577 research outputs found

    The MRE inverse problem for the elastic shear modulus

    Get PDF
    Magnetic resonance elastography (MRE) is a powerful technique for noninvasive determination of the biomechanical properties of tissue, with important applications in disease diagnosis. A typical experimental scenario is to induce waves in the tissue by time-harmonic external mechanical oscillation and then measure the tissue's displacement at fixed spatial positions 8 times during a complete time-period, extracting the dominant frequency signal from the discrete Fourier transform in time. Accurate reconstruction of the tissue's elastic moduli from MRE data is a challenging inverse problem, and we derive and analyze two new methods which address different aspects. The first of these concerns the time signal: using only the dominant frequency component loses information for noisy data and typically gives a complex value for the (real) shear modulus, which is then hard to interpret. Our new reconstruction method is based on the Fourier time-interpolant of the displacement: it uses all the measured information and automatically gives a real value of shear modulus up to rounding error. This derivation is for homogeneous materials, and our second new method (stacked frequency wave inversion, SFWI) concerns the inhomogeneous shear modulus in the time-harmonic case. The underlying problem is ill-conditioned because the coefficient of the shear modulus in the governing equations can be zero or small, and the SFWI approach overcomes this by combining approximations at different frequencies into a single overdetermined matrix--vector equation. Careful numerical tests confirm that both these new algorithms perform well

    Viscoelastic modulus reconstruction using time harmonic vibrations

    Get PDF
    This paper presents a new iterative reconstruction method to provide high-resolution images of shear modulus and viscosity via the internal measurement of displacement fields in tissues. To solve the inverse problem, we compute the Fr\'echet derivatives of the least-squares discrepancy functional with respect to the shear modulus and shear viscosity. The proposed iterative reconstruction method using this Fr\'echet derivative does not require any differentiation of the displacement data for the full isotropic linearly viscoelastic model, whereas the standard reconstruction methods require at least double differentiation. Because the minimization problem is ill-posed and highly nonlinear, this adjoint-based optimization method needs a very well-matched initial guess. We find a good initial guess. For a well-matched initial guess, numerical experiments show that the proposed method considerably improves the quality of the reconstructed viscoelastic images.Comment: 15 page

    Novel applications, model, and methods in magnetic resonance elastography

    Full text link
    Magnetic Resonance Elastography (MRE) is a non-invasive imaging technique that maps and quantifies the mechanical properties of soft tissue related to the propagation and attenuation of shear waves. There is considerable interest in whether MRE can bring new insight into pathologies. Brain in particular has been of utmost interest in the recent years. Brain tumors, Alzheimer's disease, and Multiple Sclerosis have all been subjects of MRE studies. This thesis addresses four aspects of MRE, ranging from novel applications in brain MRE, to physiological interpretation of measured mechanical properties, to improvements in MRE technology. First, we present longitudinal measurements of the mechanical properties of glioblastoma tumorigenesis and progression in a mouse model. Second, we present a new finding from our group regarding a localized change in mechanical properties of neural tissue when functionally stimulated. Third, we address contradictory results in the literature regarding the effects of vascular pressure on shear wave speed in soft tissues. To reconcile these observations, a mathematical model based on poro-hyperelasticity is used. Finally, we consider a part of MRE that requires inferring mechanical properties from MR measurements of vibration patterns in tissue. We present improvements to MRE reconstruction methods by developing and using an advanced variational formulation of the forward problem for shear wave propagation

    Non-identifiability of the Rayleigh damping material model in magnetic resonance elastography

    Get PDF
    Magnetic Resonance Elastography (MRE) is an emerging imaging modality for quantifying soft tissue elasticity deduced from displacement measurements within the tissue obtained by phase sensitive Magnetic Resonance Imaging (MRI) techniques. MRE has potential to detect a range of pathologies, diseases and cancer formations, especially tumors. The mechanical model commonly used in MRE is linear viscoelasticity (VE). An alternative Rayleigh damping (RD) model for soft tissue attenuation is used with a subspace-based nonlinear inversion (SNLI) algorithm to reconstruct viscoelastic properties, energy attenuation mechanisms and concomitant damping behavior of the tissue-simulating phantoms. This research performs a thorough evaluation of the RD model in MRE focusing on unique identification of RD parameters, μIμI and ρIρI. Results show the non-identifiability of the RD model at a single input frequency based on a structural analysis with a series of supporting experimental phantom results. The estimated real shear modulus values (μRμR) were substantially correct in characterising various material types and correlated well with the expected stiffness contrast of the physical phantoms. However, estimated RD parameters displayed consistent poor reconstruction accuracy leading to unpredictable trends in parameter behaviour. To overcome this issue, two alternative approaches were developed: (1) simultaneous multi-frequency inversion; and (2) parametric-based reconstruction. Overall, the RD model estimates the real shear shear modulus (μRμR) well, but identifying damping parameters (μIμI and ρIρI) is not possible without an alternative approach

    Multiscale modeling of weakly compressible elastic materials in harmonic regime and application to microscale structure estimation

    Get PDF
    This article is devoted to the modeling of elastic materials composed by an incompressible elastic matrix and small compressible gaseous inclusions, under a time harmonic excitation. In a biomedical context, this model describes the dynamics of a biological tissue (e.g. lung or liver) when wave analysis methods (such as Magnetic Resonance Elastography) are used to estimate tissue properties. Due to the multiscale nature of the problem, direct numerical simulations are prohibitive. We extend the homogenized model introduced in [Baffico, Grandmont, Maday, Osses, SIAM J. Mult. Mod. Sim., 7(1), 2008] to a time harmonic regime to describe the solid-gas mixture from a macroscopic point of view in terms of an effective elasticity tensor. Furthermore, we derive and validate numerically analytical approximations for the effective elastic coefficients in terms of macroscopic parameters. This simplified description is used to to set up an efficient variational approach for the estimation of the tissue porosity, using the mechanical response to external harmonic excitations
    corecore