deductive mechanism used in many automated
deduction tasks and it is essential for programming languages with logical vari-
ables. Many functional and logic programming languages use an evaluation mech-
anism called narrowing [1], which is a generalization of term rewriting allowing
free variables in terms (as in logic programming) and replacing pattern matching
by unification in order to (non-deterministically) reduce these terms.



Two Decades of Maude 7

Unification and narrowing were introduced in Maude in 2009 as part of
the Maude 2.4 release [14]. In that version of Maude, unification worked for
any combination of symbols being either free or associative-commutative (AC),
and it was developed by Eker as a built-in feature in Core Maude. Narrowing
worked for system modules without equations and relied on the built-in unifi-
cation algorithm. It supported the concept of symbolic reachability analysis of
terms with logical variables, computing suitable substitutions for the variables
in both the origin and the destination terms. Narrowing was first implemented
in Full Maude, which allowed us to carry on research on its reasoning capabil-
ities. The latest developments in Maude 2.6 were presented at RTA 2011 [31].
First, Eker improved the built-in unification algorithms to allow any combination
of symbols being either free, commutative (C), associative-commutative (AC),
or associative-commutative with an identity symbol (ACU). The performance
was dramatically improved, allowing further development of other techniques in
Maude. Second, the concepts of variant [27] and variant-based unification [43]
led to a significant improvement in the reasoning capabilities. Given an equa-
tional theory (Σ,E ∪Ax), the E,Ax-variants of a term t are the set of all pairs
consisting of a substitution σ and the E,Ax-canonical form of tσ. Variant genera-
tion, variant-based unification, and symbolic reachability based on variant-based
unification were all implemented in Full Maude.

In the most recent Maude 2.7 version, Eker has extended the available ca-
pabilities. First, the built-in unification algorithm allows any combination of
symbols being free, C, AC, ACU, CU, U, Ul, Ur. Second, variant generation and
variant-based unification are implemented in C++ at the Core Maude level with
excellent performance. Note that the former version of variant generation and
variant-based unification in Maude 2.6 was implemented for very simple equa-
tional theories called strongly right irreducible, but the new implementation in
Maude 2.7 got rid of this restriction, allowing really complex equational theories
and their combinations.

The classical application of narrowing modulo an equational theory is to per-
form E∪Ax-unification by narrowing with oriented equations E modulo axioms
Ax. Indeed, the variant-based equational order-sorted unification algorithm im-
plemented in Maude 2.7 is based on a narrowing strategy, called folding variant
narrowing [43], that terminates when E ∪ Ax has the finite variant property
[27], even though unrestricted narrowing typically does not terminate when Ax
contains AC axioms [27, 43].

An interesting example of the flexibility of folding variant narrowing, even
beyond equational unification, is given for the classic missionaries and cannibals
problem. In this problem, three missionaries and three cannibals must cross a
river using a boat. The boat cannot cross the river with no people on board,
and cannot carry more than two people. In any of the banks, the missionaries
cannot be outnumbered by cannibals, otherwise the cannibals would eat the
missionaries.

A solution for this problem was presented by Goguen and Meseguer in [49] as
an equational logic program, requiring constraint-solving features, logical vari-



8 Clavel, Durán, Eker, Escobar, Lincoln, Mart́ı-Oliet, and Talcott

ables, order-sorted types, and axioms. Features of the original solution have been
adapted to the current equational variant-based programming features available
in Maude using the ideas of [40], and the resulting module is shown in Figure 1.

The imported module TRIPLIST defines trip lists (TripList), with concate-
nation operator _*_ as constructor6 and a length operation #_. Module PSET

defines sorts Elem of people and PSet of multisets of people. Multisets are con-
structed with union operator _+_, which is declared as associative, commutative
and with an identity symbol, and come with operators _-_ for removal and _/\_

for intersection.

Our aim is to find a list of trips, where each trip is a term rooted by a predicate
boat with a set of missionaries and cannibals. Odd positions in the list represent
trips from the left bank to the right bank, and even positions trips from right to
left. The MAC module defines constants for the missionaries (taylor, helen, and
william) and the cannibals (umugu, nzwave, and amoc). lb(L) (resp., rb(L))
represents the people set in the left (resp., right) bank after the sequence of trips
L. mset(PS) (resp., cset(PS)) gives the subset of missionaries (resp., cannibals)
in PS. The function boatok checks whether a trip is ok — one or two people in
the boat, where these are from the set of defined cannibals and missionaries —
and solve is the general predicate for checking/generating the trip list solution
— a trip list is a solution if it is a ‘good’ list, and the sequence of trips leaves
the left bank empty. A trip list L * T is good if T is a valid trip (boatok), the
sublist L is good, and the number of cannibals in each bank is smaller than the
number of missionaries in the same bank for each trip in the sequence.

The key is therefore in the definition of the Success sort in the SUCCESS

module. The success sort has a constant success, an operator _>>_ that defines
the conditional evaluation of constraints, such that the left side is evaluated
before the right side, and _=:=_, which represents unification between two terms.
For each sort, _=:=_ is defined only in the positive cases, returning success; see
below for its definition for sort Bool.

op _>>_ : [Success] [Success] -> [Success] [frozen(2)] .

rl success >> X:[Success] => X:[Success] .

op _=:=_ : Bool Bool -> [Success] [comm] .

rl X:Bool =:= X:Bool => success .

Folding variant narrowing is performed using those equations labeled with
the variant flag, while the remaining equations are used as usual in Maude. Here
we can ask for solutions to the very general problem of the names of missionaries
and cannibals carried from one side to the other of the river.

6 The original solution assumes that lists are created using an associative symbol, but
unification modulo associativity is infinitary and it is not available in Maude. The
_*_ operator is therefore not declared associative.



Two Decades of Maude 9

fmod MAC is

pr SUCCESS + TRIPLIST + PSET .

ops taylor helen william : -> Elem [ctor] .

ops umugu nzwawe amoc : -> Elem [ctor] .

var L : TripList . var T : Trip . var PS : PSet .

op gen : Elem -> [Success] .

eq gen(taylor) = success [variant] . eq gen(taylor) = success .

eq gen(helen) = success [variant] . eq gen(helen) = success .

eq gen(william) = success [variant] . eq gen(william) = success .

eq gen(umugu) = success [variant] . eq gen(umugu) = success .

eq gen(nzwawe) = success [variant] . eq gen(nzwawe) = success .

eq gen(amoc) = success [variant] . eq gen(amoc) = success .

op m0 : -> [PSet] . op c0 : -> [PSet] .

eq m0 = taylor helen william . eq c0 = umugu nzwawe amoc .

op mset : PSet -> [PSet] . op cset : PSet -> [PSet] .

eq mset(PS) = PS /\ m0 . eq cset(PS) = PS /\ c0 .

op boatok : Trip -> [Success] . op boat : PSet -> Trip [ctor] .

eq boatok(boat(X:Elem)) = gen(X:Elem) .

eq boatok(boat(X1:Elem X2:Elem))

= gen(X1:Elem) >> gen(X2:Elem) >> ((X1:Elem =/= X2:Elem) =:= true) .

ops lb rb : TripList -> [PSet] .

eq lb(nil) = m0 c0 .

eq lb(L * boat(PS))

= if (even # L) then (lb(L) - PS) else (lb(L) /\PS) fi .

eq rb(nil) = empty .

eq rb(L * boat(PS))

= if (even # L) then (rb(L) /\ PS) else (rb(L) - PS) fi .

op good : TripList -> [Success] .

eq good(nil) = success .

eq good(L * T)

= boatok(T)

>> good(L)

>> ( (# cset(lb(L * T)) =< # mset(lb(L * T))

or (# mset(lb(L * T)) == 0))

and

(# cset(rb(L * T)) =< # mset(rb(L * T))

or (# mset(rb(L * T)) == 0)) ) =:= true .

op solve : TripList -> [Success] .

eq solve(L) = good(L) >> (lb(L) == empty) =:= true .

endfm

Fig. 1. Missionaries and cannibals example



10 Clavel, Durán, Eker, Escobar, Lincoln, Mart́ı-Oliet, and Talcott

Maude> variant unify

solve(nil * boat(E1:Elem E2:Elem) *

boat(E1:Elem) * boat(E3:Elem E4:Elem) *

boat(E2:Elem) * boat(E5:Elem E6:Elem) *

boat(E6:Elem E3:Elem) * boat(E1:Elem E6:Elem) *

boat(E4:Elem) * boat(E2:Elem E4:Elem) *

boat(E6:Elem) * boat(E6:Elem E3:Elem)) =? success .

Unifier #1

E1:Elem --> helen E2:Elem --> amoc E3:Elem --> umugu

E4:Elem --> nzwawe E5:Elem --> william E6:Elem --> taylor

Unifier #2

E1:Elem --> william E2:Elem --> amoc E3:Elem --> umugu

E4:Elem --> nzwawe E5:Elem --> helen E6:Elem --> taylor

...

Unifier #36

E1:Elem --> helen E2:Elem --> umugu E3:Elem --> amoc

E4:Elem --> nzwawe E5:Elem --> taylor E6:Elem --> william

Enumerating all thirty-six solutions takes only a few minutes thanks to the ef-
ficient implementation of folding variant narrowing in Core Maude. The most
general question is variant unify solve(L) =? success, which enumerates
all the necessary boat movements from one bank to the other and the mission-
aries and cannibals moved each time. However, we would have to add more
variant equations, for recursive instantiation of a variable of sort Triplist, and
for recursive instantiation of a variable of sort PSet, apart of the current variant
equations for instantation of variables of sort Elem. The current implementation
in Maude is not able to handle the folding variant narrowing search space asso-
ciated to a unification problem like that, though it will enumerate the solutions
given enough resources.

The modern application of narrowing with rules R modulo E ∪ Ax is that
of symbolic reachability analysis [74]. In this case, the rules R are understood as
transition rules instead of equations. Narrowing is a complete deductive method
[74] for symbolic reachability analysis, that is, for solving existential queries of
the form ∃x t(x) →∗ t′(x) in the sense that the formula holds for R iff there is
a narrowing sequence t ;∗R,E∪Ax u such that u and t′ have an E ∪ Ax-unifier.
Furthermore, in symbolic reachability analysis, we may be interested in verifying
properties more general than existential properties of the form ∃X t→∗ t′, since
one can generalize the above reachability property to properties of the form
R, t |= ϕ, for ϕ a temporal logic formula. The papers [42, 2] show how narrowing
can be used (again, both at the level of transitions with rules R and at the
level of equations E) to perform logical model checking. Two distinctive features
are: (i) the term t does not describe a single initial state, but a possibly infinite
set of instances of t (i.e., a possibly infinite set of initial states); and (ii) the
set of reachable states does not have to be finite. Therefore, standard model-
checking techniques may not be usable, because of a possible double infinity: in



Two Decades of Maude 11

the number of initial states, and in the number of states reachable for each of
those initial states.

So far, the most successful story about rewriting logic with narrowing is the
Maude-NPA protocol analyzer [41], where cryptographic protocols are formally
specified as order-sorted rewrite theories and the security analysis is performed
in a backwards way, from an attack state to an initial state.

4 The Near Future: Rewriting Modulo SMT

The rapid progress of satisfiability modulo theories (SMT) solvers [7] has been
one of the most important developments in automated verification and reasoning.
A feature recently added to Maude (in an internal version, not publicly released
at the time of the publication of this paper) is support for rewriting modulo
SMT [78], so that functional and system modules can have conditions dealing
with SMT data types, which are then solved by the usually more effective SMT
solvers.

SMT solvers are decision procedures for an existential fragment of first-order
logic with equality, where variables range over SMT data types, such as Booleans,
integers, and reals. After presenting the way in which rewriting modulo SMT is
being implemented in Maude in Section 4.1, we describe a sample application in
Section 4.2.

4.1 Maude SMT

When performing rewriting modulo SMT, the object being rewritten is a sym-
bolic representation of a (possibly infinite) family of terms. In its current Maude
implementation, the representation of such family of terms is an ordered pair,
where the first component is a term which may include variables ranging over
data types supported by an SMT solver and SMT operators on those variables,
and the second component is a constraint on those SMT variables. Rewriting
proceeds as a search where each rewrite rule may have a condition, interpreted
as an SMT constraint. In order to make a rewrite step, the accumulated con-
straints must be satisfiable, as checked by an SMT solver; when a conditional
rule succeeds, the constraint it enforced on the SMT variables in the new term
is ‘conjuncted’ with the existing constraint. Since Maude has no built-in knowl-
edge of the SMT theories, no simplification of the accumulated constraint is
performed.

Maude’s interface to SMT data types closely follows the SMT-LIB stan-
dard [6]. In particular there are functional modules BOOLEAN, INTEGER, REAL, and
REAL-INTEGER which provide signatures for the SMT-LIB theories of Booleans,
integers, reals, and reals combined with integers, respectively. Although the cur-
rent implementation has some restrictions, we expect to have a full implemen-
tation of rewriting modulo SMT in a near future release of Maude.

An SMT rewriting search is initiated with the smt-search command, which
has a syntax similar to the syntax of the search command. The start term may



12 Clavel, Durán, Eker, Escobar, Lincoln, Mart́ı-Oliet, and Talcott

only include SMT variables, which may also appear in the pattern term, and
condition.

To give a flavor of how rewriting modulo SMT works, let us consider a small
example. We define the gcd function using state transitions on a pair of SMT
integers that encode Euclid’s algorithm.

mod EUCLID is protecting INTEGER .

sort State .

op gcd : Integer Integer -> State .

op return : Integer -> State .

vars I J K X Y Z : Integer .

crl gcd(X, Y) => gcd(X - Y, Y) if X > Y = true .

crl gcd(X, Y) => gcd(X, Y - X) if X < Y = true .

crl gcd(X, Y) => return(X) if X = Y .

endm

We then ask about the existence of a pair of integers X, Y such that gcd(X,Y ) =
3 and X + Y = 27.

Maude> smt-search [1] gcd(X, Y) =>* return(Z)

such that Z = 3 /\ X + Y = 27 .

Solution 1

empty substitution

where Z === 3 and X + Y === 27 and X > Y and X - Y > Y and

X - Y - Y > Y and X - Y - Y - Y < Y and X - Y - Y - Y ===

Y - (X - Y - Y - Y) and Z === X - Y - Y - Y

Maude searches the (typically infinite) tree of SMT rewrites on (term, con-
straint) pairs for a state that matches the pattern and satisfies the constraint on
the variables given in the command. In the success case, it returns a substitu-
tion for non-SMT variables in the pattern and a satisfiable constraint on SMT
variables. If the search graph is infinite as in this case, the command will not
terminate in the failure case unless a depth bound is given.

Like most other Maude commands, smt-search is reflected at the metalevel
by a corresponding descent function.

Currently, Maude uses CVC4 [5] as its backend SMT solver, however calls
to the SMT solver are implemented via an abstract interface and wrappers for
other SMT libraries could easily be added in the future.

4.2 Symbolic Analysis of Distance-Bounding Protocols

Having the possibility of using constrained variables gives us the opportunity of
making finite potentially infinite search spaces. As for a more interesting appli-
cation of rewriting modulo SMT, let us consider the case of distance-bounding



Two Decades of Maude 13

protocols [10], a class of security protocols that infer an upper bound on the dis-
tance between two agents from the round trip time of messages. This is used, for
example, for controlling some kinds of access and for clock synchronization. In a
distance-bounding protocol session, the verifier (V ) and the prover (P ) exchange
messages:

V → P : m
P → V : m′

where m is a challenge and m′ is a response message (constructed using the
components of m such as nonces in m). In order to infer the distance to the
prover, the verifier remembers the time, t0, when the message m was sent, and
the time, t1, when the message m′ returns. From the difference t1 − t0 and
the assumptions on the speed of the transmission medium, v, the verifier can
compute an upper bound on the distance to the prover, namely (t1 − t0)× v.

In [52], a novel attack on distance bounding called attack in-between-ticks
is presented. The attack is formalized using a model in which provers, verifiers,
and attackers may have different clock rates, processing speeds, or observation
granularity. The model is based on a multiset-rewriting formalism called timed
local state transition systems [51] which supports both discrete and dense time.
The key insight for the attack is that an attacker can mask his location by
exploiting the fact that a message may be sent at any point between two clock
ticks of the verifier’s clock, while the verifier measures the time at discrete clock
ticks. For example, if the time bound is 3, a message could start at time 1.7,
which is 2 on the verifier’s clock, and the reply received at 4.9, which is 5 on the
verifier’s clock. From the verifier’s perspective the attacker is within range, since
5− 2 = 3, but in fact the round trip time was 4.9− 1.7 = 3.2.

The model was formalized in Maude SMT and smt-search was used to find a
symbolic representation of a family of attacks. Using Maude SMT the potentially
infinite search space becomes finite, by treating the distance between the verifier
and the prover as a constrained variable.

To illustrate the use of SMT, we show the Tick rule which advances system
time following the approach of Real-Time Maude [76].

var S : Soup .

vars T T1 T2 : Real .

crl [Tick] : { S (Time @ T) (vTime @ T1) }

=> { S (Time @ T2) (vTime @ T1) }

if (T2 > T and (T2 < T1 + 1/1)) = true

[nonexec] .

Here, a system state is a soup of timed facts (F @ T) enclosed in brackets. There
is a unique fact, Time @ T, representing the physical time. The fact vTime @ T1

represents time as perceived by the verifier. In Real-Time Maude execution and
search use a time sampling strategy. In contrast, using Maude SMT the new
time is left symbolic, with constraints on its range. Here the constraint says that
the next time should be greater than the current time, but should not advance
beyond the next verifier time (T1 + 1).



14 Clavel, Durán, Eker, Escobar, Lincoln, Mart́ı-Oliet, and Talcott

The following command searches for a state in which the verifier, v, accepts
a reply from the prover, p, (Ok(< p, M:Msg >) @ T:Real), where the distance
bound is 3 (the allowed round trip time is 2 * 3) and the distance from the
verifier to the prover, dvp, (or to an attacker, dva) is greater than 3.

Maude> smt-search [1] { gensym(0)

dist(dva, dvp)

(Time @ 0/1)

(vTime @ 0/1)

(V0(p) @ 0/1)

(P0(v) @ 0/1) }

=>+ { (Ok(< p, M:Msg >) @ T:Real)

S:Soup }

such that (dva > 3/1 and dvp > 3/1 ) = true .

One (simplified) solution is:

S --> ...

(Time @ toInteger(dvp + dvp) + 1/1)

(RStart(< p, n(0) >) @ 0/1) *** the real start

(RStop(< p, n(0) >) @ dvp + dvp) *** the real stop

(V1(< p, n(0) >) @ toInteger(dvp + dvp) + 1/1) *** the verifiers view

where dva > 3/1 and dvp > 3/1 and

toInteger(dvp + dvp) <= 2/1 * 3/1 *** the discrete time looses here

and T === toInteger(dvp + dvp) + 1/1

...

M --> n(0)

The verifier’s start time is 1/1 thus the elapsed time is toInteger(dvp + dvp)

<= 2/1 * 3/1.

5 Pathway Logic

There have been many applications of Maude in many different areas, including
some as diverse as security [41], cyber-physical systems [44, 3], and model-driven
engineering [8, 77] (see, for example, the survey [72]). We very briefly discuss
in this section one of them, Pathway Logic, which innovates by modeling na-
ture rather that the usual digital artifacts, very nicely illustrating the modeling
capabilities of Maude.

Pathway Logic (PL) is a system for modeling and reasoning about cellular
processes such as signal transduction, metabolism, and cell-cell communication
in the immune system. The semantic underpinnings of PL is Maude, and José
Meseguer was part of the original PL team that developed the key ideas [39].
The first instance of a PL model was a model of a cancer-related signaling path-
way crafted in Maude in 2000. In order to facilitate scaling up and interacting
with the PL models, the executable Maude model has been augmented with
the Pathway Logic Assistant (PLA), an interactive graphical interface that al-
lows a user to easily create specific models, and browse and query them [81].



Two Decades of Maude 15

In addition, a mechanism for semantically grounding the language with links to
standard databases has been put in place, and a substantial collection of formal
models has been developed [80, 56].

5.1 About Pathway Logic

Signal transduction is the mechanism by which cells sense their environment,
process this information, and make decisions: what proteins to produce, what
metabolic pathways to activate, whether to replicate, move, or possibly die. Typ-
ically, the signal is a chemical or protein in the cells environment that binds to a
receptor protein (in the cell membrane). The receptor becomes active, initiating
the signaling process. The signal is transmitted by change in state and location
of proteins involved.

In PL a cell state is represented as a soup of occurrences, where each occur-
rence has three components: a protein or other biomolecule (gene, metabolite,
etc.), a modifier, and a location. The modifier indicates the state of the protein,
including binding of small molecules or phosphates, or ability to act on other
proteins (enzyme activity). For example, the term < [Hras - GTP], CLi > is
the occurrence of the protein Hras modified by binding to the small molecule GTP
(Guanosine TriPhosphate), attached to the inside of the cell membrane (CLi).7

Signal transduction steps are formalized as local rewrite rules operating on the
relevant part of the cell state.

As an example, rule 1.EgfR.act formalizes the initiation of signaling in
response to the presence of Egf (Epidermal growth factor) in a cell’s exterior.

rl [1.EgfR.act]

< ?ErbB1L:ErbB1L, XOut > < EgfR, EgfRC >

=>

< ?ErbB1L:ErbB1L :[ EgfR - Yphos], EgfRC >

Here, ?ErbB1L:ErbB1L is a variable of sort ErbB1L, XOut is the cells external
environment, and the infix operator _:_ represents complex formation. In the
model there are two proteins of sort ErbB1L: Egf and Tgfa (Transforming growth
factor alpha).

How does the Egf signal propagate? To answer the question, we use the PLA.
Figure 2 shows the subnet containing all rules relevant to activation (binding to
GTP) of Hras in response to Egf. The subnet is generated by backwards collection
from the goal H = < [Hras - GTP], CLi > in the Egf response network.

A specific execution path can be found by mapping the subnet and goal to
the language of the LoLA model checker [79] asserting that the goal cannot be
reached. If there is a counter example, LoLA returns a list of transitions that can
be fired to reach the goal. Maude then converts this to a network and generates
the expression to display the interactive graph.

7 There are in fact two internal syntactic forms for representing cell state: a soup of
locations; and a soup of occurrences. We restrict attention to the latter as occurrences
correspond to places in a Petri net.



16 Clavel, Durán, Eker, Escobar, Lincoln, Mart́ı-Oliet, and Talcott

Fig. 2. Activation of Hras in response to Egf. The full subnet with two execution paths
compared. Pink belongs to both paths, blue and cyan to different paths. Ovals represent
occurrences, rectangles represent rules, with input ovals connected by incoming arrows
and output connected by outgoing arrows. Dashed arrows connect occurrences that
both input and output (enzymes).

Figure 2 also shows the result of comparing two different execution paths,
the second is the result of removing one of the occurrences from the subnet
(simulating a knockout) before asking LoLA.

5.2 Maude’s Role in Pathway Logic

The integration of the Maude executable model and PLA is achieved using the
IOP platform for communication amongst a group of actors. Maude’s loop mode
and reflection are key to turning Maude into an actor [61]. The PL Maude
actor extends the IMaude actor [61] with rules for handling PL specific requests.
IMaude provides data structures for representing state, managing asynchronous
interaction, and saving and restoring state. The latter makes essential use of
Maude’s capabilities for pretty-printing and parsing. PLA is an actor built using
an interpreter of a Scheme-like language, JLambda, layered on top of Java. The
Maude PL actor listens for requests from PLA and generates expressions in the
JLambda language to instruct PLA to construct and render interactive network
graphs.

Proteins, modifications, and locations are given different names by different
biologists. Thus, to understand what a biological model is talking about it is
important to link the names (constants) used to reference databases that pro-
vide canonical names and additional information. This is accomplished using the
metadata attribute of Maude operator declarations. PL operator metadata is a



Two Decades of Maude 17

string encoding an S-expression that maps key words to values such as database
access identifiers, synonym lists, and biological classifiers. With the aid of a meta-
model (componentInfoSpec) the metadata is rendered as a menu of information
and active links that are presented when the user clicks on a graph element.
The following is the operator declaration for Egf. The metadata includes iden-
tifiers used by two reference databases (spnumber for UniProt and hugosym for
HGNC), as well as a list of synonyms that can be used when a user unfamiliar
with PL naming is searching for information.

op Egf : -> ErbB1L [ctor metadata "(\

(category Ligand)\

(spnumber P01133)\

(hugosym EGF)\

(synonyms \"Pro-epidermal growth factor\"\

\"EGF_HUMAN\"))"] .

Another important requirement for a model is to justify the rules describing
signal transduction steps. Where do these rules come from? They are inferred
from experimental observations of what is present in a cell (and where) and
of response of a cell or a population of cells to different perturbations. In PL
each rule is linked (via metadata) to an evidence page that contains a formal
representation of the experimental observations used in inferring the rule.8

As noted above, the PL rule base consists of symbolic rules that have variables
whose sort consists of a finite set of proteins or modifications or locations. Petri
net tools (and graphical representations) need concrete instances. One possibility
is simply to generate all possible instances. This generates many useless rules,
because proteins of a given sort behave similarly in some cases, and differently
in other cases. Thus we take advantage of the Maude function to generate all
matches of a rule to a given state to generate only concrete rules that are possibly
reachable from initial states of interest.

In the spirit of May I borrow your logic [11], PL supports multiple represen-
tations of a PL knowledge base: Maude signature and rules, Petri nets, JSON,
and SBML (Systems Biology Markup Language). The Petri net representation
is used for efficient analysis of large networks that takes advantage of the re-
stricted nature of PL rules. SBML is an exchange format used to share models
between different systems biology tools including simulators and visualizers. The
JSON representation is used to treat a PL knowledge base as a database with
efficient query of static relations; for example, finding all rules that involve the
protein whose UniProt identifier is P01112 (Hras). Maude could be programmed
to answer such queries, but putting the information in a database makes it more
widely accessible. In addition, the JSON representation is an easily parsable ex-
change format that is being used by researchers developing modeling and analysis
tools.

Transformations to different representation systems is done by reflecting the
PL model to the metalevel and transforming it to a representation in the target
system, which can then be written to a file with the help of the PLA actor.

8 Rules are currently inferred by a human curator.



18 Clavel, Durán, Eker, Escobar, Lincoln, Mart́ı-Oliet, and Talcott

6 Further Ahead

We have presented our view of the two decades we have been involved in the
development of Maude. We have gone from the first years of Maude to the
current state of the system and the new features currently under development.
What features will Maude users be expecting in the future? Or what features
will have a bigger impact for Maude in the future? As we explained before, a
current trend in programming languages is to become multi-paradigm, offering
flexibility and simplicity for problem specification and solving, and we believe
our efforts will go into that direction.

On the one hand, all the logical and symbolic features will be boosted. For
instance, other SMT libraries such as veriT could be added to Maude. Also,
variant generation and variant-based unification, as well as narrowing in system
theories, consider only unconditional rules and equations: conditional narrow-
ing, both at the level of equational logic and rewriting logic, should be added.
Moreover, more built-in unification algorithms will be included in Core Maude:
we have explored unification algorithms for associativity, for homomorphic en-
cryption, for exclusive-or, etc. Furthermore, we envision conditional narrowing
combined with SMT solvers, so that many different reasoning facilities are seam-
lessly combined.

On the other hand, tool support will be incremented. Maude would not be
such a good logical framework without its metalevel capabilities. The Maude For-
mal Environment will be improved with better tool integration. And we should
not forget about tools built on top of Maude, such as the Pathway Logic Assis-
tant, Real-Time Maude, or the Maude-NPA protocol analyzer.

Acknowledgements

Francisco Durán was partially supported by Universidad de Málaga, Campus
de Excelencia Internacional Andalućıa Tech and Spanish Ministry for Economy
and Competitiveness (MINECO) and the European Union (FEDER) under grant
POLYCIMS (ref. TIN2014–52034–R). Santiago Escobar was partially supported
by the EU (FEDER) and the Spanish MINECO under grant TIN2013–45732–
C4–1–P. Narciso Mart́ı-Oliet was partially supported by Spanish MINECO under
grant StrongSoft (TIN2012–39391–C04–04) and Comunidad de Madrid program
N-GREENS Software (S2013/ICE-2731).

References

1. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. J. ACM,
47(4):776–822, 2000.

2. K. Bae, S. Escobar, and J. Meseguer. Abstract logical model checking of infinite-
state systems using narrowing. In F. van Raamsdonk, editor, 24th International
Conference on Rewriting Techniques and Applications, RTA 2013, June 24-26,
2013, Eindhoven, The Netherlands, volume 21 of LIPIcs, pages 81–96. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.



Two Decades of Maude 19

3. K. Bae, J. Krisiloff, J. Meseguer, and P. C. Ölveczky. Designing and verifying dis-
tributed cyber-physical systems using multirate PALS: an airplane turning control
system case study. Sci. Comput. Program., 103:13–50, 2015.

4. K. Bae and J. Meseguer. Model checking linear temporal logic of rewriting formulas
under localized fairness. Science of Computer Programming, 99:193–234, 2015.

5. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. Kind,
A. Reynolds, and C. Tinelli. CVC4. In G. Gopalakrishnan and S. Qadeer, editors,
Proceedings of the 23rd International Conference on Computer Aided Verification
(CAV 2011), volume 6806 of Lecture Notes in Computer Science, pages 171–177.
Springer, Berlin, 2011.

6. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard: Version 2.0. Techni-
cal report, Department of Computer Science, The University of Iowa, 2010. Avail-
able from http://smt-lib.org.

7. C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo
theories. In A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors, Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
pages 825–885. IOS Press, 2009.

8. A. Boronat and J. Meseguer. An algebraic semantics for MOF. Formal Asp.
Comput., 22(3-4):269–296, 2010.

9. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. Theoretical Computer Science, 236(1):35–132, 2000.

10. S. Brands and D. Chaum. Distance-bounding protocols (extended abstract). In
EUROCRYPT, pages 344–359, 1993.

11. M. Cerioli and J. Meseguer. May I borrow your logic? (Transporting logical struc-
ture along maps). Theoretical Computer Science, 173:311–347, 1997.

12. M. Clavel. Reflection in General Logics and in Rewriting Logic, with Applications
to the Maude Language. PhD thesis, Universidad de Navarra, Spain, February
1998.

13. M. Clavel. Reflection in general logics, rewriting logic, and Maude. In Kirchner
and Kirchner [53], pages 71–82.

14. M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and C. L. Talcott. Unification and narrowing in Maude 2.4. In R. Treinen, editor,
Rewriting Techniques and Applications, 20th International Conference, RTA 2009,
Braśılia, Brazil, June 29 - July 1, 2009, Proceedings, volume 5595 of Lecture Notes
in Computer Science, pages 380–390. Springer, 2009.

15. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, and J. Meseguer. Met-
alevel computation in Maude. In Kirchner and Kirchner [53], pages 331–352.

16. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.
Quesada. Maude: specification and programming in rewriting logic. SRI Interna-
tional, January 1999, http://maude.cs.uiuc.edu/maude1/manual/.

17. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.
Quesada. Maude as a metalanguage. In Kirchner and Kirchner [53], pages 147–160.

18. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.
Quesada. The Maude system. In P. Narendran and M. Rusinowitch, editors,
Rewriting Techniques and Applications, 10th International Conference, RTA-99,
Trento, Italy, July 2-4, 1999, Proceedings, volume 1631 of Lecture Notes in Com-
puter Science, pages 240–243. Springer, 1999.

19. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.
Quesada. A Maude tutorial. Tutorial distributed as documentation of the Maude



20 Clavel, Durán, Eker, Escobar, Lincoln, Mart́ı-Oliet, and Talcott

system, Computer Science Laboratory, SRI International. Presented at the Euro-
pean Joint Conference on Theory and Practice of Software, ETAPS 2000, Berlin,
Germany, March 25, 2000, Mar. 2000.

20. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.
Quesada. Towards Maude 2.0. In Futatsugi [45], pages 294–315.

21. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.
Quesada. Using Maude. In T. S. E. Maibaum, editor, Fundamental Approaches to
Software Engineering, Third International Conference, FASE 2000, Held as Part
of the European Joint Conferences on the Theory and Practice of Software, ETAPS
2000, Berlin, Germany, March 25-April 2, 2000, Proceedings, volume 1783 of Lec-
ture Notes in Computer Science, pages 371–374. Springer, 2000.

22. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.
Quesada. Maude: specification and programming in rewriting logic. Theoretical
Computer Science, 285(2):187–243, 2002.

23. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. L.
Talcott. The Maude 2.0 system. In R. Nieuwenhuis, editor, Rewriting Techniques
and Applications, 14th International Conference, RTA 2003, Valencia, Spain, June
9-11, 2003, Proceedings, volume 2706 of Lecture Notes in Computer Science, pages
76–87. Springer, 2003.

24. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. L.
Talcott. All About Maude - A High-Performance Logical Framework, How to Spec-
ify, Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes
in Computer Science. Springer, 2007.

25. M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In Meseguer
[67], pages 65–89.

26. M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic. In Meseguer
[67], pages 126–148.

27. H. Comon-Lundh and S. Delaune. The finite variant property: How to get rid
of some algebraic properties. In J. Giesl, editor, Term Rewriting and Applica-
tions, 16th International Conference, RTA 2005, Nara, Japan, April 19-21, 2005,
Proceedings, volume 3467 of Lecture Notes in Computer Science, pages 294–307.
Springer, 2005.

28. C. de O. Braga, E. H. Haeusler, J. Meseguer, and P. D. Mosses. Maude action
tool: Using reflection to map action semantics to rewriting logic. In T. Rus, edi-
tor, Algebraic Methodology and Software Technology. 8th International Conference,
AMAST 2000, Iowa City, Iowa, USA, May 20-27, 2000, Proceedings, volume 1816
of Lecture Notes in Computer Science, pages 407–421. Springer, 2000.

29. F. Durán. A Reflective Module Algebra with Applications to the Maude Language.
PhD thesis, Universidad de Málaga, Spain, June 1999.

30. F. Durán. The extensibility of Maude’s module algebra. In T. Rus, editor, Alge-
braic Methodology and Software Technology. 8th International Conference, AMAST
2000, Iowa City, Iowa, USA, May 20-27, 2000, Proceedings, volume 1816 of Lecture
Notes in Computer Science, pages 422–437. Springer, 2000.

31. F. Durán, S. Eker, S. Escobar, J. Meseguer, and C. L. Talcott. Variants, unification,
narrowing, and symbolic reachability in Maude 2.6. In M. Schmidt-Schauß, editor,
Proceedings of the 22nd International Conference on Rewriting Techniques and
Applications, RTA 2011, May 30 - June 1, 2011, Novi Sad, Serbia, volume 10 of
LIPIcs, pages 31–40. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

32. F. Durán, S. Eker, P. Lincoln, and J. Meseguer. Principles of Mobile Maude. In
D. Kotz and F. Mattern, editors, Agent Systems, Mobile Agents, and Applications,



Two Decades of Maude 21

Second International Symposium on Agent Systems and Applications and Fourth
International Symposium on Mobile Agents, ASA/MA 2000, Zürich, Switzerland,
September 13-15, 2000, Proceedings, volume 1882 of Lecture Notes in Computer
Science, pages 73–85. Springer, 2000.

33. F. Durán, S. Lucas, and J. Meseguer. MTT: The Maude termination tool (system
description). In A. Armando, P. Baumgartner, and G. Dowek, editors, Automated
Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia,
August 12-15, 2008, Proceedings, volume 5195 of Lecture Notes in Computer Sci-
ence, pages 313–319. Springer, 2008.

34. F. Durán and J. Meseguer. An extensible module algebra for Maude. In Kirchner
and Kirchner [53], pages 174–195.

35. F. Durán and J. Meseguer. Maude’s module algebra. Science of Computer Pro-
gramming, 66(2):125–153, April 2007.

36. F. Durán and J. Meseguer. On the Church-Rosser and coherence properties of
conditional order-sorted rewrite theories. Journal of Logic and Algebraic Program-
ming, 81(7–8):816–850, 2012.

37. F. Durán, A. Riesco, and A. Verdejo. A distributed implementation of Mobile
Maude. Electr. Notes Theor. Comput. Sci., 176(4):113–131, 2007.

38. F. Durán, C. Rocha, and J. M. Álvarez. Towards a Maude formal environment.
In G. Agha, O. Danvy, and J. Meseguer, editors, Formal Modeling: Actors, Open
Systems, Biological Systems - Essays Dedicated to Carolyn Talcott on the Occasion
of Her 70th Birthday, volume 7000 of Lecture Notes in Computer Science, pages
329–351. Springer, 2011.

39. S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, and K. Sonmez. Path-
way Logic: Symbolic analysis of biological signaling. In Proceedings of the Pacific
Symposium on Biocomputing, pages 400–412, January 2002.

40. S. Escobar. Functional logic programming in Maude. In S. Iida, J. Meseguer,
and K. Ogata, editors, Specification, Algebra, and Software - Essays Dedicated to
Kokichi Futatsugi, volume 8373 of Lecture Notes in Computer Science, pages 315–
336. Springer, 2014.

41. S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA: Cryptographic protocol
analysis modulo equational properties. In A. Aldini, G. Barthe, and R. Gorrieri,
editors, FOSAD, volume 5705 of Lecture Notes in Computer Science, pages 1–50.
Springer, 2007.

42. S. Escobar and J. Meseguer. Symbolic model checking of infinite-state systems
using narrowing. In F. Baader, editor, Term Rewriting and Applications, 18th In-
ternational Conference, RTA 2007, Paris, France, June 26-28, 2007, Proceedings,
volume 4533 of Lecture Notes in Computer Science, pages 153–168. Springer, 2007.

43. S. Escobar, R. Sasse, and J. Meseguer. Folding variant narrowing and optimal
variant termination. Journal of Logic and Algebraic Programming, 81(7-8):898–
928, 2012.

44. M. Fadlisyah, P. C. Ölveczky, and E. Ábrahám. Formal modeling and analysis of
interacting hybrid systems in HI-Maude: What happened at the 2010 sauna world
championships? Sci. Comput. Program., 99:95–127, 2015.

45. K. Futatsugi, editor. Proceedings of the Third International Workshop on Rewriting
Logic and its Applications, WRLA 2000, Kanazawa, Japan, September 18-20, 2000,
volume 36 of Electronic Notes in Theoretical Computer Science. Elsevier, 2000.

46. J. Goguen and J. Meseguer. Eqlog: Equality, types and generic modules for logic
programming. In D. DeGroot and G. Lindstrom, editors, Logic Programming,
Functions, Relations and Equations, pages 295–363. Prentice-Hall, 1986.



22 Clavel, Durán, Eker, Escobar, Lincoln, Mart́ı-Oliet, and Talcott

47. J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for
multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science, 105:217–273, 1992.

48. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Intro-
ducing OBJ. In J. A. Goguen and G. Malcolm, editors, Software Engineering with
OBJ: Algebraic Specification in Action, pages 3–167. Kluwer Academic Publishers,
2000.

49. J. A. Goguen and J. Meseguer. Equality, types, modules, and (why not ?) generics
for logic programming. Journal of Logic Programming, 1(2):179–210, 1984.

50. J. Hendrix, J. Meseguer, and H. Ohsaki. A sufficient completeness checker for
linear order-sorted specifications modulo axioms. In U. Furbach and N. Shankar,
editors, Automated Reasoning, Third International Joint Conference, IJCAR 2006,
Proceedings, volume 4130 of Lecture Notes in Computer Science, pages 151–155.
Springer, 2006.

51. M. Kanovich, T. B. Kirigin, V. Nigam, A. Scedrov, C. Talcott, and R. Perovic.
A rewriting framework for activities subject to regulations. In A. Tiwari, editor,
23rd International Conference on Rewriting Techniques and Applications (RTA),
volume 15 of LIPIcs, pages 305–322. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2012.

52. M. I. Kanovich, T. B. Kirigin, V. Nigam, A. Scedrov, and C. L. Talcott. Discrete
vs. dense times in the analysis of cyber-physical security protocols. In R. Focardi
and A. C. Myers, editors, Principles of Security and Trust - 4th International Con-
ference, POST 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceed-
ings, volume 9036 of Lecture Notes in Computer Science, pages 259–279. Springer,
2015.

53. C. Kirchner and H. Kirchner, editors. Proceedings of the Second International
Workshop on Rewriting Logic and its Applications, WRLA’98, Pont-à-Mousson,
France, September 1-4, 1998, volume 15 of Electronic Notes in Theoretical Com-
puter Science. Elsevier, 1998.

54. P. Lincoln, N. Mart́ı-Oliet, and J. Meseguer. Specification, transformation, and
programming of concurrent systems in rewriting logic. In G. E. Blelloch, K. M.
Chandy, and S. Jagannathan, editors, Specification of Parallel Algorithms, DI-
MACS Workshop, May 9-11, 1994, volume 18 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 309–339. American Math-
ematical Society, 1994.

55. P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and L. Ricciulli. Compiling rewriting onto
SIMD and MIMD/SIMD machines. In C. Halatsis, D. G. Maritsas, G. Philokyprou,
and S. Theodoridis, editors, PARLE’94: Parallel Architectures and Languages Eu-
rope, 6th International PARLE Conference, Athens, Greece, July 4-8, 1994, Pro-
ceedings, volume 817 of Lecture Notes in Computer Science, pages 37–48. Springer,
1994.

56. P. D. Lincoln and C. Talcott. Symbolic systems biology and pathway logic. In
S. Iyengar, editor, Symbolic Systems Biology, pages 1–29. Jones and Bartlett, 2010.

57. S. Lucas. Context-sensitive rewriting strategies. Information and Computation,
178(1):294–343, 2002.

58. N. Mart́ı-Oliet and J. Meseguer. Action and change in rewriting logic. In
R. Pareschi and B. Fronhöfer, editors, Dynamic Worlds: From the Frame Prob-
lem to Knowledge Management, volume 12 of Applied Logic Series, pages 1–53.
Kluwer Academic Publishers, 1999.



Two Decades of Maude 23

59. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. In D. M. Gabbay and F. Guenthner, editors, Handbook of Philosophical
Logic, Second Edition, Volume 9, pages 1–87. Kluwer Academic Publishers, 2002.

60. N. Mart́ı-Oliet, M. Palomino, and A. Verdejo. Rewriting logic bibliography by
topic: 1990-2011. Journal of Logic and Algebraic Programming, 81(7-8):782–815,
2012.

61. I. A. Mason and C. L. Talcott. IOP: The InterOperability Platform &
IMaude: An interactive extension of Maude. In N. Mart́ı-Oliet, editor, Pro-
ceedings Fifth International Workshop on Rewriting Logic and its Applica-
tions, WRLA 2004, Barcelona, Spain, March 27–28, 2004, volume 117 of Elec-
tronic Notes in Theoretical Computer Science, pages 315–333. Elsevier, 2005.
http://www.sciencedirect.com/science/journal/15710661.

62. J. Meseguer. A logical theory of concurrent objects. In N. Meyrowitz, editor,
Proceedings of the ECOOP-OOPSLA’90 Conference on Object-Oriented Program-
ming, Ottawa, Canada, October 21-25, 1990, pages 101–115. ACM Press, 1990.

63. J. Meseguer. Rewriting as a unified model of concurrency. In J. C. M. Baeten
and J. W. Klop, editors, CONCUR ’90, Theories of Concurrency: Unification and
Extension, Amsterdam, The Netherlands, August 27-30, 1990, Proceedings, volume
458 of Lecture Notes in Computer Science, pages 384–400. Springer, 1990.

64. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

65. J. Meseguer. Multiparadigm logic programming. In H. Kirchner and G. Levi, edi-
tors, Algebraic and Logic Programming, Third International Conference, Volterra,
Italy, September 2-4, 1992, Proceedings, volume 632 of Lecture Notes in Computer
Science, pages 158–200. Springer, 1992.

66. J. Meseguer. A logical theory of concurrent objects and its realization in the Maude
language. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research Directions in
Concurrent Object-Oriented Programming, pages 314–390. The MIT Press, 1993.

67. J. Meseguer, editor. Proceedings of the First International Workshop on Rewriting
Logic and its Applications, WRLA’96, Asilomar, California, September 3-6, 1996,
volume 4 of Electronic Notes in Theoretical Computer Science. Elsevier, 1996.

68. J. Meseguer. Rewriting logic as a semantic framework for concurrency: A progress
report. In U. Montanari and V. Sassone, editors, CONCUR’96: Concurrency The-
ory, 7th International Conference, Pisa, Italy, August 26–29, 1996, Proceedings,
volume 1119 of Lecture Notes in Computer Science, pages 331–372. Springer, 1996.

69. J. Meseguer. Membership algebra as a logical framework for equational speci-
fication. In F. Parisi-Presicce, editor, Recent Trends in Algebraic Development
Techniques, 12th International Workshop, WADT’97, Tarquinia, Italy, June 3-7,
1997, Selected Papers, volume 1376 of Lecture Notes in Computer Science, pages
18–61. Springer, 1997.

70. J. Meseguer. From OBJ to Maude and beyond. In K. Futatsugi, J. Jouannaud,
and J. Meseguer, editors, Algebra, Meaning, and Computation, Essays Dedicated
to Joseph A. Goguen on the Occasion of His 65th Birthday, volume 4060 of Lecture
Notes in Computer Science, pages 252–280. Springer, 2006.

71. J. Meseguer. The temporal logic of rewriting: A gentle introduction. In P. Degano,
R. D. Nicola, and J. Meseguer, editors, Concurrency, Graphs and Models, Essays
Dedicated to Ugo Montanari on the Occasion of His 65th Birthday, volume 5065
of Lecture Notes in Computer Science, pages 354–382. Springer, 2008.

72. J. Meseguer. Twenty years of rewriting logic. Journal of Logic and Algebraic
Programming, 81(7-8):721–781, 2012.



24 Clavel, Durán, Eker, Escobar, Lincoln, Mart́ı-Oliet, and Talcott

73. J. Meseguer and C. L. Talcott. Semantic models for distributed object reflection.
In B. Magnusson, editor, ECOOP 2002 - Object-Oriented Programming, 16th Eu-
ropean Conference, Malaga, Spain, June 10-14, 2002, Proceedings, volume 2374 of
Lecture Notes in Computer Science, pages 1–36. Springer, 2002.

74. J. Meseguer and P. Thati. Symbolic reachability analysis using narrowing and its
application to verification of cryptographic protocols. Higher-Order and Symbolic
Computation, 20(1-2):123–160, 2007.

75. J. Meseguer and T. C. Winkler. Parallel programmming in Maude. In J.-P. Banâtre
and D. L. Métayer, editors, Research Directions in High-Level Parallel Program-
ming Languages, Mont Saint-Michel, France, June 17-19, 1991, Proceedings, vol-
ume 574 of Lecture Notes in Computer Science, pages 253–293. Springer, 1992.

76. P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation, 20(1-2):161–196, 2007.

77. J. E. Rivera, F. Durán, and A. Vallecillo. Formal specification and analysis of
domain specific models using Maude. Simulation, 85(11-12):778–792, 2009.

78. C. Rocha, J. Meseguer, and C. Muñoz. Rewriting modulo SMT and open system
analysis. In S. Escobar, editor, Proceedings of the 10th International on Workshop
Rewriting Logic and Its Applications (WRLA 2014), volume 8663 of Lecture Notes
in Computer Science, pages 247–262. Springer, Berlin, 2014.

79. K. Schmidt. LoLA: A Low Level Analyser. In M. Nielsen and D. Simpson, editors,
Application and Theory of Petri Nets, 21st International Conference (ICATPN
2000), volume 1825 of Lecture Notes in Computer Science, pages 465–474. Springer,
2000.

80. C. Talcott. Symbolic modeling of signal transduction in pathway logic. In L. F.
Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto,
editors, 2006 Winter Simulation Conference, pages 1656–1665, 2006.

81. C. Talcott and D. L. Dill. Multiple representations of biological processes. Trans-
actions on Computational Systems Biology, 2006.

82. C. L. Talcott. Coordination models based on a formal model of distributed object
reflection. Electr. Notes Theor. Comput. Sci., 150(1):143–157, 2006.

83. T. C. Winkler. Programming in OBJ and Maude. In P. E. Lauer, editor, Functional
Programming, Concurrency, Simulation and Automated Reasoning: International
Lecture Series 1991-1992, McMaster University, Hamilton, Ontario, Canada, vol-
ume 693 of Lecture Notes in Computer Science, pages 229–277. Springer, 1993.


