
Statistical Model Checking of e-Motions
Domain-Specific Modeling Languages

Francisco Durán, Antonio Moreno-Delgado, and José M. Álvarez-Palomo

E.T.S.I. Informática
University of Málaga, Spain

{duran,amoreno,alvarezp}@lcc.uma.es

Abstract. Domain experts may use novel tools that allow them to de-
sign and model their systems in a notation very close to the domain
problem. However, the use of tools for the statistical analysis of stochas-
tic systems requires software engineers to carefully specify such systems
in low level and specific languages. In this work we line up both sce-
narios, specific domain modeling and statistical analysis. Specifically, we
have extended the e-Motions system, a framework to develop real-time
domain-specific languages where the behavior is specified in a natural
way by in-place transformation rules, to support the statistical analysis
of systems defined using it. We discuss how restricted e-Motions sys-
tems are used to produce Maude corresponding specifications, using a
model transformation from e-Motions to Maude, which comply with the
restrictions of the VeStA tool, and which can therefore be used to per-
form statistical analysis on the stochastic systems thus generated. We
illustrate our approach with a very simple messaging distributed system.

1 Introduction

Model Driven Engineering advocates the use of models as the key artifacts in
all phases of development, artifacts from which whole systems can be derived,
analysed and implemented [21]. To be able to define such models in terms as
close to the problem domain as possible, different technologies for the defini-
tion of Domain Specific Modeling Languages (DSMLs) have been proposed (see,
e.g., [20]). The main goal of these DSMLs is to follow the domain abstractions
and semantics, allowing modelers to perceive themselves as working directly with
domain concepts. Model transformations may then be used to analyze certain
aspects of models and then automatically synthesize various types of artifacts,
such as source code, simulation inputs, or alternative model representations.

DSMLs are typically defined by means of its structural aspects (with its
corresponding abstract and, in some cases, concrete syntaxes). These definitions
allow the rapid development of languages and some of their associated tools, such
as editors or browsers. Typically, to perform some type of analysis or to gener-
ate code, such models need to be transformed into formalisms or programming
languages with the appropriate tool support. There are many success stories us-
ing this approach. However, the semantics of such DSMLs is embedded in the



model transformations, and provided by the target formalism, what constrains
the rapid definition of such languages. To overcome this situation different au-
thors have proposed different ways of providing an operational semantics as part
of the definition of DSMLs, possibly being the most successful one the one using
graph transformation systems (GTS) [33], with systems such as AToM3 [13],
AGG [37] or e-Motions [29] implementing it.

The specification of the explicit behavioral semantics of DSMLs helps in MDE
activities such as quick prototyping, simulation, or analysis. Ensuring semantic
properties of models is important because any error in a model can easily become
a systemic error in the system under development. E.g., AGG and e-Motions
provide support for the simulation of models defined conforming to user-defined
DSMLs. These and other languages provide support for different kinds of analysis
as well, like termination checks, critical pair analysis, or reachability analysis
(see, e.g., [37] and [31]). CheckVML [34], GROOVE [28] and e-Motions [29]
support the model checking of systems whose behavior is specified by graph
transformation systems.

This is, however, not enough, since applications become more and more com-
plex, and model checking is a very expensive procedure, both in time and space,
being infeasible in many cases. A very important class of systems that falls out
of the scope of classical model checkers are real-time stochastic systems. The
methods used to verify quantitative properties of stochastic systems are typically
based on numerical methods [19], that iteratively compute the exact (or approx-
imate) measure of paths satisfying relevant logical formulas. Although tools like
PRISM [22] and UPPAAL [4] have shown very successful in the analysis of this
kind of systems, explicitly constructing the corresponding probabilistic model
is infeasible in many cases. An alternative method that solves this problem is
based on statistical methods, similar to Monte Carlo simulations. By testing our
hypothesis on many executions of a system, we may infer statistical evidence on
the satisfaction or violation of the specification. Thus, properties like “the prob-
ability of completing task X with Y units of energy is greater than 0.3” or “the
average amount of energy required to complete task X with confidence interval
α and error bound β” are evaluable. YMER [39] and VeStA [36] were pioneering
tools implementing these techniques. Latest releases of the well-established tools
PRISM and UPPAAL have more recently also included capabilities for statistical
model checking (see [23] and [9]).

Statistical methods has another advantage in the context of DSMLs: are
“easy” to use and “cheap”. As other model-checking methods, statistical model
checking is completely automatic, and can be used where other methods fail. But
can also be used for “normal” systems with a shorter computation time. Since
statistical model checking assumes the existence of inaccuracy in its results,
answers are calculated provided a confidence interval and an error bound. As
may be expected, these requirements have an impact on the number of samples
to be processed, and therefore on the evaluation time.

In this paper we describe how the e-Motions tool has been extended so the
models built conforming to user-defined DSMLs are suitable for statistical model



checking. e-Motions models are transformed into Maude specifications satisfying
the requirements of the PVeStA tool [3] (an extension and parallelization of
VeStA [36]). Such Maude specifications are therefore suitable to be stochastically
analyzed using PVeStA. We illustrate the use of e-Motions to model systems and
its statistical model checker with a very simple messaging system.

The remaining of the paper is structured as follows. Section 2 presents
e-Motions and VeStA/PVeStA, and their underlying Maude system. Section 3
explains how e-Motions specifications are statistically analysed using PVeStA
and how the connection between these two systems is established. The way sys-
tems are defined in e-Motions and how they can be statistically analysed is
illustrated with a case study in Section 4. Section 5 discusses some related work
and Section 6 wraps up presenting some conclusions and future work.

2 Preliminaries

In this section, we introduce the e-Motions language and tool, the Maude system
and the Maude implementation of e-Motions, and the VeStA/PVeStA tool.

2.1 The e-Motions System

e-Motions [29] is a graphical language and framework that supports the spec-
ification, simulation, and formal analysis of real-time systems. It supports the
graphical specification of the dynamic behavior of DSMLs using their concrete
syntax, making this task very intuitive.1 The abstract syntax of a DSML is
specified as an Ecore metamodel, which defines all relevant concepts—and their
relations—in the language. Its concrete syntax is given by a GCS (Graphical
Concrete Syntax) model, which attaches an image to each language concept.
Then, its behavior is specified with (graphical) in-place model transformations.
e-Motions provides a model of time, supporting features like duration, periodic-
ity, etc., and mechanisms to state action properties [29, 30].

In-place transformations are defined by rules, each of which represents a pos-
sible action of the system. These rules are of the form [NAC]∗ × LHS → RHS,
where LHS (left-hand side), RHS (right-hand side) and NAC (negative appli-
cation conditions) are model patterns that represent certain (sub-)states of the
system. The LHS and NAC patterns express the conditions for the rule to be
applied, whereas the RHS represents the effect of the corresponding action. A
LHS may also have positive conditions, which are expressed, as any expression
in the RHS, using OCL. Thus, a rule can be applied, i.e., triggered, if a match of
the LHS is found in the model, its conditions are satisfied, and none of its NAC
patterns occur. If several matches are found, one of them is non-deterministically
chosen and applied, giving place to a new model where the matching objects are
substituted by the appropriate instantiation of its RHS pattern. The transfor-
mation of the model proceeds by applying the rules on sub-models of it in a
non-deterministic order, until no further transformation rule is applicable.

1 e-Motions got an “ease of use” award at the 7th Transformation Tool Contest [26].



In e-Motions, there are two types of rules to specify time-dependent behavior,
namely, atomic and on-going rules. Atomic rules represent atomic actions with
a duration, which is specified by an interval of time. Atomic rules with duration
zero are called instantaneous rules. On the other hand, on-going rules represent
continuous actions that may be interrupted at any time.

A special kind of object, named Clock, represents the current global time
elapse. Designers can use it in their rules (using its attribute time) to know the
amount of time that the system has been working.

Figure 1 shows the metamodel and concrete syntax for a very simple mes-
saging system, where there are nodes interconnected via channels. Each node
has an agenda (a set with the identifiers of the other nodes in the net), and may
deliver messages to any other node in it. There are two types of messages in the
system, namely Token and Message. Figure 2 shows a sample initial configura-
tion conforming to the metamodel in Figure 1a and using the concrete syntax
in Figure 1b. Figure 3 shows the atomic rules defining the possible actions that
may happen in such systems. The NewMessage rule states that every time a node
receives a token message with time zero, a new message is created addressed to
another node chosen from the agenda following a uniform distribution, and will
be sent through an outgoing channel also chosen probabilistically—WITH blocks
state positive conditions that have to be hold on a given match of the LHS for
the rule to be triggered. Mail objects will be moved from nodes to channels and
from channels to nodes by rules Node2Channel and Channel2Node, respectively,
both with a duration that follows a normal distribution (see the definition of
variable STime at the bottom of the rule and its use in the header to estab-
lish the duration). The MessageArrival and DecreaseToken rules model, re-
spectively, the arrival of a message to its destination node, where the observer
gathers information about the time taken, and the pass of time for the token
messages. NewMessage and MessageArrival are modelled as instantaneous ac-
tions (duration [0,0]). Node2Channel, Channel2Node and DecreaseToken have
probabilistic durations, whilst the duration of the first two are calculated in the
rule itself, for the third one the duration is given by the attribute t of the token,
whose value was assigned in a previous NewMessage rule.

2.2 Maude

Maude [10, 11] is an executable formal specification language based on rewrit-
ing logic [24], a logic of change that can naturally deal with states and non-
deterministic concurrent computations. A rewrite logic theory is a tuple (Σ,E,R),
where (Σ,E) is an equational theory that specifies the system states as elements
of the initial algebra T(Σ,E), and R is a set of rewrite rules that describe the
one-step possible concurrent transitions in the system.

Rewriting will operate on congruence classes of terms modulo E. This of
course does not mean that an implementation of rewriting logic must have an
E-matching algorithm for each equational theory E that a user might specify.
The equations are divided into a set A of structural axioms for which matching
algorithms are available and a set E of equations. Then, for having a complete



(a) Metamodel (b) Concrete syntax

Fig. 1: Metamodel and concrete syntax for the messaging system

Fig. 2: Messaging system’s initial configuration

agreement between the specification’s initial algebra and its operational seman-
tics by rewriting, a rewrite theory (Σ,E ∪A,R) is assumed to be such that the
set E of equations is (ground) Church-Rosser and terminating modulo A, and
the rules R are (ground) coherent with the equations E modulo A (see [14, 15]).

In the case of Maude, the equational logic is membership equational logic
(MEL) [7], which can be seen as an extension of order-sorted logic with sorts,
subsorts, and partial functions, and where atomic sentences include both equa-
tions t = t′ and memberships t : s, stating that term t has sort s. Maude provides
support for rewriting modulo associativity, commutativity and identity, which



Fig. 3: Messaging system’s rules



perfectly captures the evolution of models made up of objects linked by refer-
ences as in graph grammar.

Maude counts with a rich set of validation and verification tools, increasingly
used as support to the development of UML, MDA, and OCL tools (see, e.g., [32]
for an overview). Furthermore, Maude has demonstrated to be a good environ-
ment for rapid prototyping, and also for application development (see [11]).

Among other applications, Maude may be seen as a general framework where
to develop model transformations [6]. Maude is used as a formal notation to
provide the precise semantics of the corresponding e-Motions specifications (as
described in [30]), while at the same time the model transformations between
e-Motions and Maude allow the Maude tools to become available in the e-Motions
environment. More precisely, the generated Maude specification is a Real-Time
Maude specification. Real-Time Maude [27] is a rewriting-logic-based specifica-
tion language and formal analysis tool that extends the Maude system [11] to
support the formal specification and analysis of real-time systems. Real-Time
Maude provides a sort Time to model the time domain, which can be either
discrete or dense. Then, pass of time is modelled with tick rules like

crl [l] : { t, T } => { t′, T + τ } if C .

where t and t′ are system states (an evolving model in our case), T is the global
time, and τ is a term of sort Time that denotes the duration of the rewrite,
and that affects the global time elapse. Since tick rules affect the global time, in
Real-Time Maude time elapse is usually modeled by one single tick rule, and the
system dynamic behavior by instantaneous transitions [27]. Although there are
other sampling strategies, in the most convenient one this single tick rule models
time elapse by using two functions: the delta function, that defines the effect
of time elapse over every model element, and the mte (maximal time elapse)
function, that defines the maximum amount of time that can elapse before any
action is performed. Then, time advances non-deterministically by any amount
τ , which must be less or equal than the maximum time elapse of the system.

crl [tick] : { t, T } => { delta(t, τ), T + τ } if τ ≤ mte(t) ∧ C .

2.3 Maude representation of e-Motions models and metamodels

As in [32, 5], the algebraic semantics of an Ecore2 metamodel MM is provided by
a MEL theory SpecMM so that a model M conformant with MM is an element
of the initial algebra TSpecMM

. The e-Motions definition of a domain specific lan-
guage provided by a metamodel MM plus a set of transformation rules defining
its dynamic semantics, is then represented as a rewrite theory extending SpecMM

with some additional definitions and rules specifying such a behavior.
An ATL transformation transforms e-Motions models into Maude executable

specifications, which can be used for simulation and analysis. Although a detailed

2 Ecore is equivalent to the EMOF (Essential MOF) portion of MOF defined in the
MOF 2 specification [25].



presentation of this transformation can be found in [30], we give here a general
account of it to understand the rest of the paper.

e-Motions’ models are represented in Maude as structures of sort @Model

of the form mm{obj1 obj2 ... objN}, where mm is the name of its metamodel
and obji are the objects that constitute the model. An object is a record-like
structure of the form < o : c | a1 : v1#...#an : vn > (of sort @Object), where
o is the object identifier (of sort Oid), c is the class the object belongs to (of
sort @Class), and ai : vi are attribute-value pairs (of sort @StructuralFeature-
Instance). Given appropriate definitions for all classes, attributes and references
in its corresponding metamodel, a possible valid state could be as follows:

@smp-mm@ {

< n1 : Node | id : "n1" # out : Set{"ch1", "ch2"} # agenda : ... >

< ch1 : Channel | id : "ch1" # node : "n2" >

...

}

This code snippet shows part of a model in which there is a node object "n1" of
class Node which is connected to channels "ch1" and "ch2", which in turn are
connected to nodes "n2" and "n3".3

Although in e-Motions there are two kinds of rules, namely, atomic and on-
going rules, for the purpose of the work at hand only atomic rules are used. So in
what follows, we sketch the Maude specification of the atomic e-Motions rules.

Atomic rules are represented as two Real-Time Maude instantaneous rules,
one modeling its triggering and another one modeling its actual realization.
Triggering rules represent the action’s preconditions. When a rule precondition
is satisfied, the triggering Maude rule is applied and an atomic action execution
(AAE ) object is created. AAE objects represent atomic rules’ executions, each
one acting as a countdown to the finalization of the action. AAE objects gather
the information needed for its instantiation: the rule’s name (l), the identifiers of
the elements involved in the action (ρ), and the variables used in it (ν). Initially,
the timer (τ) is set to the given duration of the rule.

crl [l] : {t, T} => {t, AAE (l, ρ, ν, τ), T} if C .

The realization rule represents the postcondition of the rule, which can be per-
formed once the action’s timer is consumed, and only if none of the action’s
participants have been deleted by other actions. Then, the subterm matching
the LHS is substituted by the corresponding instantiation of the RHS and the
attribute values are computed.

crl [l] : {t, AAE (l, ρ, ν, 0), T} => {t′, T} if C .

As above explained, time elapse is modeled by using the delta and mte

functions. Both functions need to be defined only over time-dependent elements,

3 In e-Motions, all structural features are qualified with the name of the class they
belong to, and all elements are qualified with the name of the metamodel they are
defined in. All these qualifications have been removed to improve readability.



namely the Clock instance and AAE objects. The delta function decreases AAE
timers and increases the clock value. The rest of objects remain unchanged.

Action execution objects AAE gather additional information for dealing with
scheduling, periodicity, etc. The interested reader is referred to [30] for a complete
account on them and on the representation of on-going rules. From the point of
view of executability by rewriting and, in particular, for the discussion on un-
quantified non-determinism in the following sections the key idea is that AAE
objects are required for the realization of actions.

2.4 The VeStA/PVeStA tool

There are two main approaches for statistical model checking: sequential test-
ing [40], implemented, e.g., in Ymer [39], and black-box testing [35], imple-
mented, e.g., in VeStA [36]. In sequential testing, sample execution paths are
generated until its answer can be guaranteed to be correct within the required
error bounds. In black-box testing, the system is not controlled to generate spe-
cific execution traces. Instead, a quantitative measure of confidence is computed
for given samples.

VeStA [36] performs discrete-event simulation from a Maude specification
by invoking the Maude interpreter. Given a Maude model, an initial state (or
configuration) and a temporal logical formula expressed in QuaTeX [2], VeStA
is used to perform stochastic analysis. QuaTeX uses real-valued states and path
functions to quantitatively specify properties about probabilistic models. Specif-
ically, QuaTeX provides an expressive language for real-valued temporal prop-
erties through the combination of recursive function declarations, an if-then-else
construct, and a next operator. The reader is referred to [2] for a detailed account
on QuaTeX. For the soundness of the analysis carried out in VeStA, the specifi-
cation to be analyzed has to have absence of un-quantified non-determinism [35].

AlTurki et al. have extended the VeStA tool with a parallel implementation,
PVeStA [3], which makes the analysis substantially more efficiently. VeStA and
PVeStA have been used for the analysis of systems and algorithms by different
authors (see, e.g., [1, 16, 8]).

3 PVeStA-compliant representation of e-Motions models

When rewriting a system, there might be different sources of non-determinism.
Some of them are part of our specification, due to probabilistic choices and
stochastic real-time. However, rewrite engines need to take their own choices.
When there are several matches, for a given rule or for several rules, rewrite
engines will choose an alternative following some internal criteria. For the statis-
tical analysis used in VeStA/PVeStA to be sound the rewriting logic specification
cannot contain un-quantified non-determinism [2].

The thus obtained specification may be used for rewriting in Maude, but
other tools in the Maude formal environment, as its model checker or its reach-
ability analysis tool, can also be used on it [31]. In section 3.2 we show how,



by meeting its requirements, we can also use the PVeStA tool for carrying on
statistical model checking.

3.1 Un-quantified-non-determinism-free e-Motions systems

Writing an arbitrary rewrite specification that meets the un-quantified-non-
determinism free requirement is non-trivial. We could check whether a speci-
fication meets the requirement by performing a critical pair analysis and check-
ing that there are no rules that can be applied simultaneously.4 However, the
checking would not be easy either. And although it may give us some hints on
the sources of un-quantified non-determinism, we would still have to change the
specification.

To avoid this problem, and to make easier to write a specification free from
un-quantified non-determinism, Agha et al. propose in [2] the use of the actor
model. To guarantee that only one rule can be fired at any time, messages
are scheduled following a continuous probability distribution. To improve its
executability, a centralized scheduler is used in [3], so that only one scheduled
message or object is available for execution at any time. With this scheduler-
based scheme, having a single message in the initial configuration, rules with
one object and a message in its left-hand sides, and no two rules for the same
message, are a sufficient condition to meet the requirement. Eckhardt et al.
relaxed the requirements on systems in [16] by allowing nested configurations
of objects. The basic idea is however the same one, if every rule is going to be
fired by a message, this message determines the rule match, and there is only
one message out of the scheduler at a time, there is only one rule that may be
fired and in one possible way.

Given the direct transformation of e-Motions configurations of objects with
references into Maude configurations of objects, we may use the same scheduler
scheme with the following changes on the requirements:

– There is a distinguish class Message whose objects represent messages.
– Objects communicate through asynchronous message passing, avoiding di-

rect synchronization among them. We allow several objects in the left-hand
sides of rules, but only when they are related by a containment relation, and
not to model communication between them.

– Message and action execution objects are scheduled so that there is only one
of these objects out of the scheduler.

– In the initial configuration there is only one message object, and no action
execution object. If there are more than one message objects, they have to
be scheduled.

– Rules may be fired either by messages or by action execution objects AAE.
Each rule has in its left-hand side either a message or an action execution
object. There is no rule without one of these objects in its left-hand side.

4 Critical pair analysis is available in Maude, and has been used for tools like its
confluence and coherence checkers (see [15]).



– As in [3], there might be in the right-hand side of a rule any number of
message and action execution objects, but only one may be non-scheduled.
The rest must be scheduled so that only one remains in the under-execution
configuration. When there are several messages in the left-hand side of a
rule, the order of the messages is specified in the transformation.

– If there are two rules with the same message or action execution object in its
LHS, they cannot be simultaneously applicable. This is a requirement often
used in critical pair analysis (cf. [15]): if there is a critical pair between two
rules, their conditions should not be simultaneously satisfiable.

– The duration intervals of all atomic rules must be of the form [n,n]. Inter-
vals of the form [n,m] are a source of un-quantified no-determinism, since
the actual duration of the corresponding action might be any value in that
interval.

These requirements are a sufficient condition for the specification to meet the
un-quantified-non-determinism-free condition. Given the direct transformation
between e-Motions rules and Maude rules, these requirements can indeed be
checked on the e-Motions model itself.

Our scheduler contains both messages and action execution objects, which
are released one by one in every rewriting tick step. As in [3], the elements in
the scheduler are ordered according to their scheduled time. Messages are always
ahead of actions, as they are ready to be consumed as soon as they are generated
by a realization rule. Those objects scheduled for the same time are served in
accordance with the time they were inserted in the scheduler (FIFO). The order
of AAE objects is determined by their timers, being the first action execution
object the one with the smallest timer. If several action execution objects have
the same countdown, they follow a FIFO order.

Thus, a Maude rule mapped from an e-Motions rule can be triggered by two
reasons:

1. there is a message which matches the message of the left-hand side of an
instantaneous rule or a triggering rule of a non-instantaneous rule, or

2. there is an AAE object whose countdown has reached zero.

Let us check these requirements on the example given in Section 2. The first
observation is that there is a single message (Mail or Token) in the lefthand
side of each rule. If we assume that the initial configuration has a single message
(a Token object in our case), the scheduler will make sure that there is only
one message at a time in the running configuration. Notice that NewMessage

is the only rule that have two messages in its righthand side. In this case, the
transformation generating the Maude specification will decide which one goes
first in the scheduler. The other important observation is that there will never be
two nodes referencing to the same Mail object. In those other cases in which there
are possible overlaps, indicating that there may be more than one applicable
rule, or multiple matches for the same rule, we can check that their conditions
are not simultaneously satisfiable. See for example that with a Token object in
the running configuration, there might be matches for rules NewMessage and



DecreaseToken at the same time. Notice however that NewMessage requires e.t
= 0 and DecreaseToken requires e.t > 0. There is a similar situation for rules
Node2Channel and MessageArrival, in this case m.to <> n.id and m.to =

n.id cannot be satisfied simultaneously.

3.2 Modifications of Maude rules

The Maude modules supporting the e-Motions infrastructure and the Maude
rules mapped from the e-Motions rules have been modified to make use of the
scheduler. Regarding the infrastructure modules, a new module defines the sched-
uler, operations to insert and remove objects from the scheduler, and extensions
to the operations delta and mte. This module is independent from the systems
and is added to the resulting Maude specification.

Every Maude rule mapped from an e-Motions atomic instantaneous rule must
be modified by wrapping all the messages in its right-hand side with the oper-
ator schedule, which takes a list of one or more elements and insert them in
the scheduler, following equations defined in the infrastructure module. For the
Maude rules mapped from e-Motions non-instantaneous rules, there are more
modifications. Messages present in the left-hand side of the triggering rule can-
not be removed when the rule is executed, they must be available in the system
because they are required for the corresponding realization action. However, they
cannot stay free in the configuration because they could be chosen again. There-
fore, they must be wrapped with the operator blocked, allowing to free another
scheduled message from the scheduler. AAE objects created on the RHSs of rules
have to be included within schedule operators to be handled by the scheduler.
For the realization rules, messages that appear on its LHS must be wrapped
with blocked operators, since the have to match with those wrapped in the
triggering rule. Finally, those messages created in such rules have to be enclosed
within schedule operators. The e-Motions scheduler releases a new message or
AAE object if the current state of the system has no free message or AAE after
a rewriting step.

In e-Motions systems time advances by means of the tick rule which, given
the current state, computes the minimum among the maximum time elapses
(MTEs) of the actions that may be performed on the current state. If that value
is greater than zero, it means that there is no action that can be triggered or
realized at that time. In that case, the global time is advanced until that value
and the countdown values of all the AAE objects are updated according to that
value. The operation delta makes that update. The operations delta and mte

have been modified to take into account the elements contained in the scheduler.

3.3 e-SMC: e-Motions & PVeStA integration

A new extension for the e-Motions framework has been developed to allow auto-
matic modifications of e-Motions specifications for them to hold the restrictions



mentioned in Section 3.2. This extension is named e-SMC and it has been imple-
mented as an Eclipse plugin, integrated with the e-Motions tool. e-SMC encapsu-
lates all the process from the mapping from the e-Motions system to the Maude
specification to the execution of PVeStA as statistical analyzer, and the presen-
tation of the analysis results. e-SMC also allows the user to specify the QuaTeX
query that describes the property to be analyzed. The e-SMC tool, its documen-
tation and some examples are available at http://maude.lcc.uma.es/esmc.

In the e-Motions framework, the model described with the DSML passes
through a series of transformations to finally generate a Maude specification. The
first one is an ATL model-to-model transformation, which generates Maude mod-
els conforming the Maude metamodel. The second one is a Xtend transformation
which generates the final Maude code. e-SMC includes a new model-to-model
transformation from the generated Maude models by the ATL transformation to
Maude models compliant with the PVeStA restrictions. This new Maude models
are, in turn, passed as input to the Xtend transformation.

4 Case study: A simple messaging system

We illustrate the kind of statistical model checking we may perform with the
very simple messaging system introduced in Section 2. To better illustrate the
possible kinds of analysis, we compare the first simple messaging protocol results
with a second version of the system in which each node has a routing table to
decide which channel the message will be sent through in rules NewMessage and
Channel2Node. In this second version, instead of probabilistically choosing an
output channel, the value of the via attribute is retrieved from a table storing
the best channel for a given destination.

The most interesting property to be analyzed in these simple message passing
systems is how well connected is each node? Or how long does it take a message to
reach its target? However, this property has to be statistically analyzed, since it
depends on the value of three stochastic parameters: (i) when is the next message
going to be sent, (ii) which is the target node, and (iii) which channel chooses
a node to send the message through. In terms of statistical model-checking, the
property at hand could be expressed as “with a confidence of 99%, which is the
mean time a message takes to commute between the source and target nodes?”.

We proceed by defining a state expression which retrieves the mean response
time collected by the Observer object at that time. Our executions have been
performed using 8 threads (servers in the PVeStA terminology) and a master
(client in PVeStA terms) running batches of 30 samples on each thread. After
several iterations PVeStA returns the mean time elapsed between the start node
ni sending the message and the target node receiving it.

For the case of simple message passing with routing tables the time elapsed
for messages sent from each node has been drastically reduced. Note that in the
first case there may be even messages looping without finding their target. In
this case we run batches of 10 samples on each thread, since it takes a smaller
amount of values to converge.



Table 1: Execution times and mean time for messages being sent
Simple Message Passing Simple Message Passing Routing

ni Ex. time # samples mean. time Ex. time # samples mean. time

n1 93s 600 8.7795 23s 240 2.9484
n2 111s 660 7.2204 18s 160 2.9639
n3 96s 870 7.6253 16s 160 2.9984
n4 92s 510 8.3019 18s 160 3.0141
n5 87s 1080 7.7106 25s 240 3.0233

(a) Simple Message Passing (b) Message Passing with Routing

Fig. 4: Mean message delivery time

Table 1 shows the execution times for each node, the number of samples
needed to reach the confidence interval, and finally value of the property under
study. Of course, the case study with routing converges with less samples since
we are fixing which is the route the message will follow. Graphs in Figure 4 show
the evolution of the mean of the arrival times for each of the nodes in the system.
Notice how they converge after some number of samples to their respective final
mean values, once the confidence interval is reached.

5 Related work

Heckel et al. propose in [17] the modeling and analysis of stochastic graphs
transformation systems by defining Continuous Time Markov chains from GTSs
with transition matrices representing the probabilities of the application of each
rule. They provide some support using GROOVE [28] and PRISM. In later
works [38], they handle distributions depending on pairs rule-match and may
perform stocastic simulation. They develop GRaSS, with VIATRA as back-end,
which can run multiples simulations limited by a time amount or number of
steps. GRaSS may then calculate some statistical values with given confidence
intervals.



GROOVE [28] supports the modeling of object-oriented systems, with graph
transformations as a basis for model transformation and operational semantics.
Systems thus defined may then be verified using model checking. CheckVML
does something similar, although in this case system specifications into a tool-
independent abstract representation of transition systems, from which Promela
specifications are generated to model check using Spin.

Several attempts to reduce the complexity of model checking have also been
proposed. Isenberg et al. propose in [18] the use of bounded model checking via
SMT solving. Yousefian et al. use genetic algorithms in [41] to search specific
states in large state spaces.

Based on ideas from Event Scheduling, de Lara et al. propose in [12] an inter-
esting way of adding explicit time to graph transformation rules by scheduling
rules in the future. Basically, they schedule all possible matches of rules (what
they call events) and proceed by handling each of these events. To avoid the
explosion in the number of matches, they use a control graph which establishes
the possible sequences in which the rules may be applied. This idea could be an
alternative way of guaranteeing the absence of un-quantified non-determinism,
although at the cost of providing the control graph.

6 Conclusions

We have presented how the e-Motions tool has been extended so that the models
built conforming to user-defined DSMLs are suitable for statistical model check-
ing. e-Motions models are transformed into Maude specifications satisfying the
requirements of the PVeStA tool [3], making them suitable to be stochastically
analyzed. We have illustrated the use of e-Motions to model systems and its
statistical model check with a very simple application for message delivery.

With our approach we provide statistical model checking capabilities to user-
defined DSMLs in a user-friendly graphical environment. Statistical model check-
ing offers a completely automatic procedure, with the possibility of adjusting the
desired confidence interval and error bound.

Although the basic functionality and tooling is already available, much work
remains ahead. For example, we would like to automate the check of the satis-
faction of the non-quantified-non-determinism requirements. e-Motions features
like periodicity, scheduling, or non-degenerate intervals are not yet supported.
Moreover, although the response times obtained with PVeStA are acceptable,
we would like to explore the possibility of using more powerful model checkers
as back-end tools. Finally, we will complete the graphical representations of the
obtained distributions of results inside our Eclipse plugin.

Acknowledgements This work was partially supported by Research Project
TIN2014-52034-R and by Universidad de Málaga (Campus de Excelencia Inter-
nacional Andalućıa Tech).



References

1. G. Agha, M. Greenwald, C. A. Gunter, S. Khanna, J. Meseguer, K. Sen, and
P. Thati. Formal modeling and analysis of DOS using probabilistic rewrite theories.
In Proc. of FCS, 2005.

2. G. Agha, J. Meseguer, and K. Sen. PMaude: Rewrite-based specification language
for probabilistic object systems. In Proc. of QAPL, ENTCS 153:213–239, 2006.

3. M. AlTurki and J. Meseguer. PVeStA: A parallel statistical model checking and
quantitative analysis tool. In Proc. of CALCO, LNCS 6859:386–392, 2011.

4. J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL - a tool
suite for automatic verification of real-time systems. In Proc. of DIMACS/SYCON,
LNCS 1066:232–243, 1996.

5. A. Boronat and J. Meseguer. An algebraic semantics for MOF. In Proc. of FASE,
LNCS 4961:377–391, 2008.

6. A. Boronat and J. Meseguer. MOMENT2: EMF model transformations in Maude.
In Proc. of JISBD, pp. 178–179, 2009.

7. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. Theor. Comput. Sci., 236(1-2):35–132, Apr. 2000.

8. R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, and A. Vandin. Modelling
and analyzing adaptive self-assembly strategies with Maude. In Proc. of WRLA,
LNCS 7571:118–138, 2012.

9. P. E. Bulychev, A. David, K. G. Larsen, M. Mikucionis, D. B. Poulsen, A. Legay,
and Z. Wang. UPPAAL-SMC: statistical model checking for priced timed au-
tomata. In Proc. of QAPL, EPTCS 85:1–16, 2012.

10. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.
Quesada. Maude: Specification and programming in rewriting logic. Theor. Com-
put. Sci. 285(2): 187–243, 2001.

11. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude, LNCS 4350, 2007.

12. J. de Lara, E. Guerra, A. Boronat, R. Heckel, and P. Torrini. Domain-specific
discrete event modelling and simulation using graph transformation. Software and
System Modeling, 13(1):209–238, 2014.

13. J. de Lara and H. Vangheluwe. AToM3: A tool for multi-formalism and meta-
modelling. In Proc. of FASE, LNCS 2306:174–188, 2002.

14. F. Durán, S. Lucas, C. Marché, J. Meseguer, and X. Urbain. Proving operational
termination of membership equational programs. Higher-Order and Symbolic Com-
putation, 21(1-2):59–88, 2008.

15. F. Durán and J. Meseguer. On the Church-Rosser and coherence properties of
conditional order-sorted rewrite theories. J. Log. Algebr. Program., 81(7-8):816–
850, 2012.

16. J. Eckhardt, T. Mühlbauer, M. AlTurki, J. Meseguer, and M. Wirsing. Stable
availability under denial of service attacks through formal patterns. In Proc. of
FASE, LNCS 7212:78–93, 2012.

17. R. Heckel, G. Lajios, and S. Menge. Stochastic graph transformation systems. In
Proc. of ICGT, LNCS 3256:210–225, 2004.

18. T. Isenberg, D. Steenken, and H. Wehrheim. Bounded model checking of graph
transformation systems via SMT solving. In Proc. of FMOODS/FORTE, LNCS
7892:178–192, 2013.

19. D. N. Jansen, J. Katoen, M. Oldenkamp, M. Stoelinga, and I. S. Zapreev. How
fast and fat is your probabilistic model checker? An experimental performance
comparison. In Proc. of HVC, LNCS 4899:69–85, 2007.



20. S. Kelly and J.-P. Tolvanen. Domain-specific modeling: enabling full code genera-
tion. John Wiley & Sons, 2008.

21. S. Kent. Model driven engineering. In Proc. of IFM, LNCS 2335:286–298, 2002.
22. M. Z. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model

checking with PRISM: A hybrid approach. In Proc. of TACAS, LNCS 2280:52–66,
2002.

23. M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In Proc. of CAV, LNCS 6806:585–591, 2011.

24. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci., 96(1):73–155, Apr. 1992.

25. Meta object facility (MOF) core specification, 2013. Version 2.4.1.
26. A. Moreno-Delgado and F. Durán. The movie database case: A solution using

the Maude-based e-Motions tool. In 7th Transformation Tool Contest (TTC), vol.
1305 of CEUR Workshop Proc., pp. 116–124, 2014.

27. P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation, 20(1-2):161–196, 2007.

28. A. Rensink. The GROOVE simulator: A tool for state space generation. In Proc.
of AGTIVE, LNCS 3062:479–485, 2004.

29. J. E. Rivera, F. Durán, and A. Vallecillo. A graphical approach for modeling
time-dependent behavior of dsls. In Proc. of VL/HCC, pp. 51–55. IEEE, 2009.

30. J. E. Rivera, F. Durán, and A. Vallecillo. On the behavioral semantics of real-time
domain specific visual languages. In Proc. of WRLA, LNCS 6381:174–190, 2010.

31. J. E. Rivera, A. Vallecillo, and F. Durán. Formal specification and analysis of
domain specific languages using Maude. Simulation, 85(11/12):778–792, 2009.

32. J. R. Romero, J. E. Rivera, F. Durán, and A. Vallecillo. Formal and tool support
for model driven engineering with Maude. J. of Object Techn., 6(9):187–207, 2007.

33. G. Rozenberg, ed.. Handbook of Graph Grammars and Computing by Graph Trans-
formations, vol. 1: Foundations. World Scientific, 1997.

34. Á. Schmidt and D. Varró. CheckVML: A tool for model checking visual modeling
languages. In Proc. of UML, LNCS 2863:92–95, 2003.

35. K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-box
probabilistic systems. In Proc. of CAV, LNCS 3114:202–215, 2004.

36. K. Sen, M. Viswanathan, and G. A. Agha. VeStA: A statistical model-checker and
analyzer for probabilistic systems. In Proc. of QEST, pp. 251–252. IEEE, 2005.

37. G. Taentzer. AGG: A graph transformation environment for modeling and valida-
tion of software. In Proc. of AGTIVE, LNCS 3062:446–453, 2004.

38. P. Torrini, R. Heckel, and I. Ráth. Stochastic simulation of graph transformation
systems. In Proc. of FASE, LNCS 6013:154–157, 2010.

39. H. L. S. Younes. Ymer: A statistical model checker. In Proc. of CAV, LNCS
3576:429–433, 2005.

40. H. L. S. Younes and R. G. Simmons. Probabilistic verification of discrete event
systems using acceptance sampling. In Proc. of CAV, LNCS 2404:223–235, 2002.

41. R. Yousefian, V. Rafe, and M. Rahmani. A heuristic solution for model checking
graph transformation systems. Appl. Soft Comput., 24:169–180, 2014.


