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Abstract
Contention resolution schemes have proven to be a useful and unifying abstraction for a variety of
constrained optimization problems, in both offline and online arrival models. Much of prior work
restricts attention to product distributions for the input set of elements, and studies contention
resolution for increasingly general packing constraints, both offline and online. In this paper, we
instead focus on generalizing the input distribution, restricting attention to matroid constraints in
both the offline and online random arrival models. In particular, we study contention resolution
when the input set is arbitrarily distributed, and may exhibit positive and/or negative correlations
between elements. We characterize the distributions for which offline contention resolution is possible,
and establish some of their basic closure properties. Our characterization can be interpreted as
a distributional generalization of the matroid covering theorem. For the online random arrival
model, we show that contention resolution is intimately tied to the secretary problem via two results.
First, we show that a competitive algorithm for the matroid secretary problem implies that online
contention resolution is essentially as powerful as offline contention resolution for matroids, so long
as the algorithm is given the input distribution. Second, we reduce the matroid secretary problem
to the design of an online contention resolution scheme of a particular form.
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1 Introduction

The notion of a contention resolution scheme (CRS) abstracts a familiar task in constrained
optimization: converting a (random) set-valued solution which is ex-ante (i.e., on average)
feasible for a packing problem to one which is ex-post (i.e., always) feasible. Unlike randomized
rounding algorithms more broadly, which in general may be catered to both the constraint and
objective function at hand, a contention resolution scheme is specific only to the constraints
of the problem, and preserves solution quality in a manner which is largely agnostic to
the objective function1 – element by element. Since they were formalized by Chekuri et
al [10], CRSs have been connected to a variety of online and offline computational tasks,
including rounding the solutions of mathematical programs [10], online mechanism design
and stochastic probing [17, 1], and prophet inequalities [17, 25].

1 In its most general form, a CRS approximately preserves all linear objective functions simultaneously,
whereas a monotone CRS approximately preserves all submodular objectives [10].
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42:2 The Outer Limits of Contention Resolution

Starting with [10], prior work defines an (offline) contention resolution scheme for a set
system (E , I) – where E is a ground set of elements and I ⊆ 2E is a downwards-closed
family of feasible sets – as an algorithm which takes as input the marginal probabilities
x ∈ [0, 1]E of a product distribution D supported on 2E as well as a random set R ∼ D
of active elements, and must output a feasible subset S of R. The contention resolution
scheme is α-competitive if Pr[i ∈ S] ≥ 1

α Pr[i ∈ R] holds for all product distributions of
interest – typically those with marginals x in the convex hull of indicator vectors of I (ex-ante
feasibility). In online contention resolution schemes, first explored by Feldman et al [17]
and subsequently by Adamczyk and Włodarczyk [1] and Lee and Singla [25], the active
elements R arrive sequentially and the decision to include an element in S must irrevocably
be made online.

The existing literature on (offline and online) contention resolution has mostly restricted
attention to ex-ante-feasible and given product distributions, and varied the set system
(e.g. matroids, knapsacks, and their intersections), all the while drawing connections to
applications such as stochastic online problems, approximation algorithms, mechanism design,
and prophet inequalities. In this paper, we restrict our attention to matroid constraints,2 and
instead focus on generalizing the class of input distributions. Our main goal is to understand
the power and limitations of contention resolution, offline and online, in the presence of
correlations in the input distribution and without regard to ex-ante feasibility. A secondary
goal is to understand how knowledge of the distribution influences contention resolution. In
pursuit of both goals, we draw connections between contention resolution and the secretary
problem on matroids, shedding light on challenges posed by the matroid secretary conjecture
in the process.

Results
Our first set of results develops an understanding of offline contention resolution on matroids.
We begin with a characterization of the class of α-uncontentious distributions: those distribu-
tions D ∈ ∆(2E) permitting α-competitive offline contention resolution for a given matroid.
Most notably, we show that a distribution is α-uncontentious if and only if it satisfies a
family of 2|E| inequalities, one for each subset of the ground set. Moreover, we observe that
our inequality characterization is the natural generalization of the matroid base covering
theorem (see e.g. [31]) from covering a set of elements to covering a distribution over sets of
elements. In other words, we show that contention resolution is the natural distributional
generalization of base covering. Leveraging our characterization, we establish some basic
closure properties of the class of uncontentious distributions, and present some examples of
uncontentious distributions exhibiting negative and positive correlation between elements.
Finally, we examine whether knowledge of the distribution D is essential to contention
resolution, and exhibit an impossibility result: any contention resolution scheme which has
nontrivial guarantees for all α-uncontentious distributions cannot be prior-independent, in
that it cannot make do with a finite number of samples from the distribution, even for very
simple matroids.

Our second set of results concerns online contention resolution on matroids in the random
arrival model, and in particular its connection to the matroid secretary problem. First, we
show that a competitive secretary algorithm for a matroid implies that online contention
resolution is essentially as powerful as offline contention resolution for that same matroid:
a γ-competitive secretary algorithm implies that any α-uncontentious distribution permits
γα-competitive online contention resolution.

2 Though some of our results hold beyond matroids; we discuss those in the conclusion section.
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Second, we provide evidence that contention resolution might hold the key to resolving
the matroid secretary conjecture. As our most technically-involved result, we leverage our
characterization of uncontentious distributions to show that the random set of improving
elements in a weighted matroid – as originally defined by Karger [20] – is O(1)-uncontentious.
Since the improving elements can be recognized online, and moreover hold a constant fraction
of the weighted rank of the matroid in expectation, our result can be loosely interpreted as a
reduction from the matroid secretary problem to online contention resolution for a particular
uncontentious distribution. There is one major caveat to this interpretation of our result,
however: not only does the set of active (improving) elements arrive online, but so does
the description of the uncontentious distribution from which that set is drawn. Though
we present our proof of this result in an elementary form, the underlying arguments are
reminiscent of – and inspired by – those often encountered in the analysis of martingales: we
condition on carefully-chosen random variables, and employ a delicate charging argument
between different probability events.

Third, in response to feedback on the previous version of this manuscript, we show that
our aforementioned result – that improving elements are uncontentious – cannot be derived
as a consequence of prior work.

Additional Discussion of Related Work
Contention Resolution Schemes
Contention resolution schemes were introduced by Chekuri et al [10], motivated by the
problem of maximizing a submodular function subject to packing constraints. In particular,
offline CRS were used to transform a randomized rounding algorithm which respects the
packing constraints ex-ante to one which respects them ex-post, at the cost of the competitive
ratio of the CRS. Their focus – like that of all related work prior to ours – was on product
input distributions, in which case the optimal competitive ratio of an offline CRS was shown
to equal the worst-case correlation gap (first studied by [2, 7]) of the weighted rank function
associated with the packing constraint. The characterization result of [10] result forms the
basis for ours.

Online contention resolution was first studied by Feldman et al [17], and applied to a
number of online selection problems. They show that simple packing constraints – such
as matroids, knapsacks, and matchings – permit constant competitive online contention
resolution schemes even when elements arrive in an unknown and adversarial order. Moreover,
they show how to combine competitive online schemes for different constraints in order to
yield competitive online schemes for their intersection. Lee and Singla [25] obtain optimal
online CRS in both the known adversarial-order model as well as the random-arrival model.
Adamczyk and Włodarczyk [1] restrict attention to the random-arrival model, and obtain
a particularly elegant algorithm and argument based on martingales, as well as improved
competitive ratios for intersections of matroids and knapsacks.

Prophet Inequalities
Contention resolution is intimately tied to prophet inequality problems, also known as
Bayesian online selection problems. In the traditional model for these problems, independent
real-valued random variables with known distributions arrive online in a known but adversarial
order, and the goal is to select a subset of the variables with maximum sum, subject to a
packing constraint. An α-competitive algorithm for a Bayesian online selection problem is
also referred to as a prophet inequality with ratio α, for historical reasons. Krengel, Sucheston,
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42:4 The Outer Limits of Contention Resolution

and Garling [22, 23] proved the first (classical) single-choice prophet inequality with ratio 1/2
for selecting a single variable (i.e., a 1-uniform matroid packing constraint). Motivated by
applications in algorithmic mechanism design, more recent work (e.g. [18, 3, 8, 32]) pursued
prophet inequalities for more general packing constraints. Of particular note is the work of
Kleinberg and Weinberg [21], who proved an optimal prophet inequality with ratio 1/2 for
matroids. Also notable is polylogarithmic prophet inequality for general packing constraints
due to Rubinstein [28]. The (easier) variant of Bayesian online selection problems in which
the variables arrive in a uniformly random order has also received recent interest, resulting
in improved prophet inequalities for various packing constraints [15, 14, 5].

It was shown by Feldman et al [17] that an online CRS yields a prophet inequality with
the same competitive ratio, and in the same arrival model. A weak converse is also true,
as shown by Lee and Singla [25]: a stronger form of prophet inequality – in particular one
which competes against the ex-ante relaxation of the Bayesian online selection problem –
yields an online CRS with the same competitive ratio and in the same arrival model.

Beyond Known Product Distributions
The vast majority of work on contention resolution or prophet inequalities, and all such work
discussed thus far, restricts attention to known product distributions, and crucially exploits
the product structure and knowledge of the distribution. We note the few exceptions next.

Rinott et al [27] and Samuel-Cahn [29] show that the single-choice prophet inequality, and
some slight generalizations, continue to hold for negatively dependent random variables. It is
known [19] that there is no single-choice prophet inequality with ratio better than the number
of variables in the presence of arbitrary positive correlation. Moreover, we are unaware of
any nontrivial positive results for a class of distributions exhibiting positive correlation, in
either prophet inequality or contention resolution models. We note that whereas [25] and [1]
use specially-crafted correlated distributions as benchmarks, their results and techniques do
not appear to shed light on contention resolution or prophet inequalities in the presence of
correlation more generally.

Some work has relaxed the requirement that the distributions be known in prophet
inequality problems. Azar et al [4] study prophet inequality problems when only a single
sample is given from each distribution, and obtain constant competitive ratios for a variety of
constraints. Wang [30] obtains an optimal algorithm for the single-choice prophet inequality,
with ratio 1/2, in the same single-sample model. Correa et al [11] study the single-choice
prophet inequality with i.i.d. variables drawn from an unknown distribution, and characterize
the relationship between the competitive ratio and the number of samples available from the
distribution.

Secretary Problems
In a generalized secretary problem, a set of adversarially chosen variables arrive online in a
random order, and the goal is to select a subset of the variables with maximum sum subject
to a packing constraint. The (classical) single-choice secretary problem, corresponding to
a 1-uniform matroid constraint, was introduced and solved by Dynkin [13]. The matroid
secretary problem was introduced by Babaioff et al [6], and has since spawned a long line
of work. Constant-competitive algorithms have been discovered for most natural matroids
and for some alternative models – see [12] for a semi-recent survey – though the general
conjecture remains open. The state of the art for the general matroid secretary problem is a
O(log log rank)-competitive algorithm due to Lachish [24], which was henceforth simplified
by Feldman et al [16].
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2 Preliminaries

2.1 Matroid Theory Basics
We use standard definitions from matroid theory; for details see [26, 31]. A matroid
M = (E , I) consists of a ground set E of elements, and a family I ⊆ 2E of independent
sets, satisfying the three matroid axioms. A weighted matroid (M, w) consists of a matroid
M = (E , I) together with weights w ∈ RE on the elements. We use the standard notions of
a dependent set, circuit, flat, and minor in a matroid. We denote the rank of a matroidM
as rank(M), and the rank of a set of elements A inM as rankM(A), or rank(A) whenM
is clear from context. Overloading notation, we use rankMw (A) to denote the weighted rank
of a set A – the maximum weight of an independent subset of A – in the weighted matroid
(M, w), though we omit the superscriptM when the matroid is clear from context. We note
that both rank and weighted rank are submodular set functions on the ground set of the
matroid. ForM = (E , I) and A ⊆ E , we denote the restriction ofM to A asM|A, deletion
of A asM\A, and contraction by A asM/A.

When E is clear from context, and S ⊆ E , we use 1S ∈ {0, 1}E to denote the vector
indicating membership in S. We often reference the matroid polytope P(M) of a matroid
M = (E , I), defined as the convex hull of {1S : S ∈ I}, or equivalently as the family of
x ∈ [0, 1]E satisfying

∑
i∈S xi ≤ rankM(S) for all S ⊆ E .

Throughout this paper we assume that any weighted matroid has distinct weights. This
assumption is made merely to simplify some of our proofs, and – using standard tie-breaking
arguments – can be shown to be without loss of generality in as much as our results are
concerned. Under this assumption, we define OPTMw (A) as the (unique) maximum-weight
independent subset of A of minimum cardinality (excluding zero-weight elements), and we
omit the superscript when the matroid is clear from context.

2.2 The Matroid Secretary Problem
In the matroid secretary problem, originally defined by [6] there is matroidM = (E , I) with
nonnegative weights w : E → R+ on the elements. Elements E arrive online in a uniformly
random order Π, and an online algorithm must irrevocably accept or reject an element when
it arrives, subject to accepting an independent set of M. The algorithm is given M at
the outset (as an independence oracle), but the weights w are chosen adversarially before
the order Π is drawn and then are revealed online. The goal of the online algorithm is to
maximize the expected weight of the accepted set of elements. We say that an algorithm is
α-competitive for a class of matroids if for every matroidM in that class and every adversarial
choice of w, the expected weight of the accepted set (over the random choice of Π and any
internal randomness of the algorithm) is at least an α fraction of the maximum weight of an
independent set of (M, w).

The matroid secretary conjecture, posed by [6], postulates that the matroid secretary
problem admits an (online) algorithm which is constant-competitive for all matroids.

2.3 Miscellaneous Notation and Terminology
We denote the natural numbers by N, and the nonnegative real numbers by R+. Given a set
A with weights w ∈ RA, and a subset B ⊆ A, we use the shorthand w(B) =

∑
i∈B wi. We

use [n] as shorthand for the set 1, . . . , n. For a set A, we use ∆(A) to denote the family of
distributions over A, and 2A to denote the family of subsets of A.

ICALP 2020



42:6 The Outer Limits of Contention Resolution

Let A be a finite ground set. For a distribution D supported on 2A, we define the
vector x ∈ [0, 1]A of marginals of D by xi = PrB∼D[i ∈ B], and refer to xi as the marginal
probability of i in D. When marginals x ∈ [0, 1]A are given, we use Ind(x) to denote the
distribution of the random set B ⊆ A which includes each element i ∈ A independently with
probability xi. We also use Indp(A) as shorthand for Ind(x) when xi = p for all i ∈ A.

3 Understanding Contention Resolution

3.1 The Basics of Contention Resolution

The definitions below are parametrized by a given matroidM = (E , I).

I Definition 3.1. A contention resolution map (CRM) φ is a randomized function from 2E
to I with the property that φ(R) ⊆ R for all R ⊆ E. Such a map is α-competitive for a
distribution D ∈ ∆(2E) if, for R ∼ D, we have Pr[i ∈ R] ≤ αPr[i ∈ φ(R)] for all i ∈ E.

The following is known from Chekuri et al [10].

I Theorem 3.2 ([10]). Every product distribution with marginals in P(M) admits an e
e−1 -

competitive CRM.

I Definition 3.3. An online random-order contention resolution map (henceforth online
CRM for short) is a contention resolution map φ which can be implemented as an algorithm
in the online random-arrival model. In the online random-arrival model, E is presented to
the algorithm in a uniformly random order (e1, . . . , en), and at the ith step the algorithm
learns whether ei is active – i.e., ei ∈ R ∼ D – and if so must make an irrevocable decision
on whether to include ei in φ(R).

The following is known from Lee and Singla [25].

I Theorem 3.4 ([25]). Every product distribution with marginals in P(M) admits a e
e−1 -

competitive online CRM.

3.2 Uncontentious Distributions and their Characterization

As shorthand, we refer to distributions which permit competitive (offline) CRMs as uncon-
tentious.

I Definition 3.5. Fix a matroidM = (E , I). For α ≥ 1, we say that a distribution D ∈ ∆(2E)
is α-uncontentious if it admits an α-competitive contention resolution map.

For convenience, we also refer to a random set R ∼ D as α-uncontentious if its distribution D
is α-uncontentious. We prove the following characterization of uncontentious distributions.

I Theorem 3.6. Fix a matroid M = (E , I), and let D be a distribution supported on 2E .
The following are equivalent for every α ≥ 1.
(a) D is α-uncontentious (i.e., admits an α-competitive contention resolution map).
(b) For every weight vector w ∈ RE+, the following holds for R ∼ D: E[rankw(R)] ≥ E[w(R)]

α .
(c) For every F ⊆ E, the following holds for R ∼ D: E[|R ∩ F|] ≤ αE[rank(R ∩ F)].
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Proof. Property (a) implies property (c) by applying an α-CRM φ to R, noting that φ(R)∩F
is necessarily an independent subset of R ∩ F .

E[rank(R ∩ F)] ≥ E[|φ(R) ∩ F|]

=
∑
i∈F

Pr[i ∈ φ(R)]

≥ 1
α

∑
i∈F

Pr[i ∈ R]

= 1
α

E[|R ∩ F|].

Property (c) implies property (b) by a summation argument. Sort and number the
elements E = (e1, . . . , en) in decreasing order of weights w1 ≥ w2 ≥ . . . ≥ wn ≥ 0, where wi
denotes the weight of ei. Denote Ei = {e1, . . . , ei}, and let E0 = ∅, and wn+1 = 0. Recalling
that the greedy algorithm computes the maximum weight independent subset of a matroid:

E[rankw(R)] = E

[
n∑

i=1

wi (rank(R ∩ Ei)− rank(R ∩ Ei−1))

]
(Greedy alg. onM|R)

= E

[
n∑

i=1

(wi − wi+1)rank(R ∩ Ei)

]
(Reverse summations)

≥ 1
α

E

[
n∑

i=1

(wi − wi+1)|R ∩ Ei|

]
((c) and linearity of exp.)

= 1
α

E

[
n∑

i=1

wi (|R ∩ Ei| − |R ∩ Ei−1|)

]
(Reverse summations)

= 1
α

E[w(R)].

Property (b) implies property (a) by a duality argument identical to that presented in
[10]. We present a self-contained proof here. Let x = x(D) ∈ [0, 1]E denote the marginals
of D. The distribution D is α-uncontentious if the optimal value of the following LP, with
variables β and λφ for each deterministic CRM φ, is at least 1

α .

maximize β

subject to
∑
φ λφ PrR∼D[i ∈ φ(R)] ≥ βxi, for i ∈ E .∑
φ λφ = 1

λ � 0

The dual of the preceding LP is the following

minimize µ

subject to
∑
i∈E wi PrR∼D[i ∈ φ(R)] ≤ µ, for all CRM φ.∑
i∈E wixi = 1

w � 0

It is not hard to see that, at optimality, the binding constraint on µ corresponds to the CRM
φ which maps each set R to its maximum weight independent subset according to weights w.
It follows that the optimal value of the dual, and hence the primal, equals the minimum over
all weight vectors w � 0 of the ratio E[rankw(R)]∑

i
wixi

. (b) implies that this quantity is at least 1
α ,

as needed. J

ICALP 2020



42:8 The Outer Limits of Contention Resolution

We note that the equivalence between (a) and (b) is essentially implicit in the arguments
of [10]. Condition (c) is the most notable part of Theorem 3.6, in no small part because
it is reminiscent of the matroid base covering theorem (see e.g., [31]). This theorem can
equivalently be stated as follows: a (deterministic) set T ⊆ E in a matroid M = (E , I)
can be covered by (i.e., expressed as a union of) α ∈ N independent sets if and only if
|S| ≤ α rankM(S) for all S ⊆ T . In light of part (c) of Theorem 3.6, a set T of elements can
be covered by α independent sets if and only if the point distribution on T is α-uncontentious.
Therefore, we can interpret contention resolution as a distributional generalization of base
covering.

3.3 Elementary Properties of Uncontentious Distributions

We state some elementary, yet quite useful, properties of uncontentious distributions.

I Proposition 3.7. Fix a matroidM. Every α-uncontentious distribution D for α ≥ 1 has
marginals x(D) ∈ αP(M).

Proof. Let x = x(D) and R ∼ D. From Theorem 3.6 (c), for every set of ground set elements
F we have∑

i∈F
xi = E[|R ∩ F|] ≤ αE[rankM(R ∩ F)] ≤ α rankM(F).

These are the inequalities describing αP(M). J

I Proposition 3.8. Fix a matroid. A mixture of α-uncontentious distributions is α-uncon-
tentious.

Proof. Follows directly from Theorem 3.6 (b) and linearity of expectations. J

I Proposition 3.9. Fix a matroidM = (E , I), and letM = (E ′, I ′) be a minor ofM, with
E ′ ⊆ E. If a random set R ⊆ E ′ is α-uncontentious inM′, then R is also α-uncontentious
inM.

Proof. An independent set of M′ is also independent in M. Therefore, the proposition
follows by simply applying the same CRM in the context of the larger matroidM. J

I Proposition 3.10. Fix a matroid. Let R be an α-uncontentious random set, and let
R′ ∼ Indp(R) for some p ∈ [0, 1]. The random set R′ is α-uncontentious as well.

Proof. We use Theorem 3.6 (b). For any weight vector w, submodularity of the weighted
rank function implies that E[rankw(R′)] ≥ pE[rankw(R)]. It follows that E[w(R′)] =
pE[w(R)] ≤ pαE[rankw(R)] ≤ αE[rankw(R′)]. J

We note that Proposition 3.10 is tight when both p and α are absolute constants. In
particular, the random set R′ cannot be guaranteed to be α′-uncontentious for a constant
α′ < α, even if p is a very small constant. To see this, consider the a 1-uniform matroid with
elements [n], and the following 2-uncontentious random set R: For every singleton i ∈ [n] we
have Pr[R = {i}] = 1

n+1 , and Pr[R = [n]] = 1
n+1 .
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3.4 Examples of Uncontentious Distributions
We now present some examples of uncontentious distributions in order to develop a feel for
them. As mentioned previously, and shown in [10], every product distribution with marginals
in the matroid polytope is e

e−1 -uncontentious. Combined with Proposition 3.8, this extends
to mixtures of product distributions.

I Proposition 3.11. Fix a matroidM = (E , I), and let D ∈ ∆(2E) be a mixture of product
distributions, each with marginals in P(M). It follows that D is e

e−1 -uncontentious.

Going beyond product distributions and their mixtures, if a distribution satisfies a certain
strong notion of negative correlation, defined in [9], then it also is e

e−1 -uncontentious.

I Proposition 3.12. Fix a matroid M = (E , I), and let D ∈ ∆(2E) be a distribution with
marginals x = x(D) ∈ P(M). Assume that D satisfies the property of increasing submodular
expectations: for every submodular function f we have ER∼D[f(R)] ≥ ES∼Ind(x)[f(S)].3 It
follows that D is e

e−1 -uncontentious.

Proof. This is immediate by combining Theorem 3.6 (b) with the property of increasing
submodular expectations and the fact that Ind(x) is e

e−1 -uncontentious. J

As shown in [9], the property of increasing submodular expectations is stronger than the
following standard notion of negative correlation for R ∼ D: For all sets T , Pr[T ⊆ R] ≤∏
i∈T Pr[i ∈ R] and Pr[T ⊆ R] ≤

∏
i∈T (1−Pr[i ∈ R]).4 However, we can show that there

are distributions exhibiting positive correlation which are also uncontentious for specific
matroids. We now list some examples of uncontentious distributions exhibiting positive
correlation.

I Example 3.13. LetM be a k-uniform matroid with n elements where 2 ≤ k ≤ n. Let the
random set R be empty with probability 1/2, and a uniformly random base ofM otherwise.

It is clear that R is 1-uncontentious, since it is supported on the family of independent sets.
However, for each distinct pair of elements i and j, we have Pr[i ∈ R] = Pr[j ∈ R] = k

2n ,
yet Pr[i ∈ R|j ∈ R] = Pr[j ∈ R|i ∈ R] = k−1

n−1 >
k

2n .

The next example will feature repeatedly in this paper, since it is the random set of
improving elements for the rank 1 matroid.

I Example 3.14. Consider the 1-uniform matroid with elements [n] = {1, . . . , n}. For
k = 0, 1, . . . , n−1, let R = {1, . . . , k} with probability 2−(k+1), and let R = [n] with remaining
probability 2−n. The random set R is 2-uncontentious, as evidenced by the CRM φ with
φ({1, . . . , k}) = {k} and φ(∅) = ∅, and a simple calculation. Note the positive correlation
between elements i < j: Pr[j ∈ R] = 2−j , and Pr[j ∈ R|i ∈ R] = 2i−j > Pr[i ∈ R].

As a generalization of the previous example, we get the following.

I Example 3.15. Let M be a matroid with m pairwise-disjoint bases B1, . . . , Bm. For
each k = 1, . . . ,m − 1, let R = ∪ki=1Bi with probability 2−k, and let R = ∪mi=1Bm with
the remaining probability 21−m. The set R is 2-uncontentious, as evidenced by the CRM
φ(∪ki=1Bi) = Bk. However, for ei ∈ Bi and ej ∈ Bj with i < j, we have Pr[ej ∈ R] = 21−j

and Pr[ej ∈ R|ei ∈ R] = 2i−j > Pr[ej ∈ R].

3 In fact, it suffices for D to satisfy the (weaker) property of increasing expectations for matroid rank
functions (or, equivalently, their weighted sums).

4 A natural question is whether negative correlation suffices for the distribution to be e
e−1 -uncontentious.

This is open as far as we know.

ICALP 2020



42:10 The Outer Limits of Contention Resolution

3.5 Contention Resolution Schemes, Universality, and Prior
Dependence

A contention resolution scheme (CRS) Φ for a matroidM = (E , I) and class of distributions
D ⊆ ∆(2E) is an algorithm which takes as input a (possibly partial) description of a
distribution D ∈ D and a sample R ∼ D, and outputs S ∈ I satisfying S ⊆ R. In effect, Φ is
a collection of contention resolution maps φD, one for each D ∈ D. In much of the prior work
on contention resolution, D was taken to be the class of product distributions with marginals
in P(M), and each D ∈ D is described completely via its marginals x ∈ P(M). In such a
setting, the notion of a CRS offers little beyond the notion of a CRM, as each distribution
gets its own dedicated CRM. More generally, however, we allow D to be an arbitrary class of
distributions, and we allow the description to be partial and/or random; for example, D may
be described by m independent samples from D.

Next, we set the stage by defining some desirable contention resolution schemes, and
establish some limitations on their existence.

I Definition 3.16. Fix a matroid. For β ≥ α > 1, an α-universal β-competitive CRS is a
CRS which is β-competitive for the class of α-uncontentious distributions.

By definition, there exists an (offline) α-universal α-competitive CRS for every α and
every matroid. The notion of a universal scheme becomes more interesting when we restrict
dependence on the prior, as per the following definitions.

I Definition 3.17. Fix a matroid. A contention resolution scheme Φ is said to be prior-
independent if it is not given a complete description of D as input, but rather is given
a set of independent samples from D. When the number of samples is m, we say Φ is a
prior-independent m-sample scheme. The number of samples may be function of the size
of the matroid. If m = 0, we say the scheme is oblivious: the scheme consists of a single
contention resolution map.

We now show that, if a scheme is universal, it cannot be prior-independent with any finite
number of samples, even for very simple matroids.

I Theorem 3.18. LetM be the 1-uniform matroid on n elements. For every finite m, and
every 1 < α ≤ β < n, there does not exist a β-competitive α-universal CRS forM which is
prior independent with m samples.

To prove Theorem 3.18, we first show that a prior-independent universal scheme implies
the existence of an oblivious universal scheme; then we show that an oblivious universal
scheme does not exist for the uniform matroid. This is captured in the two following lemmas.

I Lemma 3.19. Fix a matroidM. If there exists a β-competitive α-universal CRS Φ which
is prior-independent with m samples, then there exists an oblivious β-competitive α-universal
scheme Φ′.

Proof. Let D be any α-uncontentious distribution. Let ε ∈ (0, 1), and let D′ = D′(ε) be
the mixture of D with the point distribution on the empty set with proportions ε and 1− ε
respectively. By Proposition 3.8 and the fact that the point distribution on the empty set is
1-uncontentious, it follows that D′ is α-uncontentious.

The CRS Φ induces a CRM φD′ on the distribution D′, and by assumption φD′ is β-
competitive for D′. Since Φ is prior-independent with m samples, its induced CRM φD′ is a
mixture over CRMs φS , where S = (S1, . . . , Sm) is a random vector of m samples from D′.
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With probability at least (1−ε)m, we have S = ∅m := (∅, . . . , ∅). For φD′ to be β-competitive,
in particular when with probability ε it is queried with a draw R ∼ D, a simple calculation
shows that φ∅m must be β′-competitive for D for β′ = (1−ε)m

1/β+(1−ε)m−1 . As ε tends to 0, β′
tends to β, and a basic analytic argument implies that φ∅m is β-competitive for D. Since D
was chosen arbitrarily among α-uncontentious distributions, and φ∅m does not depend on
D, it follows that the oblivious scheme Φ′ with φ′D = φ∅m for every D is β-competitive and
α-universal. J

I Lemma 3.20. The 1-uniform matroid with n elements does not admit an oblivious β-
competitive α-universal CRS for any 1 < α ≤ β < n.

Proof. Let [n] be the ground set of the matroid, and fix α such that 1 < α < n. An
oblivious CRS consists of a single CRM φ. There exists at least one element i ∈ [n] such that
Pr[i ∈ φ([n])] ≤ 1/n. Let ε = α− 1 > 0, and consider the following random set R: For each
j ∈ [n]\i we have R = {j} with probability 1

n−1+ε , and R = [n] with the remaining probability
ε

n−1+ε . The random set R is α-uncontentious: consider the CRM φ′ with φ′({j}) = j for
j 6= i, and φ′([n]) = i. However, our original CRM φ is no better than n-competitive for R,
since its probability of selecting i is no more than 1

n Pr[R = [n]] = 1
n Pr[i ∈ R]. J

4 An Online Universal CRS from a Secretary Algorithm

We show that competitive matroid secretary algorithms imply that every contention resolution
scheme can be made online, in the random arrival model, without much loss.

I Theorem 4.1. Suppose that there is a γ-competitive online algorithm for the secretary
problem on matroidM. It follows that every α-uncontentious distribution admits an online
γα-competitive contention resolution map. In other words, for every α there exists an online
γα-competitive α-universal contention resolution scheme forM.

We interpret the above theorem as follows: the design of competitive universal online schemes
is a necessary technical hurdle towards resolving the matroid secretary conjecture.

We now proceed with proving Theorem 4.1. LetM = (E , I), and let D ∈ ∆(2E). Recall
that an online CRM operates in the following model: a set of active elements R ∼ D and
a random permutation Π are (independently) sampled by nature, then E arrive online in
order Π. When i ∈ E arrives, it is revealed whether i ∈ R, and if so the online CRS must
determine whether to select i. The online CRM must only select an independent subset of R.

Suppose we are given a secretary algorithm A forM with competitive ratio γ. Without
loss of generality, we assume that A selects only non-zero weight elements. Consider the
following online CRM φw forM, parametrized by a weight vector w ∈ RE+. When element i
arrives, if i ∈ R then it is presented to A with weight wi, and if i 6∈ R then it is presented to
A with weight 0. φw selects precisely the elements selected by A.

I Lemma 4.2. For every distribution D, we have ER∼D[w(φw(R))] ≥ 1
γ ER∼D[rankw(R)].

Proof. Condition on the choice of R, and let w′i = wi if i ∈ R and w′i = 0 otherwise. E
are presented to A in a uniformly random order, with weights w′i, and φw(R) ⊆ R is the
set of elements selected by A. Since A is γ-competitive, it follows that E[w′(φw(R))] ≥
1
γ rankw′(M). Since w′(φw(R)) = w(φw(R)) and rankw′(M) = rankw(R), we are done. J

I Lemma 4.3. If D is α-uncontentious, then ER∼D[w(φw(R))] ≥ 1
γα ER∼D[w(R)].

Proof. Combining the previous lemma with Theorem 3.6 (b). J
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Recall that we are assuming for now that we know the α-uncontentious distribution D,
and we can design an online CRM φD accordingly. φD will be a random mixture of the maps
φw described above; in particular, we will show that there exists a distribution W =W(D)
over weight vectors such that the (randomized) online CRM φW which samples w ∼ W
upfront then invokes φw is an online γα-CRM for D.

For each element i ∈ E , let xi = PrR∼D[i ∈ R]. For each weight vector w and i ∈
E , let yi(w) = PrR∼D[i ∈ φw(R)]. For each distribution W over weight vectors and
element i ∈ E , let yi(W) = PrR∼D[i ∈ φW(R)] = PrR∼D,w∼W [i ∈ φw(R)]. Let Y ={
y(W) :W ∈ ∆(RE+)

}
⊆ [0, 1]E be the family of all inclusion probabilities achievable by some

online CRM of the form φW . It is immediate that Y = convexhull(
{
y(w) : w ∈ RE+

}
), and

hence Y is a convex subset of [0, 1]E .
An online αγ-CRM for D of the form φW exists if and only if Y intersects with the

upwards closed convex set x
αγ + RE+. Suppose for a contradiction that this intersection is

empty; by the separating hyperplane theorem, this implies that there exists w ∈ RE+ such
that 1

αγ

∑
i wixi >

∑
i wiyi for all y ∈ Y. In particular, 1

αγ

∑
i wixi >

∑
i wiyi(w). Since∑

i wixi = ER∼D w(R) and
∑
i wiyi(w) = ER∼D[w(φw(R))], we get a contradiction with

Lemma 4.3. This concludes the proof of the theorem.

5 From Contention Resolution to a Secretary Algorithm?

One might hope that online contention resolution is equivalent to the secretary problem on
matroids. In particular, does a competitive universal online CRS imply a competitive secretary
algorithm? We make partial progress towards this question. In particular, we reduce the
secretary problem to online contention resolution on a particular uncontentious distribution
derived from the matroid and sample of its elements: the distribution of “improving elements”,
as originally defined by Karger [20] for purposes different from ours.

I Definition 5.1. Fix a matroid M = (E , I) with weights w ∈ RE+, and let p ∈ (0, 1).
The random set R of improving elements with parameter p is sampled as follows: Let
S ∼ Indp(E), and let R = R(S) = {i ∈ E : rankw(S ∪ i) > rankw(S)}. Equivalently, R is
the set of elements in E \ S which are not spanned by higher weight elements in S. Another
equivalent definition is R = {i ∈ E \ S : i ∈ OPTw(S ∪ i)}.

The maximum-weight independent subset of the improving elements is (1− p)-approximately
optimal in expectation:

I Fact 5.2. Fix a weighted matroid (M, w), and let R be the random set of improving
elements with parameter p. Each element of OPTw(M) is in R with probability 1− p. It
follows that E[w(R)] ≥ E[rankw(R)] ≥ (1− p)rankw(M).

Note that the random set R of improving elements does not follow a product distribution.
In fact, elements are (weakly) positively correlated in general. This is illustrated by the
special case of the 1-uniform matroid on [n] with weights w1 > w2 > . . . > wn, and p = 1/2:
the distribution of R is as described in Example 3.14. As our main result in this section, we
nevertheless show that the random set of improving elements is uncontentious.

I Theorem 5.3. LetM = (E , I) be a matroid with weights w ∈ RE+, and let p ∈ (0, 1). The
random set of improving elements with parameter p is 1

p -uncontentious.

Theorem 5.3 and Fact 5.2, taken together, essentially reduce the matroid secretary
problem to online contention resolution for the distribution of the random set of improving
elements, with one caveat we will discuss shortly. In particular, consider the following
blueprint for a secretary algorithm:
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1. Let S be the first Binom(|E|, p) elements arriving online.
2. Let R = R(S) ⊆ E \ S be a sample of the set of improving elements with parameter p.
3. After observing S, the elements of E \ S arrive online in random order and are presented

as such to an online contention resolution algorithm, along with their membership status
in R. Note that membership in R can be determined “on the spot” as required for online
contention resolution.5

Now given a β-competitive α-universal online CRS, we set p = 1
α and obtain a β

1−p -competitive
secretary algorithm. However, the following caveat prevents us from proving a formal theorem
of this form: we cannot provide the online CRS with a complete description of the prior
distribution. In particular, the distribution D of improving elements – while fully described
by the weighted matroid (M, w) and the parameter p – can not be fully described to the
contention resolution algorithm prior to its invocation, since entries of w are revealed online.
As such, we learn both the sample R ∼ D and the distribution D gradually as elements arrive.
An oblivious universal online CRS would resolve this difficulty, but unfortunately we proved
in Theorem 3.18 that such a CRS can not exist even for simple matroids and even offline. A
reduction from the matroid secretary problem to contention resolution must therefore require
a CRS which can make do with only partial knowledge of the prior. We leave exploration of
these possibilities for future work, and discuss them further in the Conclusion section.

5.1 Proof of Theorem 5.3
Let p, S, and R be as in Definition 5.1. We prove that R is uncontentious by leveraging
(c) from Theorem 3.6. In particular we will show that, for arbitrary F ⊆ E , we have
E[rank(R ∩ F )] ≥ pE[|R ∩ F |]. We break this up into the following three lemmas.

I Lemma 5.4. E[rank(R ∩ F )] ≥ (1− p) E[|F ∩OPTw(S ∪ F )|]

Proof. Let T = S \ F , and note that S ∪ F = T ] F . We condition on the random variable
T and show conditionally that E[rank(R ∩ F )] ≥ (1− p)|F ∩OPTw(T ] F )|].

Take i ∈ F ∩OPTw(T ] F ). We will show that i is in R, and hence is in R ∩ F , with
probability 1− p. Since i ∈ S ∪ i ⊆ T ]F and i ∈ OPTw(T ]F ), it follows from the matroid
axioms that i ∈ OPTw(S ∪ i). With probability 1 − p we also have i 6∈ S, in which case
i ∈ R by definition. Since F ∩OPTw(T ] F ) is an independent set, the claim follows. J

I Lemma 5.5. |F ∩OPTw(S ∪ F )| ≥ |F ∩OPTw(S)|

Proof. We prove this by induction on a set T with S ⊆ T ⊆ S ∪ F , initialized to T = S at
the base case. Consider how the value of |F ∩OPTw(T )| changes as we add elements of
F \ S to T one by one. When adding an element i ∈ F \ T to T , there are three cases:

i 6∈ OPTw(T ∪ i): In this case, OPTw(T ∪ i) = OPTw(T ) and |F ∩OPTw(T ∪ i)| =
|F ∩OPTw(T )|.
i is not spanned by T , and i ∈ OPTw(T∪i): In this case, OPTw(T∪i) = OPTw(T )∪{i},
and therefore |F ∩OPTw(T ∪ i)| = 1 + |F ∩OPTw(T )|.
i is spanned by T , and i ∈ OPTw(T ∪ i): In this case, elementary application of the
matroid axioms implies that OPTw(T ∪ i) = OPTw(T )∪{i} \ {j} for some j ∈ T . Since
i ∈ F , it follows that |F ∩OPTw(T ∪ i)| is either equal to |F ∩OPTw(T )| or exceeds it
by 1, depending on whether j ∈ F . J

5 Technically, a CRM requires that elements of E – rather than merely E \ S – be presented in uniform
random order along with their membership status in R. This is easily accomplished by appropriately
interleaving the elements of S – none of which are in R – among the elements of E \ S.
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I Lemma 5.6. E[|OPTw(S) ∩ F |] ≥ p
1−p E[|R ∩ F |]

Proof. For each i ∈ F , we will show that Pr[i ∈ OPTw(S)] ≥ p
1−p Pr[i ∈ R], which suffices.

Take i ∈ F , and let S>i = {j ∈ S : wj > wi}. Conditioning on S>i, there are two cases:
i ∈ span(S>i): It follows that i 6∈ OPTw(S) and i 6∈ R, with certainty.
i 6∈ span(S>i): With probability p we have i ∈ S and therefore i ∈ OPTw(S) and
i 6∈ R. With the remaining probability (1 − p) we have i 6∈ S and therefore i ∈ R and
i 6∈ OPTw(S).

In both cases, the conditional probability that i ∈ OPTw(S) is at least p
1−p times the

conditional probability that i ∈ R. The lemma follows. J

5.2 Where Prior Work Fails
There has been speculation in the community that contention resolution for improving
element distributions can be accomplished online using the ideas of Feldman et al [17]. If this
were true, then a stronger (online) form of our Theorem 5.3 would follow. We show that such
conjecture is fatally flawed: there exists no o(n)-competitive online CRS in the worst-case
arrival model, even when both the order and the distribution of improving elements are
known to the algorithm. In other words, any competitive online CRS for improving element
distributions must make and exploit assumptions on the arrival order. This rules out direct
application of the arguments and techniques of Feldman et al [17], which – in holding for
an (unknown) worst-case arrivals – cannot exploit the uniform arrival order. The same
can be said for the work of Lee and Singla [25], which operates in the known worst-case
arrival model.

We prove the following theorem, then elaborate on how algorithms from prior work tend
to fail on simple examples.

I Theorem 5.7. Let M be a matroid on n elements. There is no o(n)-competitive online
CRS for (known) improving element distributions on M in the worst-case arrival model. This
holds even for the 1-uniform matroid, for every constant parameter p of the distribution of
improving elements, and even when the arrival order is known to the algorithm.

Proof. Let {1, . . . , n} denote the ground set of of a 1-uniform matroid, listed in decreasing
order of weight. Let R be the random set of improving elements with parameter p. Note that R
is supported on sets of the form {1, . . . , k} for k = 0, . . . , n. In the special case of p = 1/2, the
distribution of R is as described in Example 3.14. In general, Pr[R = {1, . . . , k}] = p(1− p)k.
The random set R is 1/p uncontentious, as shown by Theorem 5.3. Concretely, the offline
CRM φ({1, . . . , k}) = k is 1

p -competitive.
Now suppose that elements are known to arrive online in the order 1, 2, 3, . . . , n, and

consider an α-competitive online CRM for some α ≥ 1. Let T ⊆ R be the (random) set of
elements selected by the CRM. Conditioned on i ∈ R, the CRM must select i with probability
at least 1

α . Formally, Pr[i ∈ T |i ∈ R] ≥ 1
α .

When element i arrives, the CRM learns whether i ∈ R, and if so must decide whether
to select i. Since the online CRM has only observed elements 1, . . . , i, and must make its
decision on the spot, it cannot distinguish between different sets of the form R = {1, . . . , k}
for k ≥ i. In other words, it cannot distinguish between the different realizations of R which
include i, and must therefore select i with probability at least 1

α in every realization of R
which includes i. Formally, 1

α ≤ Pr[i ∈ T |i ∈ R] = Pr[i ∈ T |R = {1, . . . , k}] for every k ≥ i.
Since i was chosen arbitrarily, we can take k = n and conclude that Pr[i ∈ T |R =

{1, . . . , n}] ≥ 1
α for all i. Feasibility requires that

∑n
i=1 Pr[i ∈ T |R = {1, . . . , n}] ≤ 1.

Therefore, α ≥ n. J
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It is instructive to examine where the algorithm of Feldman et al [17] fails in the special
case of the 1-uniform matroid on n elements, even when improving elements are presented in
a uniformly random order. Indeed, we will argue that no “simple tricks” seem to save the day.
Recall that the algorithm of [17] defines a sequence of nested flats ∅ ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fk,
and runs the greedy online algorithm on each contracted submatroid Fi/Fi−1. The 1-uniform
matroid contains only a single non-empty flat, containing all elements. Therefore, the
algorithm of [17] reduces merely to the naive greedy online algorithm which simply selects
the first element it encounters, which in the case of a uniform arrival order is a uniformly
random improving element.

Now, let [n] = {1, . . . , n} denote the ground set of the 1-uniform matroid listed in
decreasing order of weight, and consider the distribution of improving elements R with
parameter p = 1/2 as described in Example 3.14. Element k is improving with probability 2−k,
yet is selected by the algorithm with probability

∑n−1
i=k 2−(i+1) · 1

i + 2−n · 1
n <

2−k

k = Pr[k∈R]
k .

Intuitively, when k is improving, so are elements 1, . . . , k − 1, which easily span k and are
not distinguished from k by the algorithm. It is easy to show that the algorithm suffers the
same fate for any other choice of p.

One might be tempted to employ other tricks, such as for example “canceling” each
element in R with independent constant probability in order to reduce contention and place
the marginal probability vector deep in the matroid polytope. Such tricks are doomed to fail
all the same: the algorithm groups all elements into the same (unique) flat, and in doing so
does not distinguish between the “uncanceled” elements of R, so cannot select element k
with probability exceeding Pr[k∈R]

k .
It is hopefully now clear that any online CRS for improving element distributions must

make and exploit assumptions on the arrival order. Whereas this rules out obvious extensions
of Feldman et al [17] and Lee and Singla [25], one might hope that the algorithm of Adamczyk
and Włodarczyk [1] might fare better, since they do exploit the random ordering assumption.
Sadly, their algorithm also fails for the 1-uniform matroid: it also does not distinguish
between different improving elements in this special case, and therefore also selects element
k with probability no more than Pr[k∈R]

k . That being said, we are more hopeful that the
techniques of [1], if combined with significant new ideas, might yield progress on online
contention resolution for positively correlated distributions.

6 Conclusions and Open Problems

In this paper, we begin an exploration of the power and limitations of contention resolution
beyond known product distributions, as well as its connections to secretary problems. We
hope that our results are a first step towards broader application of the techniques behind
contention resolution and online selection. Most notably, our results highlight approaches to
resolving the matroid secretary conjecture. We identify several intriguing open questions in
pursuit of these agendas.

Can the result of Theorem 4.1 be shown unconditionally; i.e., can we show a competitive
universal online CRS for matroids without assuming the matroid secretary conjecture? We
believe this to be a reasonable first step towards proving the matroid secretary conjecture.
As we show in Section 5.2, prior work on online contention resolution fails in the presence
of even the modest positive correlation exhibited by (uncontentious) improving element
distributions on simple matroids. Therefore, we believe significant new ideas are required.
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Recalling the caveat to our results from Section 5, can a tighter connection be made
between the secretary problem and contention resolution? Is there a natural model
of contention resolution on matroids which permits a reduction both from and to the
matroid secretary problem? The knee-jerk approaches using duality-like arguments fail
to establish such an equivalence, so new ideas appear to be required.
The caveat to our results from Section 5 suggests that resolving contention with limited
knowledge of the prior is closely related to the matroid secretary conjecture. Recalling
our impossibility result of Theorem 3.18, we can start by examining prior-independent
contention resolution for interesting classes of distributions. For example, is there
a competitive prior-independent (or even oblivious) CRS for ex-ante-feasible product
distributions?
Can Theorem 4.1 be made computationally efficient? Given only oracle access to an
arbitrary uncontentious distribution and an arbitrary algorithm for the matroid secretary
problem, this is unclear.
Is there an analogue of our characterization of uncontentious distributions for prophet
inequality problems? In particular, can we characterize joint distributions of random
variables which permit competitive prophet inequalities with respect to a given matroid?
Do more general set systems permit a characterization of uncontentious distributions
with a finite set of inequalities, a-la Theorem 3.6?

We restricted our attention to matroids in the paper, though some notes are in order on
extensions of our results to more general constraints. In the characterization of Theorem 3.6,
the equivalence of (a) and (b) holds for a general downwards-closed set systems, and is
implicit in the arguments of [10]. The equivalence with (c) exploits the matroid structure,
however. Theorem 4.1 also holds for general downwards-closed set systems, and our proof
does not invoke the matroid assumption. The results and arguments of Section 5, in particular
Theorem 5.3, heavily rely on the matroid structure and do not appear to be easily extensible
beyond matroids. We leave further extensions of our results beyond matroids for future work.
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