This paper presents a new iterative reconstruction method to provide
high-resolution images of shear modulus and viscosity via the internal
measurement of displacement fields in tissues. To solve the inverse problem, we
compute the Fr\'echet derivatives of the least-squares discrepancy functional
with respect to the shear modulus and shear viscosity. The proposed iterative
reconstruction method using this Fr\'echet derivative does not require any
differentiation of the displacement data for the full isotropic linearly
viscoelastic model, whereas the standard reconstruction methods require at
least double differentiation. Because the minimization problem is ill-posed and
highly nonlinear, this adjoint-based optimization method needs a very
well-matched initial guess. We find a good initial guess. For a well-matched
initial guess, numerical experiments show that the proposed method considerably
improves the quality of the reconstructed viscoelastic images.Comment: 15 page