42 research outputs found

    The matroid secretary problem for minor-closed classes and random matroids

    Full text link
    We prove that for every proper minor-closed class MM of matroids representable over a prime field, there exists a constant-competitive matroid secretary algorithm for the matroids in MM. This result relies on the extremely powerful matroid minor structure theory being developed by Geelen, Gerards and Whittle. We also note that for asymptotically almost all matroids, the matroid secretary algorithm that selects a random basis, ignoring weights, is (2+o(1))(2+o(1))-competitive. In fact, assuming the conjecture that almost all matroids are paving, there is a (1+o(1))(1+o(1))-competitive algorithm for almost all matroids.Comment: 15 pages, 0 figure

    Generalized Laminar Matroids

    Get PDF
    Nested matroids were introduced by Crapo in 1965 and have appeared frequently in the literature since then. A flat of a matroid MM is Hamiltonian if it has a spanning circuit. A matroid MM is nested if and only if its Hamiltonian flats form a chain under inclusion; MM is laminar if and only if, for every 11-element independent set XX, the Hamiltonian flats of MM containing XX form a chain under inclusion. We generalize these notions to define the classes of kk-closure-laminar and kk-laminar matroids. This paper focuses on structural properties of these classes noting that, while the second class is always minor-closed, the first is if and only if k≤3k \le 3. The main results are excluded-minor characterizations for the classes of 2-laminar and 2-closure-laminar matroids.Comment: 12 page

    Laminar Matroids

    Get PDF
    A laminar family is a collection A\mathscr{A} of subsets of a set EE such that, for any two intersecting sets, one is contained in the other. For a capacity function cc on A\mathscr{A}, let I\mathscr{I} be \{I:|I\cap A| \leq c(A)\text{ for all A\in\mathscr{A}}\}. Then I\mathscr{I} is the collection of independent sets of a (laminar) matroid on EE. We present a method of compacting laminar presentations, characterize the class of laminar matroids by their excluded minors, present a way to construct all laminar matroids using basic operations, and compare the class of laminar matroids to other well-known classes of matroids.Comment: 17 page

    Matroid Secretary for Regular and Decomposable Matroids

    Full text link
    In the matroid secretary problem we are given a stream of elements and asked to choose a set of elements that maximizes the total value of the set, subject to being an independent set of a matroid given in advance. The difficulty comes from the assumption that decisions are irrevocable: if we choose to accept an element when it is presented by the stream then we can never get rid of it, and if we choose not to accept it then we cannot later add it. Babaioff, Immorlica, and Kleinberg [SODA 2007] introduced this problem, gave O(1)-competitive algorithms for certain classes of matroids, and conjectured that every matroid admits an O(1)-competitive algorithm. However, most matroids that are known to admit an O(1)-competitive algorithm can be easily represented using graphs (e.g. graphic and transversal matroids). In particular, there is very little known about F-representable matroids (the class of matroids that can be represented as elements of a vector space over a field F), which are one of the foundational matroid classes. Moreover, most of the known techniques are as dependent on graph theory as they are on matroid theory. We go beyond graphs by giving an O(1)-competitive algorithm for regular matroids (the class of matroids that are representable over every field), and use techniques that are matroid-theoretic rather than graph-theoretic. We use the regular matroid decomposition theorem of Seymour to decompose any regular matroid into matroids which are either graphic, cographic, or isomorphic to R_{10}, and then show how to combine algorithms for these basic classes into an algorithm for regular matroids. This allows us to generalize beyond regular matroids to any class of matroids that admits such a decomposition into classes for which we already have good algorithms. In particular, we give an O(1)-competitive algorithm for the class of max-flow min-cut matroids.Comment: 21 page

    On Selected Subclasses of Matroids

    Get PDF
    Matroids were introduced by Whitney to provide an abstract notion of independence. In this work, after giving a brief survey of matroid theory, we describe structural results for various classes of matroids. A connected matroid MM is unbreakable if, for each of its flats FF, the matroid M/FM/F is connected%or, equivalently, if M∗M^* has no two skew circuits. . Pfeil showed that a simple graphic matroid M(G)M(G) is unbreakable exactly when GG is either a cycle or a complete graph. We extend this result to describe which graphs are the underlying graphs of unbreakable frame matroids. A laminar family is a collection \A of subsets of a set EE such that, for any two intersecting sets, one is contained in the other. For a capacity function cc on \A, let \I be %the set \{I:|I\cap A| \leq c(A)\text{ for all A\in\A}\}. Then \I is the collection of independent sets of a (laminar) matroid on EE. We characterize the class of laminar matroids by their excluded minors and present a way to construct all laminar matroids using basic operations. %Nested matroids were introduced by Crapo in 1965 and have appeared frequently in the literature since then. A flat of a matroid MM is Hamiltonian if it has a spanning circuit. A matroid MM is nested if its Hamiltonian flats form a chain under inclusion; MM is laminar if, for every 11-element independent set XX, the Hamiltonian flats of MM containing XX form a chain under inclusion. We generalize these notions to define the classes of kk-closure-laminar and kk-laminar matroids. The second class is always minor-closed, and the first is if and only if k≤3k \le 3. We give excluded-minor characterizations of the classes of 2-laminar and 2-closure-laminar matroids

    The Outer Limits of Contention Resolution on Matroids and Connections to the Secretary Problem

    Get PDF
    Contention resolution schemes have proven to be a useful and unifying abstraction for a variety of constrained optimization problems, in both offline and online arrival models. Much of prior work restricts attention to product distributions for the input set of elements, and studies contention resolution for increasingly general packing constraints, both offline and online. In this paper, we instead focus on generalizing the input distribution, restricting attention to matroid constraints in both the offline and online random arrival models. In particular, we study contention resolution when the input set is arbitrarily distributed, and may exhibit positive and/or negative correlations between elements. We characterize the distributions for which offline contention resolution is possible, and establish some of their basic closure properties. Our characterization can be interpreted as a distributional generalization of the matroid covering theorem. For the online random arrival model, we show that contention resolution is intimately tied to the secretary problem via two results. First, we show that a competitive algorithm for the matroid secretary problem implies that online contention resolution is essentially as powerful as offline contention resolution for matroids, so long as the algorithm is given the input distribution. Second, we reduce the matroid secretary problem to the design of an online contention resolution scheme of a particular form

    An Improved Lower Bound for Matroid Intersection Prophet Inequalities

    Get PDF

    Non-Adaptive Matroid Prophet Inequalities

    Get PDF
    We consider the problem of matroid prophet inequalities. This problem has been ex- tensively studied in case of adaptive prices, with [KW12] obtaining a tight 2-competitive mechanism for all the matroids. However, the case non-adaptive is far from resolved, although there is a known constant- competitive mechanism for uniform and graphical matroids (see [Cha+20]). We improve on constant-competitive mechanism from [Cha+20] for graphical matroids, present a separate mechanism for cographical matroids, and combine those to obtain constant-competitive mechanism for all regular matroids
    corecore