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A new angular momentum projection for systems of particles with arbitrary spins is formulated based on the
Heine-Stieltjes correspondence, which can be regarded as the solutions of the mean-field-plus -pairing model
in the strong-pairing interaction G → ∞ limit. Properties of the Stieltjes zeros of the extended Heine-Stieltjes
polynomials, whose roots determine the projected states, and the related Van Vleck zeros are discussed. An
electrostatic interpretation of these zeros is presented. As examples, applications to n nonidentical particles of
spin 1/2 and to identical bosons or fermions are made to elucidate the procedure and properties of the Stieltjes
zeros and the related Van Vleck zeros. It is shown that the new angular momentum projection for n identical
bosons or fermions can be simplified with the branching multiplicity formula of U(N ) ↓ O(3) and the special
choices of the parameters used in the projection. Especially, it is shown that the solutions for identical bosons can
always be expressed in terms of zeros of Jacobi polynomials. However, unlike nonidentical particle systems, the
n-coupled states of identical particles are nonorthogonal with respect to the multiplicity label after the projection.
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I. INTRODUCTION

The angular momentum projection or construction of many-
body wave functions with a definite total angular momentum
from a set of single-particle product states has practical value
in quantum many-body physics [1–3]. For a few particle
systems, the Clebsch-Gordan coefficients, 3j symbols or
Wigner coefficients, can be used straightforwardly for this
purpose. However, with increasing particle numbers, the
Clebsch-Gordan couplings become tedious and cumbersome
because, with increasing particle numbers, the number of
intermediate angular momentum quantum numbers that is
required to label different states with the same total angular
momentum grows combinatorially. In practical applications,
the projection technique of Löwdin has been one of the
most popular [1]. This method uses the angular momentum
projection operator to project a set of single-particle product
states into states with a definite total angular momentum, which
requires solution of the eigenvalue problem of the projection
operator matrix constructed from the relevant single-particle
product states. In [3], Biedenharn and Louck proposed the
Wigner operator method, which combines Clebsch-Gordan
couplings with results from the theory of the symmetric groups.
However, their method can only be worked out explicitly for
n nonidentical particles of spin 1/2. In the case of the nuclear
shell model, other procedures are used to construct states with
a definite total angular momentum quantum number J . One,
called the M scheme, starts with the total quantum number of
the angular momentum projection onto the third axis M = J
and utilizes a simple subtraction procedure to extract states
with a good total angular momentum [4], and another uses
direct angular momentum couplings and is usually referred

*daipan@dlut.edu.cn

to as the J -coupled scheme for identical particles or the
JT -coupled scheme when applied to a proton-neutron system
[5]. Alternatively, the projection operator constructed in terms
of an integration of the product of the rotational group element
and its matrix element (Wigner’s D function) of a given angular
momentum over the Euler angles can also be used [2], as,
for example, in the construction of the Elliott basis [6] of
SU(3) ⊃ SO(3) and in projected shell-model calculations [7].
These methods can all be relatively easily implemented in
computer codes designed for their respective purposes. Their
drawbacks lie in the fact that much CPU time is needed
when the dimension of the subspace spanned by the relevant
single-particle product states is really large, especially when
the projection operator is constructed in terms of an integration
of the product of the rotational-group element and its matrix
element of a given angular momentum over the Euler angles
is used, because the Wheeler-Hill integral involved is difficult
to treat accurately in the code.

Recently, it has been shown that the angular momentum
projection may be realized by solving a set of Bethe ansatz
equations (BAEs) [8,9]. The purpose of this work is to show
that the BAEs can be solved relatively easily from zeros of
the associated extended Heine-Stieltjes polynomials from the
Heine-Stieltjes correspondence [9–14]. In Sec. II, we revisit
the Bethe ansatz method for the angular momentum projection.
The Heine-Stieltjes correspondence related to the problem,
together with properties of the Heine-Stieltjes polynomials
and their electrostatic interpretation, is studied in Sec. III.
As an example, the application to n nonidentical particles
with spin 1/2 is shown in Sec. IV, which is also related
to the eigenvalue problem of the pure pairing interactions
among valence nucleon pairs over a set of deformed Nilsson
orbits, while applications to systems of identical bosons and
fermions are discussed in Sec. V. A brief summary is given
in Sec. VI.
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II. THE BETHE ANSATZ METHOD FOR ANGULAR
MOMENTUM PROJECTION

Let {J α
μ ; μ = +,−, 0}, where α = 1, 2, . . . , n, be genera-

tors of the αth copy of the SU(2) algebra which satisfy the
commutation relations

[J α
+, J

β
−] = 2δαβJ α

0 ,
[
J α

0 , J
β
±
] = ±δαβJ α

±, (1)

and |jα,mα〉 be the corresponding orthonormal basis vectors
with angular momentum quantum number jα and quantum
number mα of its third component. According to the Bethe
ansatz method, one can write an n-coupled state with total
angular momentum J = ∑

α jα − k and M = J as

|ζ ; J,M = J ) = J−
(
x

(ζ )
1

)
J−

(
x

(ζ )
2

)
. . . J−

(
x

(ζ )
k

)|h.w.〉, (2)

where |h.w.〉 = ∏n
α=1 |jα,mα = jα〉 is the SU(2) highest

weight state satisfying J α
+|h.w.〉 = 0 for any α,

J−
(
x

(ζ )
i

) =
n∑

α=1

1

x
(ζ )
i − εα

J α
−, (3)

in which the parameters {εα} can be any set of unequal
numbers, and ζ is used to distinguish different n-coupled states
with the same angular momentum J . Because (2) is the highest
weight state of the angular momentum J , it should satisfy the
condition

J+|ζ ; J,M = J ) = J+J−
(
x

(ζ )
1

)
J−

(
x

(ζ )
2

)
. . . J−

(
x

(ζ )
k

)|h.w.〉
= 0, (4)

where J+ = ∑
α J α

+. Using the commutation relations, (1), (4)
requires that the BAEs

n∑
α=1

2jα

x
(ζ )
i − εα

−
k∑

t=1(�=i)

2

x
(ζ )
i − x

(ζ )
t

= 0 (5)

must be satisfied for i = 1, 2, . . . , k. It is clear that the
multiplicity label ζ = 1, 2, . . . , d(n, k) in (2) is taken to be the
label of different solutions {x(ζ )} of Eq. (5). It can be verified
[8,9] that the number of solutions d(n, k) of Eq. (5) equals ex-
actly the multiplicity in the reduction j1 ⊗ j2 ⊗ · · · ⊗ jn ↓ J ,
which can be calculated by

d(n, k) = η(n, k) −
k−1∑
μ=0

d(n,μ), (6)

where

η(n, k) =
2j1∑

μ1=0

· · ·
2jn∑

μn=0

δq,k, (7)

in which q = ∑n
i=1 μi . From Eqs. (6) and (7), the multiplicity

d(n, k) can be calculated recursively from d(n, 0) = 1.
Once the solutions {x(ζ )

1 , . . . , x
(ζ )
k } are obtained from

Eq. (5), the n-coupled state with any M can be expressed
in the standard way as

|ζ ; J,M) =
√

(J + M)!

(2J )!(J − M)!
J J−M

− |ζ ; J, J ), (8)

where |ζ ; J, J ) is given by Eq. (2).

Because the uncoupled basis vectors {|jα,mα〉} are or-
thonormal, substituting (3) into (2), one can find that the
non-normalized angular momentum multicoupling coefficient
is given by

(j1, j1 − μ1; . . . ; jn, jn − μn|ζ ; J, J )

= S(k)
(
β

μ1
1 , . . . , βμn

n

) n∏
i=1

√
(2ji)!μi!

(2ji − μn)!
, (9)

where the condition
∑n

α μα = k must be satisfied,
S(k)(βμ1

1 , . . . , β
μn
n ) is the k × n-variable symmetric func-

tion, in which βμα
α is the shorthand notation of taken μα

variables {βi1,α, . . . , βiμα ,α} with i1 �= i2 �= · · · �= iμα
from

{β1,α, . . . , βk,α}, and

βi,α = 1

x
(ζ )
i − εα

. (10)

When n = 2 and k = 2, for example, we have
S(2)(β2

1 ) = β11β12, S(2)(β1, β2) = β11β22 + β21β12, and
S(2)(β2

2 ) = β12β22. The normalized angular momentum
multicoupling coefficient is

〈j1, j1 − μ1, . . . , jn, jn − μn|ζ ; J, J 〉
= (j1, j1 − μ1, . . . , jn, jn − μn|ζ ; J, J )/N , (11)

where

N =
( ∑

μ1...μn

(j1, j1 − μ1, . . . , jn, jn − μn|ζ ; J, J )2

) 1
2

,

(12)

in which the summation should be restricted by
∑n

α μα = k.
In comparison to the traditional projection methods

[1,2,4,5], the Bethe ansatz method for angular momentum
projection is more efficient, as it only needs to solve
k-coupled algebraic BAEs. However, one must solve the
d(n, k)-dimensional matrix eigenvalue problem using the
traditional projection methods. The dimension d(n, k)
increases with increasing n and k in a nonpolynomial way as
shown in (6). Therefore, the Bethe ansatz method for angular
momentum projection is advantageous if there is a simple
way to solve the BAEs, (5).

III. THE HEINE-STIELTJES CORRESPONDENCE

It has been shown that BAEs similar to those shown
in (5) may be solved from zeros of the corresponding
extended Heine-Stieltjes polynomials [9–14]. Through the
Heine-Stieltjes correspondence [9,10], for the BAEs, (5), one
may consider the second-order Fuchsian equation

An(x)y ′′
k (x) + Bn−1(x)y ′

k(x) − Vn−2(x)yk(x) = 0, (13)

where An(x) = ∏n
α=1(x − εα) is a polynomial of degree n, the

polynomial Bn−1(x) is given as

Bn−1(x)/An(x) = −
n∑

α=1

2jα

x − εα

, (14)

and Vn−2(x) is called the Van Vleck polynomial [15] of
degree n − 2, which is determined according to Eq. (13). Let
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{xi, i = 1, 2, . . . , k} be zeros of the extended Heine-Stieltjes
polynomial yk(x), which are often called Stieltjes zeros. We
may write yk(x) = ∏k

i=1(x − xi). At any zero xi of yk(x), there
is the identity

y ′′
k (xi)

y ′
k(xi)

=
k∑

t=1(t �=i)

2

xi − xt

. (15)

It is obvious that, at any zero xi of yk(x), (13) results in the
BAEs, (5). Generally, we also have

y ′′
k (x)

yk(x)
=

∑
1�i<t�k

2

(x − xi)(x − xt )

=
∑

1�i �=t�k

2

x − xi

1

(xi − xt )
, (16)

y ′
k(x)

yk(x)
=

k∑
i=1

1

x − xi

. (17)

Substituting (16) and (17) into (13), we have

V
(ζ )
n−2(x)

= An(x)
k∑

i=1

1

x − x
(ζ )
i

⎛
⎝∑

t �=i

2

x
(ζ )
i − x

(ζ )
t

−
∑

α

2jα

x − εα

⎞
⎠ .

(18)

By using the BAEs, (5), (18) becomes

V
(ζ )
n−2(x) = An(x)

n∑
α=1

1

x − εα

(
k∑

i=1

2jα

x
(ζ )
i − εα

)
. (19)

Equation (19) shows that zeros {x̄(ζ )
l ; l = 1, 2, . . . , n − 2} of

the Van Vleck polynomial V
(ζ )
n−2(x) related to the ζ th extended

Heine-Stieltjes polynomial y
(ζ )
k (x) = ∏k

i=1(x − x
(ζ )
i ) are

determined by

n∑
α=1

1

x̄
(ζ )
l − εα

(
k∑

i=1

2jα

εα − x
(ζ )
i

)
= 0. (20)

{x̄(ζ )
l ; l = 1, 2, . . . , n − 2} are called Ven Vleck zeros related

to the ζ th extended Heine-Stieltjes polynomial y
(ζ )
k (x). Once

the Van Vleck zeros are obtained from Eq. (20), V
(ζ )
n−2(x) can

be expressed explicitly as

V
(ζ )
n−2(x) = cn,k

n−2∏
l=1

(
x − x̄

(ζ )
l

)
, (21)

where cn,k is a constant depending on n, k, and the parameters
εα (α = 1, . . . , n).

If εα (α = 1, . . . , n) are chosen to be real, according to
the Stieltjes results [15], the electrostatic interpretation of the
location of zeros of the extended Heine-Stieltjes polynomial
yk(x) may be stated as follows. Put n negative fixed charges
−jα at εα for α = 1, . . . , n along a real line, respectively,
and allow k positive unit charges to move freely on the two-
dimensional complex plane. Therefore, up to a constant, the

total energy functional may be written as

U (x1, x2, . . . , xk)

=
k∑

i=1

n∑
α

jα ln |xi − εα| −
∑

1�i �=t�k

ln |xi − xt |. (22)

The BAEs given in Eq. (5) imply that there are d(n, k) different
configurations for the position of the k positive charges
{x(ζ )

1 , . . . , x
(ζ )
k } with ζ = 1, 2, . . . , d(n, k), corresponding to

global minima of the total energy.
Similarly, let

ρ(ζ )
α (k) = 2jα

k∑
i=1

1

εα − x
(ζ )
i

, (23)

which is now called Van Vleck charges related to the zeros
of the ζ th extended Heine-Stieltjes polynomial y

(ζ )
k (x). Put n

Van Vleck charges ρ(ζ )
α (k) at positions εα for α = 1, . . . , n

along a real line, respectively, and allow one unit charge
to move freely on the two-dimensional complex plane.
Equation (20) provides n − 2 possible equilibrium positions
{x̄(ζ )

l ; l = 1, 2, . . . , n − 2} of the unit moving charge for the
electrostatic system.

Let

	(x) = y ′
k(x)

yk(x)
=

k∑
i=1

1

x − xi

. (24)

As shown in [16], 	(x) satisfies the Riccati-type equation

	′(x) + 	2(x) +
k∑

i=1

n∑
α

2jα

(x − xi)(εα − xi)
= 0 (25)

in this case. The Van Vleck charges ρα can be expressed as

ρα = 2jα	(εα). (26)

There is a series of high-order differential equations [16] for
	(εα). For example, the lowest order one is

(1 − 2jβ)	′(εβ) + 	2(εβ) +
∑
α �=β

2jα

	(εβ) − 	(εα)

εα − εβ

= 0.

(27)

It seems that the solutions of 	(εα) of Eq. (27) or from
a series of high-order differential equations can be used to
determine the Van Vleck zeros and, eventually, solve the BAEs,
(5), as shown in [16]. It should be noted that the solutions of
{	(εα)} from these Riccati-type equations depend only on the
parameters {εα} and {jα}, and do not explicitly depend on k and
ζ . Therefore, the solutions of {	(εα)} from these Riccati-type
equations are numerous. One should try to search for a set
of solutions {	(εα)} corresponding to specific k and ζ from
solutions with all possible k and ζ obtained from Eq. (27),
which explains why the other expressions of {	(εα)} in terms
of symmetric functions of {x1, . . . , xk} should also be used to
solve the problem [16].

In order to avoid the previously mentioned ambiguity, in
the following we insist on using the method outlined in [10].
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We write

yk(x) =
k∑

j=0

ajx
j , Vn−2(x) =

n−2∑
j=0

bjx
j , (28)

where {aj } and {bj } are the expansion coefficients to be
determined. Substitution of (28) into (13) yields two matrix
equations. By solving these two matrix equations, we can
obtain the solutions of {aj } and {bj } for given k. Because
there is freedom to choose the parameters {εα; α = 1, . . . , n},
we find the following parameter settings to be a simple and
convenient choice owing to the fact that there is an additional
reflection symmetry in (5):

εα = −(p + 1 − α) for α � p,
(29)

εα+p = α for α � 1

when n = 2p and

εα = −(p + 1 − α) for α � p,

εp+1 = 0, (30)

εα+p+1 = α for α � 1

when n = 2p + 1. With such a choice, in addition to the
Sk permutation symmetry among indices i = 1, . . . , k of
{x1, . . . , xk}, the Stieltjes zeros {xi} have the following
additional reflection symmetries: (i) If {x1, . . . , xk} is a set
of Stieltjes zeros, {−x1, . . . ,−xk} is another set. (ii)When n
is even, there are many sets of solutions with {x1 = −x2, x3 =
−x4, . . . , xk−1 = −xk} when k is even and {x1 = −x2, x3 =
−x4, . . . , xk−2 = −xk−1, xk = 0} when k is odd. When n is
odd, there are many sets of solutions with {x1 = −x2, x3 =
−x4, . . . , xk−1 = −xk} when k is even. Solutions satisfying
property (ii) are self-reflectional. Property (i) is strong, namely,
such pairs of solutions always exist, which is obvious with
the substitutions of xi with −xi in Eq. (5) for i = 1, . . . , k.
However, property (ii) only applies to a subset of solutions,
namely, there are other sets of solutions which may not
follow property (ii). One can verify that the substitution of
{x1 = −x2, x3 = −x4, . . . , xk−1 = −xk} for k even or {x1 =
−x2, x3 = −x4, . . . , xk−2 = −xk−1, xk = 0} for k odd into
Eq. (5) indeed yields k consistent equations when n is
even, which implies that {x1 = −x2, x3 = −x4, . . . , xk−1 =
−xk} for k even and {x1 = −x2, x3 = −x4, . . . , xk−2 =
−xk−1, xk = 0} for k odd are possible solutions when n is even.
For odd-n cases, self-reflectional solutions only exist when k
is even. Because the parameters chosen satisfy the interlacing
condition ε1 < · · · < εn, zeros of yk(x) may be arranged to
satisfy the interlacing condition, Re(x1) � Re(x2) � · · · �
Re(xk), where Re(xi) lies in one of the n − 1 intervals
(ε1, ε2), . . . , (εn−1, εn), in which the equality is only possible
when the adjacent zeros are complex conjugate with each
other. When two zeros are conjugate with each other with
xi = x∗

i+1, it is obvious that Re(xi) and Re(xi+1) are in the
same interval (εα, εα+1). The number of different such allowed
configurations gives the possible solutions of yk(x) and the
corresponding Vn−2(x). Therefore, these properties are very
helpful to simplify the problem and to search for solutions
of (5).

IV. APPLICATION TO SYSTEMS WITH NONIDENTICAL
SPIN-1/2 PARTICLES

Generally, the Bethe ansatz method for angular momentum
projection with the Heine-Stieltjes correspondence shown in
previous sections can be applied to construct a state with a
definite angular momentum from a set of uncoupled single-
particle states of both nonidentical- and identical-particle
systems. Because identical-particle systems have additional
permutation symmetries, namely, symmetry among identical
bosons or antisymmetry among identical fermions with respect
to the single-particle coordinate permutations, the procedure
outlined in previous sections can be simplified. Such simplifi-
cations and applications are reported in the next section. In this
section, we focus only on a nonidentical-particle case, in which
we strictly follow the method described previously because no
further simplification can be made for nonidentical-particle
systems.

As the simplest but nontrivial example, we consider n
nonidentical particles of spin 1/2, which was previously
studied by Louck and Biedenharn using the pattern calculus
with the Yamanocchi symbol of an irrep of Sn as the upper
pattern used to label the outer multiplicity of SU(2) × · · · ×
SU(2) ↓ SU(2), and the SU(2) basis of the same irrep as the
lower pattern [3,17]. This is the only case that can be solved
analytically using the Wigner operator method. However, as
shown in [3], the construction of a coupled state with a definite
angular momentum for nonidentical particles of arbitrary spin
can never be expressed analytically using the pattern calculus,
principally because of unsolved problems relating to the upper
patterns. Specifically, using the pattern calculus, the n-coupled
state with total angular momentum J of a spin-1/2 system may
be written as [3,17]

|(i1 . . . in); JM〉 =
∑
k1...kn

〈
2 J 0

J + M

∣∣∣∣
�

i1

1 0

kn

�
· · ·

�
in

1 0

k1

� ∣∣∣∣ 0 0

0

〉

×
n∏

i=1

∣∣∣∣1

2
, ki − 1

2

〉
, (31)

where (i1 . . . in) with is = 0 or 1 for s = 1, . . . , n is used as
the multiplicity label, the sum should be restricted with ki = 0
or 1 for i = 1, . . . , n, and the expansion coefficient

〈
2J 0

J + M

∣∣∣∣
�

i1

1 0

kn

�
· · ·

�
in

1 0

k1

� ∣∣∣∣ 0 0

0

〉
(32)

should be calculated consecutively with�
1

1 0

1

� ∣∣∣∣ 2j 0

j + m

〉
=

(
j + m + 1

2j + 1

)1/2 ∣∣∣∣ 2j + 1 0

j + m + 1

〉
,

�
1

1 0

0

� ∣∣∣∣ 2j 0

j + m

〉
=

(
j − m + 1

2j + 1

)1/2 ∣∣∣∣ 2j + 1 0

j + m

〉
,
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0

1 0

1

� ∣∣∣∣ 2j 0

j + m

〉
= −

(
j − m

2j + 1

)1/2 ∣∣∣∣ 2j − 1 0

j + m

〉
,

�
0

1 0

0

�∣∣∣∣∣ 2j 0

j + m

〉
=

(
j + m

2j + 1

)1/2 ∣∣∣∣ 2j − 1 0

j + m − 1

〉
. (33)

Though the expression of the expansion coefficients shown
by (32) is analytic, evaluation of (32) according to the rules
shown in (33) is still cumbersome; especially, the coefficients
for many permissible upper patterns (i1 . . . in) that may lie
in the null space are zero, which, however, cannot be ruled
out beforehand. This is the main drawback in using the upper
pattern to resolve the outer multiplicity problem of unitary
groups [18]. In contrast, roots of the BAEs, (5), provide all
possible coupled states with the same angular momentum J
as shown by (2) and (3), which are mutually orthogonal with
respect to the multiplicity label ζ . Solutions of (5) can be
obtained from Eq. (13) with the explicit expressions shown in
(28). Moreover, the new angular momentum projection method
outlined in Sec. II is not restricted to systems consisting of
particles with the same spin but can be applied to systems
consisting of particles with arbitrary spins.

The above example is closely related to the construction of
eigenstates of the pure pairing Hamiltonian in the deformed
Nilsson basis with

ĤS = −GS+S−, (34)

where S+ = ∑
μ S+

μ = ∑
μ a

†
μ↑a

†
μ↓ and S− = (S+)†, in which

S+
μ = a

†
μ↑a

†
μ↓ (S−

μ = aμ↓aμ↑) are pair creation (annihilation)
operators. The up and down arrows in these expressions refer
to time-reversed states. For simplicity, we only consider the
seniority zero cases. The eigenstates of (34) can be constructed
in the following way [19]: Because each Nilsson level can be
occupied by at most one pair owing to the Pauli principle, the
local states can be regarded as quasi-spin-1/2 states. | 1

2 , 1
2 〉

stands for a one-pair state, while | 1
2 ,− 1

2 〉 stands for a no-pair
state. Then, similarly to (2), any allowed total quasi-spin S and
MS = S state of p pairs over n Nilsson levels can be written
as

|ζ ; S,MS = S〉 = NS−(
x

(ζ )
1

)
. . . S−(

x
(ζ )
t

)|h.w.〉 (35)

with p = n − t pairs, where N is the normalization constant
defined by (12), S = n/2 − t , |h.w.〉 ≡ | 1

2 , 1
2 ; . . . ; 1

2 , 1
2 〉 is the

product of n copies of the local state with the highest weight
of quasispin 1/2, and

S−(
x

(ζ )
i

) =
n∑

μ=1

1

x
(ζ )
i − εμ

S−
μ , (36)

in which the parameters {εμ} can be any set of unequal
numbers, and ζ is used to distinguish different n-coupled
states with the same quasispin S. The variables {x(ζ )

1 , . . . , x
(ζ )
t }

should satisfy

n∑
μ=1

1

x
(ζ )
i − εμ

−
t∑

l=1(�=i)

2

x
(ζ )
i − x

(ζ )
l

= 0 (37)

for i = 1, 2, . . . , t . It is clear that the multiplicity label ζ =
1, 2, . . . , d(n, t) in (37) is taken to be the label of different
solutions {x(ζ )} of Eq. (37). It can be verified that the number
of solutions d(n, t) of Eq. (37) equals exactly the multiplicity
in the reduction j1 ⊗ j2 ⊗ · · · ⊗ jn ↓ J with jl = 1

2 for 1 �
l � n, which can be calculated from Eq. (6) with

η(n, t) =
1∑

μ1=0

· · ·
1∑

μn=0

δq,t (38)

for this case, in which q = ∑n
i=1 μi . From Eqs. (6) and (38),

the multiplicity d(n, t) can be calculated recursively with
d(n, 0) = 1, which indicates that there are d(n, t) different
states with the same quasispin S = n/2 − t . For this case,
there is a closed form of d(n, t) with

d(n, t) = (1 + n − 2t)n!

(1 + n − t)(n − t)!t!
, (39)

which equals exactly the dimension of the irrep [n − t, t] of
the permutation group Sn [3,19] and is consistent with the
result obtained from Eqs. (6) and (38). In this case, cn,k in the
Van Vleck polynomials, (21), can be obtained in solving the
corresponding Fuchsian equation (13) with

cn,k = −(n − k + 1)k. (40)

Finally, the state with quasispin S and any MS can be expressed
as

|ζ ; S,MS〉 =
√

(S + MS)!

(2S)!(S − MS)!
(S−)S−MS |ζ ; S, S〉 (41)

for a system with p = n/2 + MS pairs.
In order to demonstrate the method and properties of

the zeros outlined in previous sections, in the following we
display results of the method for relatively simple cases with
n = 8, t = 1, 4 and n = 7, t = 2, 3 as examples of even-
and odd-n cases, respectively. The multiplicities d(8, t) with
0 � t � 4 and d(7, t) with 0 � t � 3 are listed in Table I.
With parameters {εα} chosen according to (29) and (30), we
find that there are exactly d(n, t) different solutions for given
n and t as listed in Tables II–V. For any case, it can be
verified that any zero x

(ζ )
i of y

(ζ )
t (x) indeed lies in one of the

n − 1 intervals (ε1, ε2) . . . (εn−1, εn). It is obvious that y
(1)
1 (x)

in Table II, y(1)
4 (x), . . . , y(6)

4 (x) in Table III, and y
(1)
2 (x), y(2)

2 (x)
in Table IV are self-reflectional, while the solutions in most
cases satisfy reflection symmetry property (i). For example,
y

(7)
4 (x) = y

(8)
4 (−x), y

(9)
4 (x) = y

(10)
4 (−x), y

(11)
4 (x) = y

(12)
4 (−x),

TABLE I. Multiplicity d(8, t) for S = 4 − t and d(7, t) for
S = 7

2 − t .

t S = 4 − t d(8, t) S = 7
2 − t d(7, t)

0 4 1 7
2 1

1 3 7 5
2 6

2 2 20 3
2 14

3 1 28 1
2 14

4 0 14
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TABLE II. Extended Heine-Stieltjes polynomials y
(ζ )
1 (x) for constructing S = 3 states with n = 8 and t = 1 according to (35) and

corresponding Van Vleck polynomials V
(ζ )

6 (x).

Extended Heine-Stieltjes Van Vleck
polynomial y

(ζ )
1 (x) polynomial V

(ζ )
6 (x)

ζ = 1 x −8(x − 3.679)(x − 2.59)(x − 1.502)(x + 1.502)(x + 2.59)(x + 3.679)
ζ = 2 x + 3.679 −8(x − 3.679)(x − 1.502)(x + 1.502)(x + 2.59)(x − 2.59)x
ζ = 3 x − 3.679 −8(x + 3.679)(x + 1.502)(x − 1.502)(x − 2.59)(x + 2.59)x
ζ = 4 x − 2.59 −8(x − 3.679)(x + 3.679)(x − 1.502)(x + 1.502)(x + 2.59)x
ζ = 5 x + 2.59 −8(x + 3.679)(x − 3.679)(x + 1.502)(x − 1.502)(x − 2.59)x
ζ = 6 x + 1.502 −8(x − 3.679)(x − 2.59)(x − 1.502)(x + 2.59)(x + 3.679)x
ζ = 7 x − 1.502 −8(x + 3.679)(x + 2.59)(x + 1.502)(x − 2.59)(x − 3.679)x

and y
(13)
4 (x) = y

(14)
4 (−x) when n = 8 and t = 4. The Van

Vleck polynomial satisfies the same reflection property as that
of the corresponding extended Heine-Stieltjes polynomial. In
addition, one can verify that the Van Vleck zeros of V

(ζ )
n−2(x)

indeed satisfy Eq. (20). With Stieltjes zeros {xi} of y
(ζ )
t (x)

obtained from Tables II–V, one can verify that the eigenstates,
(41), are mutually orthogonal with respect to the multiplicity
label ζ :

〈ζ ; S,MS |ζ ′; S ′,M ′
S〉 = δζ,ζ ′δS,S ′δMS,M ′

S
. (42)

Once the eigenstates, (41), of (34) are obtained, the results
can be used for constructing eigenstates and calculating
eigenvalues of any mean-field-plus-pairing model by using
the progressive diagonalization scheme as shown [19]. Further-

more, Eqs. (5) and (37) can be regarded as the same BAEs [20]
in determining solutions of the mean-field plus-pairing model
in the strong-pairing interaction G → ∞ limit by replacing
the parameters {εα} with {2εα}, where {εα} are single-particle
energies in the corresponding orbits of the mean field [9].

V. APPLICATION TO IDENTICAL-PARTICLE SYSTEMS

Classification and construction of identical-particle states
for a given angular momentum quantum number are funda-
mental, especially in nuclear structure theory. n-coupled states
of l bosons can be constructed as the basis vectors of symmetric
irreducible representations of U(2l + 1) ⊃ O(2l + 1) ⊃ O(3)
as shown in [21–23], while those of j fermions can be
constructed as the basis vectors of antisymmetric irreducible

TABLE III. Extended Heine-Stieltjes polynomials y
(ζ )
4 (x) for constructing S = 0 states with n = 8 and t = 4 according to (35) and

corresponding Van Vleck polynomials V
(ζ )

6 (x).

Extended Heine-Stieltjes Van Vleck
polynomial y

(ζ )
4 (x) polynomial V

(ζ )
6 (x)

ζ = 1 (x2 + 0.379415)(x2 + 10.53874) −20(x2 − 13.0977)(x2 − 6.2593)(x2 − 1.9184)
ζ = 2 (x2 − 12.56879)(x2 + 0.57829) −20(x2 − 2.3151)(x2 − 4.9901x + 6.4066)(x2 + 4.9901x + 6.4066)
ζ = 3 (x2 + 0.8145)(x2 − 5.7144) −20(x2 − 12.8761)(x2 − 2.8274x + 2.1700)(x2 + 2.8274x + 2.1700)
ζ = 4 (x2 − 2.23204)(x2 − 12.3149) −20(x2 + 0.5558)(x2 − 5.3854x + 7.4056)(x2 + 5.3854x + 7.4056)
ζ = 5 (x2 + 4.82433)(x2 − 1.80406) −20(x2 − 13.0201)(x2 − 6.1361)(x2 + 0.2502)
ζ = 6 (x2 − 5.07233x + 6.61367)(x2 + 5.07233x + 6.61367) −20(x2 − 12.5294)(x2 − 2.2932)(x2 + 0.5729)
ζ = 7 (x2 − 1.2051x − 8.3519)(x2 + 1.2051x + 0.8179) −20(x2 + 2.0270x − 5.5609)(x2 − 4.8900x + 6.1511)

× (x2 + 2.8630x + 2.2150)
ζ = 8 (x2 + 1.2051x − 8.3519)(x2 − 1.2051x + 0.8179) −20(x2 − 2.0270x − 5.5609)(x2 + 4.8900x + 6.1511)

× (x2 − 2.8630x + 2.2150)
ζ = 9 (x2 − 5.01525x + 6.47201)(x2 + 5.01525x + 5.28038) −20(x2 + 5.0460x + 5.3283)(x2 + 0.3380x + 0.5727)

× (x2 − 5.3840x + 7.4014)
ζ = 10 (x2 + 5.01525x + 6.47201)(x2 − 5.01525x + 5.28038) −20(x2 − 5.0460x + 5.3283)(x2 − 0.3380x + 0.5727)

× (x2 + 5.3840x + 7.4014)
ζ = 11 (x2 + 2.162707x + 3.56055)(x2 − 2.162707x − 5.00227) −20(x2 + 6.051x + 8.8268)(x2 − 1.3451x − 0.3943)

× (x2 − 4.7057x + 5.6852)
ζ = 12 (x2 − 2.162707x + 3.56055)(x2 + 2.162707x − 5.00227) −20(x2 − 6.051x + 8.8268)(x2 + 1.3451x − 0.3943)

× (x2 + 4.7057x + 5.6852)
ζ = 13 (x2 + 1.0751x + 2.9229)(x2 − 1.0751x − 3.2612) −20(x2 − 3.3149x − 1.0537)(x2 − 2.7178x + 2.1494)

× (x2 + 6.0327x + 8.7374)
ζ = 14 (x2 − 1.0751x + 2.9229)(x2 + 1.0751x − 3.2612) −20(x2 + 3.3149x − 1.0537)(x2 + 2.7178x + 2.1494)

× (x2 − 6.0327x + 8.7374)
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TABLE IV. Extended Heine-Stieltjes polynomials y
(ζ )
2 (x) for constructing S = 3/2 states with n = 7 and t = 2 according to (35) and

corresponding Van Vleck polynomials V
(ζ )

5 (x).

Extended Heine-Stieltjes Van Vleck
polynomial y

(ζ )
2 (x) polynomial V

(ζ )
5 (x)

ζ = 1 (x − 2.646)(x + 2.646) −12(x − 1.5275)(x + 1.5275)x3

ζ = 2 (x − 1.5275)(x + 1.5275) −12(x − 2.646)(x + 2.646)x3

ζ = 3 x2 − 1.270x + 0.5564 −12(x − 2.63447)(x − 1.4683x)(x + 0.430964)(x + 1.54863)(x + 2.65236x)
ζ = 4 x2 + 1.270x + 0.5564 −12(x + 2.63447)(x + 1.4683x)(x − 0.430964)(x − 1.54863)(x − 2.65236x)
ζ = 5 (x − 2.582)(x − 0.6325) −12(x + 0.4792)(x + 1.5636)(x + 2.6585)(x2 − 3.3621x + 2.9644)
ζ = 6 (x + 2.582)(x + 0.6325) −12(x − 0.4792)(x − 1.5636)(x − 2.6585)(x2 + 3.3621x + 2.9644)
ζ = 7 (x − 2.620)(x + 0.4611) −12(x − 0.779279)(x + 1.5569)(x + 2.6556)(x2 − 2.5336x + 1.66393)
ζ = 8 (x + 2.620)(x − 0.4611) −12(x + 0.779279)(x − 1.5569)(x − 2.6556)(x2 + 2.5336x + 1.66393)
ζ = 9 (x − 1.484)(x + 0.4196) −12(x − 2.63681)(x + 1.5462)(x + 2.6515)(x2 − 1.1171x + 0.4745)
ζ = 10 (x + 1.484)(x − 0.4196) −12(x + 2.63681)(x − 1.5462)(x − 2.6515)(x2 + 1.1171x + 0.4745)
ζ = 11 x2 − 3.831x + 3.719 −12(x − 2.5078)(x − 0.6085)(x + 0.4859)(x + 1.5666)(x + 2.6598)
ζ = 12 x2 + 3.831x + 3.719 −12(x + 2.5078)(x + 0.6085)(x − 0.4859)(x − 1.5666)(x − 2.6598)
ζ = 13 (x − 2.637)(x + 1.546) −12(x − 1.4827)(x + 0.4211)(x + 2.6516)(x2 − 1.1358x + 0.4844)
ζ = 14 (x + 2.637)(x − 1.546) −12(x + 1.4827)(x − 0.4211)(x − 2.6516)(x2 + 1.1358x + 0.4844)

representations of U(2j + 1) ⊃ Sp(2j + 1) ⊃ O(3) as shown
in [24] and [25]. The Bethe ansatz method for angular
momentum projection with the Heine-Stieltjes correspondence
shown in previous sections can also be applied to construct
states with definite angular momentum from a set of uncoupled
single-particle product states for identical-particle systems,
which can be done as follows: First, we solve the BAEs,
(5), for nonidentical particle systems with the same spin
and then construct the coupled state, (2). Once the coupled
state, (2), is expanded in terms of single-particle product
states, we take all particles to be identical, which is called
assimilation. For identical-fermion systems, the Pauli principle
forbidden single-particle product states will be automatically
ruled out after the assimilation. Because of the additional
permutation symmetry with respect to the single-particle
coordinate permutations, the procedure outlined in previous

sections can be simplified. In this section, we show how the
the procedure is carried out.

A. Identical bosons

Let the single-particle states of boson with angular momen-
tum l be |l, m〉 ≡ |m〉 with m = −l,−l + 1, . . . , l. According
to (2), the n-coupled state with total angular momentum
L = nl − k and ML = L

|ζ ; L,ML = L) = L−
(
x

(ζ )
1

)
. . . L−

(
x

(ζ )
k

)|h.w.〉, (43)

where |h.w.〉 = ∏n
α=1 |mα = l〉 is the highest weight state,

L−
(
x

(ζ )
i

) =
n∑

α=1

1

x
(ζ )
i − εα

Lα
−, (44)

TABLE V. Extended Heine-Stieltjes polynomials y
(ζ )
3 (x) for constructing S = 1/2 states with n = 7 and t = 3 according to (35) and

corresponding Van Vleck polynomials V
(ζ )

5 (x).

Extended Heine-Stieltjes Van Vleck
polynomial y

(ζ )
3 (x) polynomial V

(ζ )
5 (x)

ζ = 1 (x − 0.6354)(x2 − 2.020x + 2.296) −15(x − 2.581)(x − 1.432)(x + 0.4002)(x + 1.514)(x + 2.630)
ζ = 2 (x + 0.6354)(x2 + 2.020x + 2.296) −15(x + 2.581)(x + 1.432)(x − 0.4002)(x − 1.514)(x − 2.630)
ζ = 3 (x − 2.542)(x2 + 0.5857x + 0.2296) −15(x − 0.4874)(x + 1.473)(x + 2.619)(x2 − 3.213x + 2.754)
ζ = 4 (x + 2.542)(x2 − 0.5857x + 0.2296) −15(x + 0.4874)(x − 1.473)(x − 2.619)(x2 + 3.213x + 2.754)
ζ = 5 (x − 2.582)(x + 0.5705)(x + 2.540) −15(x − 0.6329)(x2 − 2.867x + 2.204)(x2 + 3.394x + 3.026)
ζ = 6 (x + 2.582)(x − 0.5705)(x − 2.540) −15(x + 0.6329)(x2 + 2.867x + 2.204)(x2 − 3.394x + 3.026)
ζ = 7 (x − 0.3106)(x2 + 2.634x + 1.912) −15(x − 2.625)(x − 1.498)(x + 2.562)(x2 + 1.097x + 0.4387)
ζ = 8 (x + 0.3106)(x2 − 2.634x + 1.912) −15(x + 2.625)(x + 1.498)(x − 2.562)(x2 − 1.097x + 0.4387)
ζ = 9 (x − 1.434)(x + 0.5286)(x + 2.529) −15(x − 2.612)(x2 − 1.116x + 0.4798)(x2 + 3.403x + 3.044)
ζ = 10 (x + 1.434)(x − 0.5286)(x − 2.529) −15(x + 2.612)(x2 + 1.116x + 0.4798)(x2 − 3.403x + 3.044)
ζ = 11 (x − 2.593)(x2 + 3.468x + 3.144) −15(x − 0.7007)(x + 0.5593)(x + 2.528)(x2 − 2.562x + 1.738)
ζ = 12 (x + 2.593)(x2 − 3.468x + 3.144) −15(x + 0.7007)(x − 0.5593)(x − 2.528)(x2 + 2.562x + 1.738)
ζ = 13 (x − 1.461)(x2 + 3.299x + 2.884) −15(x − 2.616)(x + 0.5086)(x + 2.537)(x2 − 0.7961x + 0.3266)
ζ = 14 (x + 1.461)(x2 − 3.299x + 2.884) −15(x + 2.616)(x − 0.5086)(x − 2.537)(x2 + 0.7961x + 0.3266)
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in which the parameters {εα} can usually be any set of unequal
numbers, and Lα

− is the angular momentum lowering operator
acting only on the αth copy of the single-particle state, and
L+ = ∑

α Lα
+, similar to the nonidentical particle case. The

corresponding BAE is

n∑
α=1

2l

x
(ζ )
i − εα

−
k∑

t=1(�=i)

2

x
(ζ )
i − x

(ζ )
t

= 0 (45)

for i = 1, 2, . . . , k. Upon substituting the solutions {xi} of (45)
into (43), (43) gives the final result after assimilation.

It can be easily proven that the n-coupled state with
L = ln − 1 is 0. Because

Lα
−|h.w.〉 =

√
2l

n∏
β=1(�=α)

|mβ = l〉|mα = l − 1〉

=
√

2l

n−1∏
β=1

|mβ = l〉|mn = l − 1〉, (46)

owing to the fact that these bosons are identical, (43) becomes

|ζ ; L = ML = nl − 1) = L−(x(ζ ))|h.w.〉

=
√

2l

n∑
α=1

2l

x(ζ ) − εα

n−1∏
β=1

|mβ = l〉|mn = l − 1〉, (47)

which is 0 because
n∑

α=1

2l

x(ζ ) − εα

= 0 (48)

according to Eq. (45) when k = 1.
When k � 2, the number of states, (43), with L = 2l − k

may be calculated in the following way: Let Pn(k) be the
number of different n partitions of the integer k with k =∑n

i=1 ξi , where 2l � ξ1 � ξ2 � · · · � ξn � 0. Then the num-
ber of linearly independent states shown in (43) for l bosons
DB(n, k) = Pn(k) − Pn(k − 1), which gives the multiplicity
of a given L = nl − k in the reduction U(2l + 1) ↓ O(3) for
the symmetric irreducible representation [n, 0̇] of U(2l + 1).
Generally, DB(n, k) is far less than d(n, k) shown in (6)
for nonidentical particles. Therefore, for given L, n-coupled
states, (43), obtained from solutions of (45) are overcomplete
for identical-particle systems when k � 2. Actually, states,
(43), obtained from different solutions of (45), up to a
normalization constant, are all the same when DB(n, k) = 1.
When DB(n, k) � 2, the solutions, (43), are not orthogonal
with respect to the multiplicity label, and many solutions
of (43) can be expressed by a linear combination of other
solutions of (43).

Simplification can be made to overcome such complexity,
mainly because there is a freedom to choose the parameters
{εα} in (44). When DB(n, k) = 1, we set

εα = −1 for α � p, εα+p = 1 for α � 1 (49)

when n = 2p and

εα = −1 for α � p + 1, εα+p+1 = 1 for α � 1

(50)

when n = 2p + 1. With this choice, Eq. (45) becomes

2l(p + r)

xi + 1
+ 2lp

xi − 1
−

k∑
t=1( �=i)

2

xi − xt

= 0 (51)

for i = 1, 2, . . . , k, where r = 0 when n = 2p and r = 1
when n = 2p + 1, which are exactly the Niven equations for
zeros of the Jacobi polynomial P

[−2lp−1,−2l(p+r)−1]
k (x). There

is only one set of zeros of (51) which is sufficient for (43)
when DB(n, k) = 1. Therefore, (43) with zeros of the Jacobi
polynomial P

[−2lp−1,−2l(p+r)−1]
k (x) are n-coupled states with

L = nl − k when the parameters {εα} are chosen according to
(49) or (50) when DB(n, k) = 1.

For example, there is only one state with L = 6
for n = 4 d bosons (l = 2). According to (49), we set
{ε1 = ε2 = −1, ε3 = ε4 = 1}. Substituting two zeros {x1 =
−0.2582ı, x2 = 0.2582ı} of the Jacobi polynomial P [−7,−7]

2 (x)
into (43), we get

|L = ML = 6〉 = −0.5222|2, 2, 1, 1〉 + 0.8528|2, 2, 2, 0〉
(52)

after assimilation and normalization.
When DB(n, k) � 2, we have many ways to set the

parameters {εα}. The simplest way is to choose the two-
value parametrization with εα1 = εα2 = · · · = εαr

= −1 and
the rest parameters εβ = 1 when β �= αi for i = 1, 2, . . . , r .
Obviously, there are 2n − 2 different ways to do such a
parametrization, from which one can choose DB(n, k) of
them. Zeros of the corresponding Jacobi polynomial can
be used to obtain the final results from (43). It seems that
DB(n, k) � 2n − 2 is always satisfied for n � 2, though we
are unable to prove this inequality in general. Therefore, the
above two-value parametrization seems sufficient to resolve
the multiplicity.

For example, there are two coupled states of n = 4 d bosons
with L = 4. One can set {ε1 = ε2 = −1, ε3 = ε4 = 1} for one
solution with

|ζ = 1, L = ML = 4〉 = 0.2208|1, 1, 1, 1〉
− 0.7211|2, 1, 1, 0〉 + 0.6403|2, 2, 0, 0〉
− 0.1030|2, 2, 1,−1〉 + 0.1030|2, 2, 2,−2〉 (53)

and set {ε1 = −1, ε2 = ε3 = ε4 = 1} for another solution with

|ζ = 2, L = ML = 4〉 = 0.0827|1, 1, 1, 1〉
− 0.2702|2, 1, 1, 0〉 − 0.1161|2, 2, 0, 0〉
+ 0.6733|2, 2, 1,−1〉 − 0.6733|2, 2, 2,−2〉. (54)

In this case, the final coupled states (53) and (54) are not
orthogonal with respect to the multiplicity label ζ , namely,
〈ζ = 1|ζ = 2〉 �= 0. In order to orthonormalize them, the
Gram-Schimidt process may be adopted.

More complicated parametrizations are always possible.
For example, we can also set

εα = −1 for α � p,
(55)

εp+1 = 0, εβ+p+1 = 1 for β � 1,
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TABLE VI. Extended Heine-Stieltjes polynomials y
(ζ )
4 (x) for

n = 4 d bosons coupled to L = ML = 4 with {ε1 = −1, ε2 = 0,

ε3 = ε4 = 1}.

Extended Heine-Stieltjes polynomial y
(ζ )
4 (x)

ζ = 1 (0.1382 − 0.7053x + x2)(0.2800 − 0.6172x + x2)
ζ = 2 (0.6106 + 1.5493x + x2)(0.9545 + 1.8343x + x2)
ζ = 3 (−0.2918 + x)(0.4284 + x)(0.1284 − 0.4857x + x2)
ζ = 4 (0.0876 − 0.5298x + x2)(0.3138 + 1.0483x + x2)
ζ = 5 (−0.2874 + x)(0.6446 + x)(0.6007 + 1.4124x + x2)

where the integer p can be chosen arbitrarily. Thus, the BAEs,
(45), become

2lp

x
(ζ )
i + 1

+ 2l

x
(ζ )
i

+ 2l(n − p − 1)

x
(ζ )
i − 1

−
k∑

t=1(�=i)

2

x
(ζ )
i − x

(ζ )
t

= 0

(56)

for i = 1, 2, . . . , k. Then one can choose DB(n, k) solutions
of (56) to get the results. When we set {ε1 = −1, ε2 = 0, ε3 =
ε4 = 1} for the previous L = 4 example of four d bosons, there
are five solutions of (56) with the extended Heine-Stieltjes
polynomials listed in Table VI.

The corresponding coupled states after normalization are

|ζ = 1, L = ML = 4〉 = 0.1974|1, 1, 1, 1〉
− 0.6448|2, 1, 1, 0〉 + 0.6502|2, 2, 0, 0〉
− 0.2475|2, 2, 1,−1〉 + 0.2475|2, 2, 2,−2〉;

|ζ = 2, L = ML = 4〉 = −0.0432|1, 1, 1, 1〉
+ 0.1412|2, 1, 1, 0〉 + 0.2252|2, 2, 0, 0〉
− 0.6810|2, 2, 1,−1〉 + 0.6810|2, 2, 2,−2〉;

|ζ = 3, L = ML = 4〉 = 0.1926|1, 1, 1, 1〉
− 0.6290|2, 1, 1, 0〉 + 0.2642|2, 2, 0, 0〉
+ 0.4987|2, 2, 1,−1〉 − 0.4987|2, 2, 2,−2〉;

|ζ = 4, L = ML = 4〉 = 0.0829|1, 1, 1, 1〉
− 0.2707|2, 1, 1, 0〉 + 0.5085|2, 2, 0, 0〉
− 0.5750|2, 2, 1,−1〉 + 0.5750|2, 2, 2,−2〉;

|ζ = 5, L = ML = 4〉 = −0.2355|1, 1, 1, 1〉
+ 0.7692|2, 1, 1, 0〉 − 0.5740|2, 2, 0, 0〉
− 0.1081|2, 2, 1,−1〉 + 0.1081|2, 2, 2,−2〉.

Because DB(4, 4) = 2 in this case, we may choose

|χ = 1〉 = |ζ = 1〉,
|χ = 2〉 = c1|ζ = 1〉 + c2|ζ = 2〉,

where c1 = 1/N and c2 = − 1
N 〈ζ=1|ζ=2〉 with the normaliza-

tion constant

N =
(

〈ζ = 1|ζ = 1〉 + 〈ζ = 2|ζ = 2〉
〈ζ = 1|ζ = 2〉2

− 2

)1/2

according to the Gram-Schmidt process. Then one finds

|ζ = 3〉 = 0.3686|χ = 1〉 + 0.9296|χ = 2〉,
|ζ = 4〉 = 0.8062|χ = 1〉 − 0.59168|χ = 2〉,
|ζ = 5〉 = −0.8622|χ = 1〉 − 0.5066|χ = 2〉.

This example shows that coupled states with zeros of other
polynomials can indeed be expressed as linear combinations
of the chosen two owing to the overcompleteness.

B. Identical fermions

Let the single-particle states of fermions with spin j be
|j,m〉 ≡ |m〉 with m = −j,−j + 1, . . . , j . Unlike identical
bosons, we have verified that the parameters {εα} must be
a set of unequal numbers for identical fermions. Initially,
we need to solve the BAEs, (5), for nonidentical particles
with the same spin jα = j for α = 1, 2, . . . , n. After (2) is
expanded in terms of the single-particle product states, we
take all particles to be identical. The Pauli exclusion will
automatically rule out any forbidden single-particle product
states after such assimilation. The result of (2) gives the final
coupled state with total angular momentum J = nj − k and
MJ = J . However, the two-value parametrization schemes for
identical bosons shown previously cannot be used for identical
fermions, mainly because the single-particle product states
are totally antisymmetric with respect to permutations among
different single-particle states. As a consequence, the coupled
state is 0 if one chooses any two-value parametrization scheme
in {εα} for identical fermions.

Similarly to identical bosons, the number of linearly inde-
pendent states obtained from (2), DF(n, k), can be calculated
as follows: Let Qn(k) be the number of different n partitions
of the integer k with k = ∑n

i=1 ξi , where 2j + 1 − n � ξ1 �
ξ2 � · · · � ξn � 0. Then the number of linearly independent
states obtained from (2) for j fermions, DF(n, k) = Qn(k) −
Qn(k − 1), which gives the multiplicity of a given J = nj − k
in the reduction U(2j + 1) ↓ O(3) for the antisymmetric
irreducible representation [1n, 0̇] of U(2l + 1). Generally,
DF(n, k) is far less than d(n, k) shown in (6) for nonidentical
particles. Therefore, (2) obtained from solutions of (5) are also
overcomplete. Similarly to identical bosons, one only needs to
choose DF(n, k) solutions of (5). When the parameters {εα}
are chosen according to (29) or (30), the coupled state, (2),
satisfies the symmetry

J−
(
x

(ζ )
1

)
J−

(
x

(ζ )
2

)
. . . J−

(
x

(ζ )
k

)|h.w.〉
= J−

( − x
(ζ )
1

)
J−

( − x
(ζ )
2

)
. . . J−

( − x
(ζ )
k

)|h.w.〉. (57)

Therefore, only one reflectional symmetry pair of Stieltjes
zeros should be considered.

In the following, we take n = 3 j = 9/2 identical fermions
as examples. In this case, there is only one coupled state with
J = MJ = 17/2 (k = 5), for which there are six extended
Heine-Stieltjes polynomials as listed in Table VII, which
clearly shows that y

(2)
5 (x) = y

(1)
5 (−x), y(4)

5 (x) = y
(3)
5 (−x), and

y
(6)
5 (x) = y

(5)
5 (−x). But three solutions y

(1)
5 (x), y

(3)
5 (x), and
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TABLE VII. Extended Heine-Stieltjes polynomials y
(ζ )
5 (x) for J = MJ = 17/2 (k = 5) coupled states of n = 3, j = 9/2 identical fermions

with {ε1 = −1, ε2 = 0, ε3 = 1}.

Extended Heine-Stieltjes polynomial y
(ζ )
5 (x)

ζ = 1 (−0.6191 + x)(0.60249 − 1.3616x + x2)(0.4249 − 1.2622x + x2)
ζ = 2 (0.6191 + x)(0.60249 + 1.3616x + x2)(0.4249 + 1.2622x + x2)
ζ = 3 (0.4849 + x)(0.4559 − 1.2046x + x2)(0.34201 − 1.1556x + x2)
ζ = 4 (−0.4849 + x)(0.4559 + 1.2046x + x2)(0.34201 + 1.1556x + x2)
ζ = 5 (0.5371 + x)(0.2723 − 1.0146x + x2)(0.3451 − 1.0889x + x2)
ζ = 6 (−0.5371 + x)(0.2723 + 1.0146x + x2)(0.3451 + 1.0889x + x2)

y
(5)
5 (x) all result in one coupled state,

|J = MJ = 17/2〉 = 0.7746|9/2, 5/2, 3/2〉
− 0.6325|9/2, 7/2, 1/2〉, (58)

up to a normalization constant after assimilation.
Because DF(3, 9) = 2 for j = 9/2 identical fermions,

J = 9/2 should occur twice. While there are 10 extended
Heine-Stieltjes polynomials as listed in Table VIII, which
shows that y

(2)
9 (x) = y

(1)
9 (−x), y

(4)
9 (x) = y

(3)
9 (−x), y

(6)
9 (x) =

y
(5)
9 (−x), y

(8)
9 (x) = y

(7)
9 (−x), and y

(10)
9 (x) = y

(9)
9 (−x), we

need to choose only 2 of them to get the coupled states
according to (2). The coupled state with y

(1)
9 (x) is

|ζ = 1, J = MJ = 9/2〉 = 0.2105|5/2, 3/2, 1/2〉
− 0.1684|7/2, 3/2,−1/2〉 + 0.1575|7/2, 5/2,−3/2〉
− 0.3384|9/2, 1/2,−1/2〉 + 0.4415|9/2, 3/2,−3/2〉
− 0.5446|9/2, 5/2,−5/2〉 + 0.5446|9/2, 7/2,−7/2〉,

and that with y
(3)
9 (x) is

|ζ = 2, J = MJ = 9/2〉 = 0.1506|5/2, 3/2, 1/2〉
− 0.1205|7/2, 3/2,−1/2〉 + 0.1127|7/2, 5/2,−3/2〉
− 0.3913|9/2, 1/2,−1/2〉 + 0.4651|9/2, 3/2,−3/2〉
− 0.5388|9/2, 5/2,−5/2〉 + 0.5388|9/2, 7/2,−7/2〉.

After the Gram-Schmidt orthonormalization, we have

|χ = 1, J = MJ = 9/2〉 = |ζ = 1, J = M = 9/2〉,
|χ = 2, J = MJ = 9/2〉 = 0.5526|5/2, 3/2, 1/2〉

− 0.4421|7/2, 3/2,−1/2〉 + 0.4135|7/2, 5/2,−3/2〉
+ 0.5164|9/2, 1/2,−1/2〉 − 0.2457|9/2, 3/2,−3/2〉
− 0.0250|9/2, 5/2,−5/2〉 + 0.0250|9/2, 7/2,−7/2〉.

Then the other three coupled states, corresponding to y
(5)
9 (x),

y
(7)
9 (x), and y

(9)
9 (x), respectively, can be expressed as linear

combinations of |χ = 1〉 and |χ = 2〉.

VI. SUMMARY

In summary, a new angular momentum projection for many-
particle systems is formulated based on the Heine-Stieltjes
correspondence, which can be regarded as the solutions
of the mean-field-plus-pairing model in the strong-pairing
interaction G → ∞ limit [9]. With the special choice of the
parameters {εα}, the solutions of the associated BAEs are
simplified because of the additional reflection symmetries.
Properties of the Stieltjes zeros and the related Van Vleck
zeros are discussed. The electrostatic interpretation of these
zeros are presented. As an example, the application to n
nonidentical particles with spin 1/2 is made to elucidate the
procedure and properties of the Stieltjes zeros and the related
Van Vleck zeros. It is clear that the new angular momentum
projection can be used for nonidentical particles with arbitrary
spins. It is shown that the new angular momentum projection
for identical bosons or fermions can be simplified with
the branching multiplicity formula of U(N ) ↓ O(3) and the
special choices of the parameters used in the projection.
Especially, it is shown that the coupled states of identical
bosons can always be expressed in terms of zeros of Jacobi

TABLE VIII. Extended Heine-Stieltjes polynomials y
(ζ )
9 (x) for J = 9/2 coupled states of n = 3, j = 9/2 identical fermions with

{ε1 = −1, ε2 = 0, ε3 = 1}.

Extended Heine-Stieltjes polynomial y
(ζ )
9 (x)

ζ = 1 (1.7186 − 2.3241x + x2)(0.9532 − 1.7796x + x2)(0.6707 − 1.5615x + x2)(0.5516 − 1.4664x + x2)(−0.7196 + x)
ζ = 2 (1.7186 + 2.3241x + x2)(0.9532 + 1.7796x + x2)(0.6707 + 1.5615x + x2)(0.5516 + 1.4664x + x2)(0.7196 + x)
ζ = 3 (1.3423 − 1.8543x + x2)(0.7134 − 1.4807x + x2)(0.4992 − 1.3433x + x2)(0.4228 − 1.2929x + x2)(0.4142 + x)
ζ = 4 (1.3423 + 1.8543x + x2)(0.7134 + 1.4807x + x2)(0.4992 + 1.3433x + x2)(0.4228 + 1.2929x + x2)(−0.4142 + x)
ζ = 5 (0.9728 − 1.4201x + x2)(0.5034 − 1.2196x + x2)(0.3611 − 1.1571x + x2)(0.1818 + 0.8182x + x2)(−0.5708 + x)
ζ = 6 (0.9728 + 1.4201x + x2)(0.5034 + 1.2196x + x2)(0.3611 + 1.1571x + x2)(0.1818 − 0.8182x + x2)(0.5708 + x)
ζ = 7 (0.6395 − 1.0463x + x2)(0.3362 − 1.0087x + x2)(0.2589 − 1.0027x + x2)(0.2069 + 0.7932x + x2)(0.4142 + x)
ζ = 8 (0.6395 + 1.0463x + x2)(0.3362 + 1.0087x + x2)(0.2589 + 1.0027x + x2)(0.2069 − 0.7932x + x2)(−0.4142 + x)
ζ = 9 (0.1801 − 0.8267x + x2)(0.2527 − 0.7578x + x2)(0.3775 + 0.7973x + x2)(0.2253 + 0.8689x + x2)(0.4423 + x)
ζ = 10 (0.1801 + 0.8267x + x2)(0.2527 + 0.7578x + x2)(0.3775 − 0.7973x + x2)(0.2253 − 0.8689x + x2)(−0.4423 + x)
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polynomials. However, unlike nonidentical particle systems,
the coupled states of identical particles are nonorthogonal
with respect to the multiplicity label after the projection. In
order to establish orthonormalized coupled states for identical
particles, the Gram-Schimidt process may be adopted. It will
be advantageous in the application, for example, to shell-model
calculations if matrix elements of one- and two-body operators
under the angular momentum projected basis can be calculated
easily, which seems possible as shown in [26], where explicit
expressions for the expectation values of one- and two-body
operators in the mean-field-plus-pairing model were obtained,
on which relevant research is in progress.
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