2,496 research outputs found

    The Matrix Ansatz, Orthogonal Polynomials, and Permutations

    Get PDF
    In this paper we outline a Matrix Ansatz approach to some problems of combinatorial enumeration. The idea is that many interesting quantities can be expressed in terms of products of matrices, where the matrices obey certain relations. We illustrate this approach with applications to moments of orthogonal polynomials, permutations, signed permutations, and tableaux.Comment: to appear in Advances in Applied Mathematics, special issue for Dennis Stanto

    Combinatorics of the three-parameter PASEP partition function

    Full text link
    We consider a partially asymmetric exclusion process (PASEP) on a finite number of sites with open and directed boundary conditions. Its partition function was calculated by Blythe, Evans, Colaiori, and Essler. It is known to be a generating function of permutation tableaux by the combinatorial interpretation of Corteel and Williams. We prove bijectively two new combinatorial interpretations. The first one is in terms of weighted Motzkin paths called Laguerre histories and is obtained by refining a bijection of Foata and Zeilberger. Secondly we show that this partition function is the generating function of permutations with respect to right-to-left minima, right-to-left maxima, ascents, and 31-2 patterns, by refining a bijection of Francon and Viennot. Then we give a new formula for the partition function which generalizes the one of Blythe & al. It is proved in two combinatorial ways. The first proof is an enumeration of lattice paths which are known to be a solution of the Matrix Ansatz of Derrida & al. The second proof relies on a previous enumeration of rook placements, which appear in the combinatorial interpretation of a related normal ordering problem. We also obtain a closed formula for the moments of Al-Salam-Chihara polynomials.Comment: 31 page

    Tableaux combinatorics for the asymmetric exclusion process and Askey-Wilson polynomials

    Full text link
    Introduced in the late 1960's, the asymmetric exclusion process (ASEP) is an important model from statistical mechanics which describes a system of interacting particles hopping left and right on a one-dimensional lattice of n sites with open boundaries. It has been cited as a model for traffic flow and protein synthesis. In the most general form of the ASEP with open boundaries, particles may enter and exit at the left with probabilities alpha and gamma, and they may exit and enter at the right with probabilities beta and delta. In the bulk, the probability of hopping left is q times the probability of hopping right. The first main result of this paper is a combinatorial formula for the stationary distribution of the ASEP with all parameters general, in terms of a new class of tableaux which we call staircase tableaux. This generalizes our previous work for the ASEP with parameters gamma=delta=0. Using our first result and also results of Uchiyama-Sasamoto-Wadati, we derive our second main result: a combinatorial formula for the moments of Askey-Wilson polynomials. Since the early 1980's there has been a great deal of work giving combinatorial formulas for moments of various other classical orthogonal polynomials (e.g. Hermite, Charlier, Laguerre, Meixner). However, this is the first such formula for the Askey-Wilson polynomials, which are at the top of the hierarchy of classical orthogonal polynomials.Comment: An announcement of these results appeared here: http://www.pnas.org/content/early/2010/03/25/0909915107.abstract This version of the paper has updated references and corrects a gap in the proof of Proposition 6.11 which was in the published versio

    Tableaux combinatorics for the asymmetric exclusion process

    Full text link
    The partially asymmetric exclusion process (PASEP) is an important model from statistical mechanics which describes a system of interacting particles hopping left and right on a one-dimensional lattice of nn sites. It is partially asymmetric in the sense that the probability of hopping left is qq times the probability of hopping right. Additionally, particles may enter from the left with probability α\alpha and exit from the right with probability β\beta. In this paper we prove a close connection between the PASEP and the combinatorics of permutation tableaux. (These tableaux come indirectly from the totally nonnegative part of the Grassmannian, via work of Postnikov, and were studied in a paper of Steingrimsson and the second author.) Namely, we prove that in the long time limit, the probability that the PASEP is in a particular configuration τ\tau is essentially the generating function for permutation tableaux of shape λ(τ)\lambda(\tau) enumerated according to three statistics. The proof of this result uses a result of Derrida, Evans, Hakim, and Pasquier on the {\it matrix ansatz} for the PASEP model. As an application, we prove some monotonicity results for the PASEP. We also derive some enumerative consequences for permutations enumerated according to various statistics such as weak excedence set, descent set, crossings, and occurences of generalized patterns.Comment: Clarified exposition, more general result, new author (SC), 19 pages, 6 figure

    Generalized Dumont-Foata polynomials and alternative tableaux

    Full text link
    Dumont and Foata introduced in 1976 a three-variable symmetric refinement of Genocchi numbers, which satisfies a simple recurrence relation. A six-variable generalization with many similar properties was later considered by Dumont. They generalize a lot of known integer sequences, and their ordinary generating function can be expanded as a Jacobi continued fraction. We give here a new combinatorial interpretation of the six-variable polynomials in terms of the alternative tableaux introduced by Viennot. A powerful tool to enumerate alternative tableaux is the so-called "matrix Ansatz", and using this we show that our combinatorial interpretation naturally leads to a new proof of the continued fraction expansion.Comment: 17 page

    The Heine-Stieltjes correspondence and a new angular momentum projection for many-particle systems

    Get PDF
    A new angular momentum projection for systems of particles with arbitrary spins is formulated based on the Heine-Stieltjes correspondence, which can be regarded as the solutions of the mean-field plus pairing model in the strong pairing interaction G ->Infinity limit. Properties of the Stieltjes zeros of the extended Heine-Stieltjes polynomials, of which the roots determine the projected states, and the related Van Vleck zeros are discussed. The electrostatic interpretation of these zeros is presented. As examples, applications to n nonidentical particles of spin-1/2 and to identical bosons or fermions are made to elucidate the procedure and properties of the Stieltjes zeros and the related Van Vleck zeros. It is shown that the new angular momentum projection for n identical bosons or fermions can be simplified with the branching multiplicity formula of U(N) supset O(3) and the special choices of the parameters used in the projection. Especially, it is shown that the solutions for identical bosons can always be expressed in terms of zeros of Jacobi polynomials. However, unlike non-identical particle systems, the n-coupled states of identical particles are non-orthogonal with respect to the multiplicity label after the projection.Comment: 14 pages LaTeX with no figur
    corecore